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In this paper we investigate the deducfive systems and theories whose formalized
languages are certain sublanguages of algorithmic languages as introduced in [2].
The completeness theorem as well as the theorem on the existence of models for
consistent theories will be proved here with the use of algebraic methods. We assume
the reader fo be familiar with the concepts introduced in [2].

1. Languages and their realizations

The alphabet 4 of a language .2 is obtained by adding auxiliary symbols to
the alphabet of a language 2, of open formulae. These are: signs of iteration
quantifiers _J and ("), square brackéts [ }, and an auxiliary sign/.

The set T of terins is defined as usual. The set S of substitutions will be composed
of all expressions of the form [x,/t, ... x,/7,], X, being an individual variable and
7, 4 term.

The set of formulae will be the least set F satisfying:

f1) if p is an n-argument predicate and 7, ..., 7, are terms, then pty ... Tn)
15 in F,

f2) if @ is in F, then 7Ja is in F,

f3) if @ and B are in F, then (av ), (an f), (a=>f) are in F,

£4) if @ is in F and s is a substitution, then sa, | sa, () sa are in F.

Elements of the set F will be denoted by a, 8, 7, & (with indices if necessary).
It is easy to see that the sef F° of open formulae is a subset of F. Let s' @ be an abbre-
viation for a formula defined by induction as follows

a=a,
sttla=ssta.

The formula a of the form mentioned in f1) will be called atomic. By the language -
L2 with iteration quantifiers we understand an ordered system {4, T, S, F). The
class of all languages with iteration quantifiers will b¢ denoted by L.
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1.1, The sef F of all formulae of any language .2 € L is an abstract algebra
<F’ _]’ V’ A’:> U’ m {S}SES>

with one 1-argument operation 7}, three 2-argument operations v, A, = if formulae
—la, (@v B), (an B); (a= fB) are conceived as the results of corresponding operations
on the formulae @ and §. The set S of all substitutions forms the set of operators
on the set F of all formulae. An operator s applied to a formula a gives the formula
sa. Formulae|_J sa and (") sa are treated as the resulfs of infinite operations|_Jand( )
on the set of all formulae of the form s‘a (i=0,1,...).

Common domain @ of the infinite operations () and (") is the family of sets
of formulae such that the set G< F is in D iff there exist a formula a and a substi-
tution s such that the set G is composed of all formulae of the form s*a (=0, 1, ...).

1.2. The algebra (F, 1, v, A, =, U, M), {5},cs> is a generalized free algebra
for the class K of all similar algebras

<A; 01, O3, O3, 04, 01: 02’ {O-s}sES>

with one l-argument operation o,, three 2-argument operations o;, 03, 05 tWO
infinife operations O, and O, and the set of operators {o,},. 5. The set composed
of all atomic formulas is the set of free generators of the algebra F.

We omif the easy proofs.

The language .0={4, T, S, F) is a sublanguage of an algorithmic language
as defined in [2]. Any realization of an algorithmic language will be considered
as a realization of a corresponding language.

Let 7 be a term, and VF (7) the set of individual variables octurring in <.

Lef a be a formula, by ¥F (a) we shall denote the set of individual variables
occurring free in a.

v1) If a is atomic, then VF{d) contains all variables occurring in g,
v2) if a is of the form 7] 8 then VF(a)=VF(f),
v3) if @ is one of the forms (Bv ), (BA ), (=) then -

VF(@)=VF (B)U VF ().

Let s be a substifution [x,/7, ... X,/7,] then the set of variables occurring as the
first element in a pair x,/z, will be denoted by OR (s). The set of all variables occurring
in any term 7; will be denoted by IR(s)= |, VF (r(). Let sx denote the term. t,.

vd) If a is of the form sf then =1

VE (@) =(VF (B)—OR ())u U VF () x € VF (B N OR (s),
v5) if a is of the form | sf or{ )sB then

VF(@=) VE(s' B).

- K
Observe that there exists an integer k such that| ) VF (s f)=\_ VF (s’ B) (k<n).
i=0 =0



i

Predicate Calculi with Iteration Quantifiers 281

Lef @ be a term or an open formula. Let s be a substitution [x/7, ..., Xa/T,].
By sx we denote 1; if x=x; or x if x differs of all x; (i=1, ..., n). Let us consider the
set of individual variables ¥V, ={xe V:x e VF(0) N OR (s)}. By s§ we denote the
result of simultaneous replacement of all occurrences of individual variables x from
V,, by sx. We recall [see .1, V. 3] that the result 50 will be a term (an open formula)
if 8 is a term (an open formula).

From the definition of realization -of terms, formulae and substitutions [see 2}
follows immediately

1.3. The value ag () of the formula ¢ in the realization R at the valuation v de-

pends only on @z, .., Bors Bips s Pmug AN Ty 5 sy Uy
where: ¢y, ..., ¢, are all functors occurring in the formula a

P1y s Pm are all predicates occurring in the formula @
Xy, ..., X3 are all free variables occurring in the formula a.

14. For every atomic formula y, every formulae g, B, every substitutions s and
r and every valuation v the following equalities hold

(s9)z (v)=357g (),

(s @V B)x (0)=(s0)z () U (sB)g (2),
(s @A B)r (2)=(50)g () " (sB)g (2),
(s (@= B))z () =(s0)x (2) > (s) (@),
(s 710 (2)= —(s)g (2),

(r| ) sa)p (v)= Q(rs" @) (2),

¢ (") s3)x (2) = ﬁ (rs' a)g (2).

1.5. If in any Boolean algebra B=(B, U, N, =, ), U the results of corres-
ponding infinite operations exist, then

U a=a\Vl)a,

t=T U {eg} tel
M b=b,n() b.
teT Ut} reT

As a simple corrolary we obtain

1.6. For every formula ¢ every substitutions r and s and every valuation the
following equalities hold

(rMsa)g (D) =(ra)z (¥) N (s sa); (v),
(rUsa)g (2)=(ra)g (v) U (r Us sa)g (2).



282 A, Salwicki

2. Axioms of the calculus

By an axiom we understand any formula of the form (t1)—(t12) or (pI}—(p7).
The axioms (t1)—(t12) of clasical propositional calculus are taken from Rasiowa
and Sikorski [1]. The second group of axioms is as follows. Let us assume the follo-
wing abbreviation: by (a<>$) we shall understand the following formula ((a=-f)A
(ﬂ:»a)). With this abbreviation, any formula of the one of the following schemas
IS an axiom

(p1) (sy=5sp),

(P2) (s (@av B =(savsh)),

(p3) (s (anB)=>(sansp)),

(p4) (s (@a= P)<>(sa=sph)),

(®5) (s Ta<>"1s0),

®6) (rUsa<(ravrl s sa)),

(7 (r(Msa<(ranr( s sa))
for every formulae a every atomic formula y, every substitutions s and r, every
predicate p, and every term 7y, ..., T,

We assume the following rules of inference

rl) rule of modus ponens

a0, (@a=B)

ﬁ 3

r2) rule of substitution
' a

sa’
r3) rule of generalization
a

(sa’

4) rule of introduction of a universal quantifier of iteration

{(a = st ﬁ)}I EN
(a=Msp) °

r5) rule of introduction of an existential quantifier of iteration

{(si a= ﬁ)}iEN
Usa=8

Rule r1) has two premises, rules r2) and r3) have one premise. Rules r4) and
r5) have infinifely many premises. However in the case when the set OR (s) is disjoint
with the set of free variables of the formula a (of the formula ) the rule r4 (r5)
can be replaced by a simpler one

(a=f)
) e———=
) (a=(sp)
a
5) (a=f)
(Usa=p) .

if OR@E)NVF(a)=g,

if ORENVFB)=0.
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Let G be a set of formulae. By C (G) we denote the least set of formulae containing
G and axioms of calculus and closed under the rules of inference r1)—r5). The
mapping C assigning to every set G a set C (G) will be called the consequence opera-
tion. It is easy to check the following properties of C

cl) G=C(G),

c2) GeH impliess C{(G<C(H),

¢3) CC(H=C (6.

In the sequel we shall study the deductive system
' S=¢L, O

- and theories T={£2, C, A> where <{ is a set of formulae called specific axioms
of theory ‘G. The set C («f) will be called the set of theorems of a theory ‘CT={.2, C <7}
The deductive system < can be considered as a theory with empty set of specific
axioms.
Notions of consistency of theory T, and of a formula irrefutable in the theory
T are defined as usual.

Let us introduce the following congruence relation in the set F of formulae
a=~f iff formulae (6= ) and (B=a) are theorems of theory
[see 1, VI. 10].
2.1. If formulae a and § are congruent a=f, then?
sax=sh,
Msax( 8,
U sax=)sp.

The quotient algebra F/~ will be denoted U (‘C) and called Lindenbaum algebra
of the theory ‘0. Elements % (T) are classes of equivalence &~ denoted by [iz||

2.2. The Lindenbaum algebra (% (T), A, A, =, 1, U, ), {s};esy of the
theory C is a Boolean algebra with endomorphisms {s}, . s and with infinite opera-
tions of lL.u.b. and glb. For any formulae ¢ and §.

lall v 181l=liav Bl

flali A 1811=lle A B},

llall=[18ll=li(a= Al
lall=1{ Tall.

Morcover, [al|<]|Bil, iff the formula (a<= 8) is a theorem of the theory C.
The result of the operator s on the element [ja| is defined by the equality

s |lali=||salf
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and the following equalities hold

§ @ v B)ll=s lalivs [8l,
8 e A Bll=s fallas liBll,
s lle=B}=s llall= s 1181l
sTHel="1slall.
For every formula a
lal=v iff a is a theorem of the theory T,
lall##A iff @ is irrefutable in the theory T

and algebra U (‘C) is nondegenerated (i.e. has at least two elements) iff the theory
‘C is consistent.

The equivalence classes of formulae () sa and () sa are Lu.b. and g.l.b. of the
set of equivalence classes {|ls'all} i=0,1, ...

I\ sall= ) Is*all,
i=0
() sall= DO st all.

The proof follows partially from 2.} and from [1, VII.1.1], the remaining parts
being easy to verify.

3. Validity of formulae. Models of a theory

Notions of satisfiability of a formula, of validity and of model are defined as
usual.

3.1. Let a realization R of the language .2 be a model for the theory T=<{.2, C,
>, then every formula a e @ (1) (i.e. every theorem of this theory) is valid in R.

Proof by easy verification. -

3.2. Every theorem of the deductive system o is valid in every realization R.

3.3. If the theory ‘C has a model in a nonempty set J and the two-element Boolean
alegbra B,, then C is consistent.

3.4, Deductive systeem <} is consistent.
3.5. If a formula of the form ((a = B)A (8= a)) is a theorem of deductive system
d, then ag (v)=fg (v) for every realization R and every valuation w.
4. Compieteness theorem

' Now we shall state a theorem converse to 3.1.

4.1. If the theory T={(L, @, <> is consistent, then there exists a set of formulae
& such that
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a) @ is consistent, i.e. the theory {.2, C, G} is consistent,

b) =G,

c) for every formula a either a€ § or lae §

d) if formula {_J sa belongs to &, then there exists an integer k such'that s“ae(.

This is esily proved making use of the lemma of Rasiowa—Sikorski [1,11.9.3]
4.2, If a theory T=<(.2, @, o> is consistent, then there exists 2 model for C.

4.3. The following conditions are equivalent:
(i) the formula a is a theorem of the consistent theory ‘C={.L2, C, ¢1),
(ii) the formula g is valid in every model R of the theory C.

At the first glance it seems possible to weaken the axiomatization presented
here by replacing infinitistic rules r4) and r5) by some finitistic rules. That this is
not the case will be shown as follows.

Let us consider two languages, first the classical (denoted by .£,,) and the
second containing the iteration quantifiers (denoted by .2). Both languages have
the same functors O (zero) and S (successor) and one predicate =(equality). Observe
the following facts. 1° It is possible to construct the formulae a,, a,, a3 € £ such
that the theory Ar={(R, C, {a,, a,, a;}) is consistent and all the models of Ar
are isomorphic with the set of natural numbers. 2° Let R be a realization of functors
and of = in the set of natural numbers. To every formula a € £2,,,, one can assign
a formula Be.2 such that for every valuation v of individual variables ap (2)=fz ().
The assumption that it is possible to modify the axiomatization presented above
in such a way that proofs are always finite leads to contradiction with the results
of Godel that the arithmetfic is undecidable.
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