
SpecVer & LEM’12 2018 1–18 1

Dombrova Research

On Collatz’s theorem
DRAFT - please do not distribute

Grażyna Mirkowska
Dombrova Research
Partyzantów 19
05-092 Łomianki, POLAND

G.Mirkowska@uksw.edu.pl

Andrzej Salwicki
Dombrova Research
salwicki@mimuw.edu.pl

Abstract. We are showing two theorems:

T1) For every natural number n > 0, computation of Collatz’s algorithm C, executed in standard
model of arithmetics of natural numbers is finite.

T2) In a non-standard model of arithmetics of addition one can observe computations that can be
arbitrarily prolonged (i.e. they are infinite). This observation can be strengthened: if in a data
structure for addition there is an infinite computation of Collatz’s algorithm for some n, then
the structure is a non-standard model of natural numbers.

September 12, 2018

1. Introduction

In 1937, Lothar Collatz observed that, for any natural number n > 0 chosen by him, a sequence defined
by following equations

a1 = n

aj+1 =

{
aj/2 if aj is even
3aj + 1 if aj is odd

always terminates on number 1. Collatz formulated the conjecture, for any natural number n > 0 the
sequence determined by the above equations reaches 1 i.e. for every natural number n > 0 there exists
natural number k, such that ak = 1.
Several mathematicians and computer scientists were involved in research of the conjecture, cf. [3].

2 Mirkowska & Salwicki / On Collatz’s theorem

Many papers were published. In the search of an eventual counter-example computers are working
constantly. Till today the Collatz’s conjecture is verified by all numbers up to 80 · 260, see [1].

In a programming language one can write the following program C

C:
while n 6= 1 do

if n ∈Even then n← n/2 else n← 3n+1 fi
od

The remark made by Collatz can be formulated as follows

Conjecture 1. For any natural number n > 0, computation of program C is finite.

For an execution of Collatz’s algorithm C produces all numbers of the sequence {aj}.
We shall prove Collatz’s conjecture showing that a formula that expresses the halting property of Col-
latz’s program C is a theorem of algorithmic theory of natural numbers.
We shall also show that Collatz’s conjecture can not be proved in elementary theory of natural numbers.
Our arguments are similar to those found in [6] In this way we confirm the opinion of Pal Ërdös [1, 3].

The structure of the paper is as follows: in next section we study the halting formula of Collatz’s program,
we define the notion of layer that is related to the halting formula and formulate a couple of lemmas. In
section 3 we are giving an indirect proof of Collatz’s theorem. The subsequent section is devoted to the
question under which conditions the Collatz’s program may iterate endlessly? A couple of appendices
follow, added for the convenience of the reader.

2. Halting formula, modified algorithm, definition of a layer

We shall analyze algorithm C and its variations. The halting property of the algorithm C can be expressed
by the following formula,

while n 6= 1 do

if n ∈ Even then n← n/2 else n← 3n+ 1fi

od

 (n = 1) (lc1)

or by another, equivalent formula⋃
{if n 6= 1 then if odd(n) then n← 3n+ 1 else n← n/2 fi fi}(n = 1) (lc2)

The halting formula of a program M is the weakest precondition that guarantees that the computation of
program M is finite. We recall that algorithmic theory of natural numbers has one, up to isomorphisms,
model, cf. [4] p. 55. It is the standard structure of natural numbers with addition and multiplication.
Hence the following
Remark. The conjecture of Collatz is is true if and only if the halting formula of Collatz’s algorithm is
a theorem of algorithmic theory of numbers.

Mirkowska & Salwicki / On Collatz’s theorem 3

Note that the following program checks whether number m is a power of two

P2 :
ispow2 := true;

while m 6= 1 do if odd(m) then ispow2 := false; exit else m := m/2 fi od;

It is evident that
{P2} (ispow2⇔ ∃k m = 2k).

Therefore we can replace program C by an equivalent program CS:

program CS;

Boolean function d(n) df⇔
m := n; ispow2 := true;

while m 6= 1 do if odd(m) then ispow2 := false; exit else m := m/2 fi od;

result := ispow2

while ¬ d(n) do

ifodd(n) then n← 3n+ 1 else n← n/2 fi

od

Program C has a finite computation if and only if the program CS halts. It is easy to observe that the
computations of program CS are burdened with overhead on the length of computation. We shall neglect
this overhead.
We are going to study the following halting formula of program CS

⋃


if¬(d(n)) then

K:


if odd(n)

then n← 3n+ 1

else n← n÷ 2

fi


fi


(
d(n)

)
(LC)

The halting formula LC uses an existential iteration quantifier
⋃

. To give you an intuition of this iteration
quantifier we shall present some formulas equivalent to the formula LC.
First we apply the axiom Ax21 and obtain(

d(n)
)
∨
⋃ {

if¬d(n) then K fi
}({

if¬d(n) then K fi
}(
d(n)

))
(LC0)

which in turn is equivalent to

(
d(n)

)
∨

({
if¬d(n)
then K fi

}(
d(n)

))
∨
⋃ {

if¬d(n)
then Kfi

}{ if¬d(n)
then K fi

}2 (
d(n)

) (LC1)

4 Mirkowska & Salwicki / On Collatz’s theorem

next formula equivalent to the formula LC is given below

d(n) ∨


if¬d(n)
then K

fi

 d(n) ∨


if¬d(n)
then K

fi


2

d(n) ∨
⋃ 

if¬d(n)
then K

fi





if¬d(n)
then K

fi


3

d(n)


(LC2)

The i-th formula equivalent to the halting formula is of the following form

d(n) ∨




if ¬d(n)
then K

fi

 d(n)

∨



if ¬d(n)
then K

fi


2

d(n)

 ∨ . . .




if ¬d(n)
then K

fi


i

d(n)

∨
⋃∨ 

if ¬d(n)
then K

fi





if ¬d(n)
then K

fi


i+1

d(n)



(LCi)

We can apply the axiom of conditional instruction Ax20 and obtain

d(n)︸︷︷︸
0×

∨¬d(n) ∧K d(n)︸ ︷︷ ︸
1×

∨¬d(n) ∧K¬d(n) ∧K2 d(n)︸ ︷︷ ︸
2×

∨

¬d(n) ∧K¬d(n) ∧K2¬d(n) ∧K3 d(n)︸ ︷︷ ︸
3×

∨

...

¬d(n) ∧K¬d(n)... ∧Ki−1¬d(n) ∧Ki d(n)︸ ︷︷ ︸
i×

∨

⋃ 
if ¬d(n)

then K

fi





if ¬d(n)
then K

fi


i+1

d(n)


One can observe that the halting formula LC of the program CS is, informally speaking, an infinite
disjunction of ever-longer conjunctions. Each conjunction expresses the property: the program CS will
execute i× iterations and will stop. The precise meaning of iteration quantifier is given by definition
(IQE) on page 16. The structure of these conjunctions is even more complicated as will be seen later.
For the program K is a conditional instruction. Applying the axiom Ax20 one obtains a disjunction.
For example, the conjunction that describes the property: program CS will execute exactly one iteration

Mirkowska & Salwicki / On Collatz’s theorem 5

of instruction K and will stop is equivalent to the following alternative.



if ¬d(n) then

if odd(n)

then n← 3n+ 1

else n← n÷ 2

fi fi


d(n)

⇔
(
¬d(n) ∧ odd(n) ∧ {n← 3n+ 1}d(n) ∨
¬d(n) ∧ ¬odd(n) ∧ {n← n÷ 2}d(n)

)
. (1×)

Luckily for us, we could discard the second part of the alternative for the conjunction ¬d(n)∧ d(n/2) is
false for every n.

Inspired by these observations we accept the following definition of layers, i.e. the subsets of the set N .

Definition 2.1. (of layers)

S0
df
= {n ∈ N : ∃k n = 2k}

S1
df
= {n ∈ N : n > 1 ∧ 3n+ 1 ∈ S0}

S2
df
= {n ∈ N : n/2 ∈ S1}
. . .

Si+1
df
= {n ∈ N : n is odd ∧ 3n+ 1 ∈ Si ∨ n is even ∧ n/2 ∈ Si}

Collatz’s conjecture is equivalent to the following one

Conjecture 2. Layers Si make a covering of the set N .

N =
∞⋃
i=0

Si

A quick examination of the properties of the layers brings the following observations

Fact 2.1.

∞) Each layer is an infinite set.

S0) Layer S0 is an increasing sequence.

ak = 2k for k = 0, 1, ...

S1) Numbers {5, 21,85, 341, . . . } belong to the layer S1.
The recurrent dependencies determine the membership to this layer a1 = 5, aj+1 = 4 ∗ aj + 1
The j-th element of the layer S1 is

aj = (22(j+1) − 1)/3 for j = 1, 2, 3, ...

6 Mirkowska & Salwicki / On Collatz’s theorem

S2) Layer S2 is described by equations b1 = 10, bj+1 = 4 ∗ bj + 2.
Or

bj = 2 · (22(j+1) − 1)/3 dla j = 1, 2, 3, ...

Si) Membership of number n to the layer Si is definable by an algorithmic formula, see Appendix A.

Lemma 2.1. Layers are pairwise disjoint sets, Sl ∩ Sp = ∅ for l 6= p.

Proof:
Suppose that for some l, p intersection of layers is non-empty set Sl ∩Sp 6= ∅. Without loss of generality
we can assume that l < p and that l is the least natural number such that, for some p the layers Sl and Sp
have common element Sl ∩ Sp 6= ∅. Hence there is a number m such that m ∈ Sl and m ∈ Sp, l < p.
If m is even number then m/2 ∈ Sl−1 and m/2 ∈ Sp−1. If m is odd number then 3m + 1 ∈ Sl−1 and
3m+ 1 ∈ Sp−1.
Hence Sl−1 ∩ Sp−1 6= ∅. This contradicts our assumption that the number l is the least number such that
the layer Sl has an element common with some other layer. ut

Now our conjecture can be formulated as follows.

Conjecture 3. Set of layers Si is a partition of the set N .

N =
∞⋃
i=0

Si and Sl ∩ Sp = ∅ for l 6= p

Let us make a couple of easy observations

Lemma 2.2. If number n belongs to the layer Sk+1, then after execution of instruction {if odd(n) then n←
3n+ 1 else n← n÷ 2 fi} the new value of variable n belongs to the layer Sk.

(n ∈ Sk+1) =⇒ {if odd(n) then n← 3n+ 1 else n← n÷ 2 fi}(n ∈ Sk) (1)

It is easy to remark that

Lemma 2.3. If a number n belongs to some layer Si, then the computation of Collatz’s algorithm that
starts from n will stop after finite number of steps.

∀n n ∈
∞⋃
i=0

Si =⇒


while ¬(n = 1) do

if odd(n) then n← 3n+ 1 else n← n/2 fi

od

 (n = 1)

Mirkowska & Salwicki / On Collatz’s theorem 7

3. Collatz’s algorithm halts

In this section we shall prove that Collatz’s algorithm executed in standard structure of natural numbers
halts. Namely, we shall show that the halting formula LC is a theorem of algorithmic theory of natural
numbers TA.
There are two questions: 1° is there a cycle in computations of Collatz’s algorithm? and 2° is there a
natural number n such that the computation of Collatz’s program is infinite?
First question has a negative answer. No cycles, since the program is deterministic one. See also the
lemma 2.1.
In answering to the second question, we shall use three algorithmic theories TA, TB, TW . All three
theories share the same languageL, based on the same alphabet. All three theories use the same operation
of syntactical consequence C, it means that they use the same set of logical axioms and inference rules
of calculus of programs AL, see section 7.
The differences appear in the sets of specific, extra-logical axioms.

B) Theory TB could be skipped. We present it for dydactical reasons. The reader may want to see the
similarities and differences of two other theories, that are used in the proof of Collatz’s theorem.
Theory TB = 〈L, C,B〉 has the following set of axioms B (in addition to the axioms of the calculus
of programs AL, these are listed in section 7)

B :



N0) ∀x 0 6= s(x)

N1) ∀x,y s(x) = s(y) =⇒ x = y

D0) ∀x 0 + x = x

D1) ∀x,y (y + 1) + x = (x+ y) + 1

P0) P (0) = 0

P1) ∀x P (s(x)) = x

L1) x < y ⇔ ∃z(z 6= 0 ∧ x+ z = y)

A1) odd(n)⇔ ∃k(n = k + k + 1)

A2) w/2 = k ⇔ (k + k = w ∨ k + k + 1 = w)

A3) 3 ∗ n = n+ n+ n

A4) d(n)⇔ ∃k(k < n ∧ n = 2k)


Axioms B of the theory TB are first-order formulas, while the language L contains programs and
algorithmic formulas.

A) Theory TA = 〈L, C,A〉 has the same language and the same operation of syntactical consequence
as theory TB . The set of axioms of this theoryA = B∪{P3} is the set B filled with the following
algorithmic formula

P3) ∀x {while x 6= 0 do x← P (x) od}(x = 0)

It is known that every model of this theory is isomorphic to the standard structure of natural num-
bers with addition, see [4] thm. 4.2 on page 55.

8 Mirkowska & Salwicki / On Collatz’s theorem

Theory TA = 〈L, C,A〉 is therefore complete. 1. Remember this.

W) We shall consider also the following algorithmic theory TW = 〈L, C,W〉. Axioms of this theory
are the axioms from the set B and the following sentence

∀n


while ¬d(n) do

if odd(n) then n← 3n+ 1 else n← n/2 fi

od

 (d(n)) (LC′)

Yes, it is not an error.(!) W = B ∪ {LC′}. The formula LC’ is the halting formula of Collatz
algorithm.
Theory TW is consistent. For not every formula of the language L is a theorem of the theory.
We shall show that the formula P3 is a theorem of theory TW .

Lemma 3.1.
TW ` ∀x {while x 6= 0 do x← P (x) od}(x = 0)

A proof of the lemma is in Appendix A, section 5.

3.1. Proof of Collatz theorem

An indirect, meta-logical, proof of the theorem goes in four steps.

1. Formula P3, an axiom of theory TA, is a theorem of the theory TW , by lemma 3.1. All the remain-
ing axioms B are common to both theories.

2. Therefore the set of theorems of theory TA is a subset of the set of theorems of theory TW .

Theorems(TA) ⊆ Theorems(TW)

3. Remind yourself, theory TA is complete. It is also maximal. Hence, theory TW is complete too.

4. Therefore the sets of theorems of these theories are equal

Theorems(TA) = Theorems(TW)

Hence, the halting formula of Collatz algorithm is a theorem of theory TA.

Theorem 3.1. (Collatz) Each computation of Collatz algorithm is finite, when the algorithm is executed
in standard structure of natural numbers with addition.

TA ` LC′

q.e.d.

1Definition. A theory T is complete iff for every sentence ϕ, either this sentence ϕ is theorem of theory T or the sentence
contradicts the axioms of theory T .

Mirkowska & Salwicki / On Collatz’s theorem 9

Comments and corollaries

• Collatz’s algorithm calculates the number l(n) of layer of a given number n. It is evidently a
partial-recursive function. We proved that the function l(n) is recursive i.e. computable function.

• There is a need to write a direct proof of Collatz’s theorem. You must be aware that the proof will
be using ω-rule R6, somewhat similar to the proofs in [6].

• It is desirable to estimate the cost of Collatz’s algorithm. Give a function o(n) that majorize the
number of steps.

• Is the function o(n) primitive recursive?

4. Collatz’s algorithm may loop

In this section we are studying the following question: is it possible that Collatz’s algorithm loops? what
it would eventually mean?.
We shall consider various addition structures and various formalized theories: elementary and algorith-
mic ones.

Definition 4.1. An algebraic system (i.e. a data structure) of type

〈X,+, 0, 1〉

will be called an addition structure iff
1°) X is a set, symbol + denotes two-argument operation on X , 0 and 1 are elements of X , and
2°) such that the structure satisfies the following conditions

∀x 0 6= x+ 1

∀x,y x+ 1 = y + 1⇒ x = y

∀x 0 + x = x

∀x,y (y + 1) + x = (y + x) + 1

and also assures the validity of every formula of the induction scheme,
here symbol Φ denotes any first-order formula

{Φ(x/0) ∧ ∀x(Φ(x)⇒ Φ(x+ 1))} ⇒ ∀x Φ(x)

�

SymbolKwill denote the class of addition structures. This class contains the standard structure of natural
numbers with addition as well as various structures non-isomorphic with the standard structure.
In particular the structure described in Appendix C is a non-standard addition structure.

Having look at Appendix C, example 6.1 we formulate

Fact 4.1. Collatz algorithm if executed in a non-standard model M of arithmetic of addition has infinite
computation of element n which is a nonstandard element of the model.

10 Mirkowska & Salwicki / On Collatz’s theorem

Making use of the Collatz theorem 3.1 we can formulate the following

Theorem 4.1. If in an addition structure A there exists an infinite computation of Collatz algorithm
for certain element n, then the structure A is a non-standard model of arithmetic of addition of natural
numbers.

Corollary 4.1. Halting property of Collatz algorithm is not expressible in the first-order theory of addi-
tion.

5. Appendix A – proof of lemma 3.1

To the end of this section the symbol K denotes the following program
{if odd(n) then n← 3n+ 1 else n← n/2 fi}.

Remark that the relation n ∈ Sx is computable by a simplified version of the algorithm C. From the
definition of layer, a number n belongs to layer Sx if and only if the Collatz algorithm CS stops after
exactly x steps.

Definition 5.1.
Boolean function w(n, k) df⇔

m := n;

if k = 0 then result := d(m)

else

i := 1;

while i ≤ k ∧ ¬d(m)do

if odd(m) then m := 3m+ 1 else m := m/2 fi;

i := i+ 1

od;

result := (i = k) ∧ d(m)

fi;

result

Fact 5.1. w(n, 0)⇔ d(n)

Fact 5.2. The program in the above definition of predicate w(n, k) does not loop.

In the proof, below, we are using the following auxiliary inference rules of program calculus AL

α⇔ K α, α⇔ K;M α

{while α do M od}¬α⇔ {while α do M ;K od}(¬α)
(Aux1)

α =⇒ β

{while β do M od}¬β =⇒ {while α do M od}(¬α)
(Aux2)

δ =⇒ M δ

δ ∧ {while γ do M od}¬γ =⇒ {while γ do M od}(¬γ ∧ δ)
(Aux3)

Mirkowska & Salwicki / On Collatz’s theorem 11

In the table below formula in the row 2+i+1 follows from the row 2+i, i=0, ..., 5.
1 ∀x∃n w(n, x) for each layer Sx is a non-

empty set

2


while ¬d(n) do

K

od

 d(n) this is an axiom of theory
TW

3


while ¬d(n) do

K

x← P (x)

od

 d(n) this is a theorem of TW , we
applied the auxiliary infer-
ence rule Aux1, see. [5]
s.110

4


while ¬w(n, 0) do

K

x← P (x)

od

 w(n, 0) conditions d(n) andw(n, 0)
are equivalent, we apply the
rule Aux2

5


while ¬w(n, 0) ∧ w(n, x) do

K

x← P (x)

od


(
w(n, 0)∧
w(n, x)

)
condition w(n, x) is an in-
variant of the program
{K;x ← P (x)}, cf.
Lemma 2.2. We apply the
rule Aux3 ,see. below

6


while ¬x = 0 ∧ w(n, x) do

K

x← P (x)

od


(
x = 0∧
w(n, x)

)
condition x 6= 0 ∧ w(n, x)
is equivalent to condition
¬w(n, 0) ∧ w(n, x)

7


while ¬x = 0 do

K

x← P (x)

od

 x = 0 we can skip the subformula
w(n, x) since its value is
true at every iteration,

8


while ¬x = 0 do

x← P (x)

od

 x = 0 we can skip the program K
since it does not contain the
variable x

q.e.d.

12 Mirkowska & Salwicki / On Collatz’s theorem

6. Appendix C – an example of infinite computation

In this section we present a class Cn that implements a programmable and non-standard model M of
axioms of addition theory T h1 (cf. section 4). We show that Collatz’s algorithm, executed in this model
has infinite computations.

It is well known that the set of axioms of the theory T h1 has non-standard models. We are reminding
that the system

M = 〈M, zero, one, s, add, equal〉
where

• The set M is defined as follow

〈k, x〉 ∈M ≡ {k ∈ Z ∧ x ∈ R ∧ x ≥ 0 ∧ (x = 0 =⇒ k ≥ 0)}

here k is an integer, x is a non-negative rational number and when x is 0 then k ≥ 0 ,

• the operation addition is defined component wise, as usual in a product,

• the successor operation is defined as follow s(〈k, x〉) = 〈k + 1, x〉,

• constant zero 0 is 〈0, 0〉.

is a non-standard and recursive(i.e. computable) model of axioms of theory T h1.
Now, class Cn is written in Loglan programming language [7]. This class defines and implements an

algebraic structure C. The universe of the structure consists of all objects of the class NCN (this is an
infinite set). Operations in the structure C are defined by the methods of class Cn: add, equal, zero and
s. All the axioms of the algorithmic theory T h1 are valid in the structure C, i.e. the structure is a model
of the theory. We show that for some data the execution of Euclid’s algorithm is infinite.

unit Cn: class;
unit NSN : class(intpart, nomprt, denom : integer);

begin
if nomprt = 0 and intpart < 0 orif nomprt ∗ denom < 0 orif denom = 0

then raise Exception fi
end NSN ; unit add : function(n,m : NSN) : NSN ;

begin result := new NSN(n.intpart+m.intpart,

n.nomprt ∗m.denom+ n.denom ∗m.nomprt, n.denom ∗m.denom) end add; unit equal : function(n,m : NSN) : Boolean;

begin result := (n.intpart = m.intpart) and
(n.nomprt ∗m.denom = n.denom ∗m.nomprt) end equal;[

unit zero : function : NSN ;

begin result := new NSN(0, 0, 1) end zero;[
unit s : function(n : NSN) : NSN ;

begin result := new NSN(n.intpart+ 1, n.nomprt, n.denom) end s;

end Cn;

Mirkowska & Salwicki / On Collatz’s theorem 13

Theorem 6.1. The algebraic structure C which consists of the set |NSN | of all objects of class NSN
together with the methods add, s, equal and constant zero,

C = 〈|NSN |, zero, s, add, equal〉

satisfies all axioms of natural numbers with addition operation, cf. section 4.

Proof:
This is a slight modification of the arguments found in Grzegorczyk’s book [2]p.239. ut

Example 6.1. One can easily extend classCn adding two functions: even and div2. ClassCn extended
in this way brings a counterexample to Collatz hypothesis c.f.[3]. An attempt to execute the program C
for n = new NSN(8, 1, 2) results in an infinite computation.. The computation never reaches s(zero),
i.e. new NSN(1, 0, 2).

n explanation

new NSN(8, 1, 2) 〈8, 1
2
〉 is even; divide by 2

new NSN(4, 1, 4) 〈4, 1
4
〉 is even; divide by 2

new NSN(2, 1, 8) 〈2, 1
8
〉 is even; divide by 2

new NSN(1, 1,16) 〈1, 1
16
〉 is odd; multiply by 3; add 1

new NSN(4, 3,16) 〈4, 3
16
〉 is even; divide by 2

new NSN(2, 3,32) 〈2, 3
32
〉 is even; divide by 2

new NSN(1, 3,64) 〈1, 3
64
〉 is odd; multiply by 3; add 1

new NSN(4, 9,64) 〈4, 9
64
〉 is even; divide by 2

...
new NSN(1, 3i, 22i+2) at step 3i+ 1 the value of n is 〈1, 3i

22i+2 〉
...

A) This means that halting formula of Collatz program is not a theorem of theory T h1.

B) Note, the program C makes no use of multiplication operation. Hence, it seems unlikely that the
halting formula is a theorem of theory T h2. By Tennenbaum’s theorem[8] it is impossible to construct a
programmable (recursive) and non-standard model of Peano arithmetic. However it suffices to show that
there is a non-standard model of Peano arithmetic (i.e. of theory T h2) such that the functions even and
div2 are recursive. This need not to contradict Tennenbaum theorem.

7. Appendix D – An outline of calculus of programs

The reader familiar with the algorithmic logic [4] can safely skip the rest of this section.

14 Mirkowska & Salwicki / On Collatz’s theorem

7.1. A short exposition of calculus of programs

For the convenience of other readers we offer a few words on the calculus of programs and in the follow-
ing subsection we are listing axioms and inference rules of the calculus.
A formalized logic L is determined by its language L and the syntactic consequence operation C,
L = 〈L,C〉. How to describe the difference between first-order logic FOL and algorithmic logic AL?
The language of algorithmic logic is a superset of the language of first-order logic, it is also a superset
of deterministic while programs, moreover, it includes algorithmic formulas and is closed by the usual
formation rules. In the language of AL we find all well formed expressions of FOL. The alphabets are
similar. However, the language of AL contains programs and the set of formulas is richer than the set of
first-order formulas.

As you can see the languageWFFAL contains programs. Moreover, the set of formulas FAL is a
proper superset of the set of first-order formulas FFOL.

propositional calculus PL
WFFPL = {FPL}

predicate calculus FOL
WFFFOL = {TFOL ∪ FFOL}

program calculus AL
WFFAL = {TAL ∪ FAL ∪ PAL}
FFOL FAL

calculus of program schemes PAL
WFFPAL = {FPAL ∪ PPAL}

Figure 1. Comparison of logical calculi w.r.t. theirWFF sets

The setWFFAL of well formed expressions is the union of three sets: set of terms (programmers
may say, set of arithmetical expressions), set of formulas (i.e. set of boolean expressions) and the set of
programs.

Definition 7.1. The set of terms is the least set of expressions T such that

• each variable x is an element of the set T ,

• if an expression τ belongs to the set T , then the expressions s(τ), P (τ) belong to the set T ,

• if expressions τ and σ belong to the set T , then the expressions (τ + σ), (τ ∗ σ), (τ ._ σ) belong
to the set T . �

The set of formulas we describe in two steps.

Mirkowska & Salwicki / On Collatz’s theorem 15

Definition 7.2. The set of open formulas is the least set FO of expressions such that

• if expressions τ and σ are terms, then the expressions (τ = σ), (τ < σ) are open formulas,

• if expressions α and β are open formulas, then the expressions (α∧ β) (α∨ β), (α =⇒ β), ¬α
are open formulas. �

Definition 7.3. The set of programs (in the language of theories T h1, T h2, T h3) is the least set P of
expressions, such that

• If x is a variable and an expression τ is a term, then the expression x := τ is a program. (Programs
of this form are called assignment instructions. They are atomic programs.)

• if expressions K and M are programs, then the expression {K; M} is a program,

• if expression γ is an open formula and expressions K and M , are programs, then the expressions
while γ do M od and
if γ then K else M fi are programs. �

We use the braces { } to delimit a program.

Definition 7.4. The set of formulas is the least set of expressions F such, that

• each open formula belongs to the set F ,

• if an expression K is a program and an expression α is a formula, then the expression K α is a
formula,

• if an expression K is a program and an expression α is a formula, then expressions
⋃
K α and⋂

K α are formulas,

• if an expression α is a formula, then the expressions ∀x α and ∃x α are formulas,

• if expressions α and β are formulas, then the expressions (α ∧ β) (α ∨ β), (α ⇒ β), ¬α are
formulas. �

Following Tarski we associate to each well formed expression of the language a mapping. The meanings
of terms and open formulas is defined in a classical way. Semantics of programs requires the notion
of computation (i.e. of execution). For the details consult [4]. Two facts would be helpful in reading
further:

• The meaning of an algorithmic formula Kα in a data structure A is a function from the set of
valuations of variables into two-element Boolean algebra B0 defined as follow

(Kα)A(v)
df
=


αA(KA(v)) if the result KA(v) of computation

at initial valuation v is defined,
false otherwise i.e. if the computation

of program K fails or loops endlessly.

(K)

16 Mirkowska & Salwicki / On Collatz’s theorem

This explains why the formula LC expresses the halting property of the program CS, on page 3.

Define Kiα by induction: K0α
df
= α and Ki+1α

df
= KKiα.

We read the formula
⋃
K α as there exists an iteration of program K such that formula Kiα

holds, and
⋂
K α means for each iteration of program K formula Kiα holds.

The signs
⋃

and
⋂

are iteration quantifiers. The meaning of these formulas is defined as follow.

(
⋃
Kα)A(v)

df
= l.u.b. {(Kiα)A(v)}i∈N (IQE)

(
⋂
Kα)A(v)

df
= g.l.b. {(Kiα)A(v)}i∈N (IQG)

• The calculus of programs i.e. algorithmic logic, enjoys the property of completeness. For the
completeness theorem consult [4].

7.2. Axioms and inference rules of program calculus AL

For the convenience of reader we cite the axioms and inference rules of algorithmic logic.
Note. Every axiom of algorithmic logic is a tautology.
Every inference rule of AL is sound. [4]

Axioms

axioms of propositional calculus

Ax1 ((α⇒ β)⇒ ((β ⇒ δ)⇒ (α⇒ δ)))

Ax2 (α⇒ (α ∨ β))
Ax3 (β ⇒ (α ∨ β))
Ax4 ((α⇒ δ) ⇒ ((β ⇒ δ) ⇒ ((α ∨ β)⇒ δ)))

Ax5 ((α ∧ β)⇒ α)

Ax6 ((α ∧ β)⇒ β)

Ax7 ((δ ⇒ α)⇒ ((δ ⇒ β)⇒ (δ ⇒ (α ∧ β))))
Ax8 ((α⇒ (β ⇒ δ))⇔ ((α ∧ β)⇒ δ))

Ax9 ((α ∧ ¬α)⇒ β)

Ax10 ((α⇒ (α ∧ ¬α))⇒ ¬α)
Ax11 (α ∨ ¬α)
axioms of predicate calculus

Ax12 ((∀x)α(x)⇒ α(x/τ)))
where term τ is of the same type as the variable x

Ax13 (∀x)α(x)⇔ ¬(∃x)¬α(x)
axioms of calculus of programs

Ax14 K((∃x)α(x))⇔ (∃y)(Kα(x/y)) for y /∈ V (K)

Mirkowska & Salwicki / On Collatz’s theorem 17

Ax15 K(α ∨ β)⇔ ((Kα) ∨ (Kβ))

Ax16 K(α ∧ β)⇔ ((Kα) ∧ (Kβ))

Ax17 K(¬α)⇒ ¬(Kα)
Ax18 ((x := τ)γ ⇔ (γ(x/τ) ∧ (x := τ)true)) ∧ ((q := γ′)γ ⇔ γ(q/γ′))
Ax19 begin K;M end α⇔ K(Mα)

Ax20 if γ then K else M fi α⇔ ((¬γ ∧Mα) ∨ (γ ∧Kα))
Ax21 while γ do K od α⇔ ((¬γ ∧ α) ∨ (γ ∧K(while γ do K od(¬γ ∧ α))))

Ax22
⋂
Kα⇔ (α ∧ (K

⋂
Kα))

Ax23
⋃
Kα ≡ (α ∨ (K

⋃
Kα))

Inference rules

propositional calculus

R1
α, (α⇒ β)

β
(also known as modus ponens)

predicate calculus

R6
(α(x) ⇒ β)

((∃x)α(x) ⇒ β)

R7
(β ⇒ α(x))

(β ⇒ (∀x)α(x))
calculus of programs AL

R2
(α⇒ β)

(Kα⇒ Kβ)

R3
{s(if γ then K fi)i(¬γ ∧ α)⇒ β}i∈N

(s(while γ do K od α)⇒ β)

R4
{(Kiα⇒ β)}i∈N
(
⋃
Kα⇒ β)

R5
{(α⇒ Kiβ)}i∈N
(α⇒

⋂
Kβ)

In rulesR6 andR7, it is assumed that x is a variable which is not free in β, i.e. x /∈ FV (β). The rules
are known as the rule for introducing an existential quantifier into the antecedent of an implication and
the rule for introducing a universal quantifier into the successor of an implication. The rules R4 and R5

are algorithmic counterparts of rules R6 and R7. They are of a different character, however, since their
sets of premises are infinite. The rule R3 for introducing a while into the antecedent of an implication
of a similar nature. These three rules are called ω-rules. The rule R1 is known as modus ponens, or the
cut-rule.

In all the above schemes of axioms and inference rules, α, β, δ are arbitrary formulas, γ and γ′ are
arbitrary open formulas, τ is an arbitrary term, s is a finite sequence of assignment instructions, and K

18 Mirkowska & Salwicki / On Collatz’s theorem

and M are arbitrary programs.

References
[1] Collatz conjecture. "https://en.wikipedia.org/wiki/Collatz_conjecture".

[2] Andrzej Grzegorczyk. Zarys Arytmetyki Teoretycznej. PWN, Warszawa, 1971.

[3] Jeffrey C. Lagarias, editor. The Ultimate Challenge: The 3x+1 Problem. American Mathematical Society,
Providence R.I., 2010.

[4] Grażyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. PWN, Warszawa, 1987. "http://lem12.
uksw.edu.pl/wiki/Algorithmic_Logic", 1987. "[Online; accessed 7-August-2017]".

[5] Grażyna Mirkowska and Andrzej Salwicki. Logika algorytmiczna dla programistów. WNT, Warszawa, 1992.

[6] Andrzej Salwicki. A new proof of Euclid’s algorithm. "http://lem12.uksw.edu.pl/images/4/49/
On-Euclids-algorithm-2018.pdf", 2018. "[Online; accessed 3-September-2018]".

[7] Andrzej Salwicki and Andrzej Zadrożny. Loglan’82 - website. "http://lem12.uksw.edu.pl/wiki/
Loglan'82_project", 2013. "[Online; accessed 27-July-2017]".

[8] Stanley Tennenbaum. Non-archimedian models for arithmetic . Notices of the American Mathematical Society,
6:270, 1959.

https://en.wikipedia.org/wiki/Collatz_conjecture
http://lem12.uksw.edu.pl/wiki/Algorithmic_Logic
http://lem12.uksw.edu.pl/wiki/Algorithmic_Logic
http://lem12.uksw.edu.pl/images/4/49/On-Euclids-algorithm-2018.pdf
http://lem12.uksw.edu.pl/images/4/49/On-Euclids-algorithm-2018.pdf
http://lem12.uksw.edu.pl/wiki/Loglan'82_project
http://lem12.uksw.edu.pl/wiki/Loglan'82_project

	Introduction
	Halting formula, modified algorithm, definition of a layer
	Collatz's algorithm halts
	Proof of Collatz theorem

	Collatz's algorithm may loop
	Appendix A – proof of lemma 3.1
	Appendix C – an example of infinite computation
	Appendix D – An outline of calculus of programs
	A short exposition of calculus of programs
	Axioms and inference rules of program calculus AL

