
SpecVer & LEM’12 projects XX (2015) 1–17 1

Dombrova Research

Algorithmic Logic + SpecVer = the methodology for high integrity
programming

Grażyna Mirkowska
Polish-Japanese Institute of Computer Technology
Koszykowa 86, 02-097 Warszawa, Poland
mirkowska@pjwstk.edu.pl

Andrzej Salwicki
National Institute of Telecomunication
Szachowa 1, 04-894 Warszawa, Poland
salwicki@mimuw.edu.pl

Oskar Świda
Białystok University of Technology, Department of
Computer Science
Wiejska 45A, 15-351 Białystok, Poland
Oskar.Swida@gmail.com

Abstract. Our aim is to present a methodology that integrates all phases of software’s production
beginning from the specification phase, through the phase of programming and finally the phase of
verification of program against its specification. The theoretical background of the methodology is
algorithmic logic [9]. The environment for practical activities of this software project is a plugin
SpecVer[12] extending the Eclipse development platform [2].

1. Introduction

Software systems are growing and become more and more complicated. Accordingly grows the prob-
ability of error occurrences. Some errors seem to be simple, easy to repair. Therefore in spite of their
serious consequences many programmers and many software companies depreciate them. The producers
of software live in the world ofMAGIC (see “Logic or Magic” [4]). The majority of them thinks that
program once written and compiled is a good program. Eventually they admit that their product may
contain some bugs and therefore it should be tested and improved. But what does it mean?
We can also observe the passive attitude of the customers. Customers rely on opinions of software com-
panies and leave all decisions in their hands. It is a frequent case when a software company prepares
specifications, writes programs, tests them and releases programs and bills to pay to customers.
First of all we argue that this bad habit must be changed, especially, when a large software system is
going to be constructed. The customers should cooperate with three independent agents. Let’s name
them Designer, Programmer, Verifier. At the beginning of a software project Customer explains his(her)

2 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

need to the designer. Designer should prepare specification. (As we shall see in the next section the
specifications should be carefully analysed.) Next, Customer commands a software from a Programmer.
Programmer is to prepare an implementation of specification. Now, Customer should pass the two docu-
ments: the specification, and the program to Verifier. The goal of verification is to analyse the quality of
software against the specification and to issue the constructive opinion for Customer: ”you should pay”
or “you shouldn’t pay because the program is of poor quality”. The figure below illustrates this idea,
which sometimes is called high integrity programming (HIP) [5].
We shall conclude this introduction with the examples of the positive attitude toward HIP. There is an
evidence that the preparation of formal specification itself led to the substantial diminuation of costs of
the whole project. In some cases it allowed to reduce the cost by 9 per cent. Some companies, NASA and
Airbus among others, have divisions responsible for creation of specifications and application of formal
methods.

Customer

Designer
does analysis,

searches
 inconsistencies,

checks
completeness

Programmer
does

implementation

Verifier
does analysis,
issues verdict:
is the solution
 correct w.r.t.
specification?

they prepare
 specification

solution(program)
specification

specification
& solution

verdict

Fig. 1. Actors of the software production process and their interactions

2. Case study of specification - stacks

Let us begin with the explanation of the principle of factorization. The principle was formulated in a
paper by C.A.R. Hoare [8]. It says that whenever appropriate, the task should be divided into two parts:
implementation of an abstract data type, and implementation of an algorithm. For, in the most cases
algorithms use data structures which are not the native structures of a computer. Example: Finding the
center and the radius of the circle over a triangle. One can separate the work into the two subtasks:
implement a data structure of planar geometry and use the data structure to program the algorithm. Now

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 3

another subtask appears: to specify the data structure of planar geometry. This subtask has its formal
counterpart: axiomatization of a theory of planar geometry. Let us consider the data stucture of stacks.
We need a criterion which will be used to accept or to reject a given implementation of stacks. In
nowadays practice implementations are written in the form of class declarations. An algorithm using
stacks need not to analyze the implementation details of stacks. It may and should abstract from how the
implementation is done. The analysis should use the properties mentioned in the specification. We are
going to show that some specifications are better than others. The person or company doing specifications
should not limit itself to writing just a specification. Specifications of some quality are needed.

We shall illustrate the problem of writing a good specification on the example of stacks. Most of us
knows what stack is. At least players of the game canasta know. Any programmer used stacks at least
once in his professional life. The shortest description is LIFO. Elements are put into stack and extracted.
The LIFO means: Last In First Out. More precisely: we have some elements and stacks. We can push an
element e into stack s obtaining a new stack push(e, s). We can pop the most recent element from stack
s obtaining a smaller stack. The most recent element of a stack is returned as the value of the function
top. These two operations are partial ones. The result is not defined for empty stack. Hence, one can say
that the structure of stacks has its universe consisting from two sets: the set E of elements and the set S
of stacks. Moreover, we have three operations: push, pop, top and two predicates: empty and equality
=.

Table 1. Specification S1 of Stacks

Signature Comments

Sorts Universe = E ∪ S
E set of elements
S set of stacks

Operations
push : E × S −→ S put an element e into a stack s
pop : S −→ S result is defined iff ¬empty(s)
top : S −→ E result is defined iff ¬empty(s)
newStack :−→ S the empty stack

Relations
empty : S −→ {true, false} is stack empty?
=: E × E ∪ S × S −→ {true, false} the equality relation

Axioms

s1) (∀e ∈ E)(∀s ∈ S) ¬empty(push(e, s)) push returns a non-empty stack
s2) (∀e ∈ E)(∀s ∈ S) e = top(push(e, s)) the element last put into stack

is the stack’s top
s3) (∀e ∈ E)(∀s ∈ S) s = pop(push(e, s)) after executing push,

pop restores the previous stack
s4) empty(newStack)

4 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

Programmers conceive S as a set of potentially existing objects of a class S, similarly is conceived the
set E. The Table 2 contains one programmed implementation of the specification S1 and one “mathe-
matical“ model of it.

Table 2. Models I1
Programmed model Mathematical model

class Elem { ... }
class Stos {

private class Linkage {
Linkage next;
Elem el;
Linkage(Elem e, Linkage n){el=e; next=n;}

} // end Linkage
public Linkage topv;
public Stos(){topv=null;}
public static final Stos push(Elem e, Stos s) {

Stos n = new Stos();
n.topv = new Linkage(e, s.topv);
return n; } // end push

public static final Elem top(Stos s) throws Undef {
if (s.topv=null) throw new Undef();
return s.topv.el;

} // end top
public static final Stos pop(Stos s) throws Undef {

if (s.topv==null) throw new Undef();
Stos n =new Stos();
n.topv=s.topv.next; return n;

} //end pop
public static final Boolean empty(Stos s) {

return (s.topv==null);
} // end empty
public static final Boolean equal(Stos s1,Stos s2) {

Boolean aux=true;
Boolean aux1=Stos.empty(s1);
Boolean aux2=Stos.empty(s2);
while (!aux1&&!aux2&&aux) {

aux = (Stos.top(s1) == Stos.top(s2));
s1 = Stos.pop(s1); aux1 = Stos.empty(s1);
s2 = Stos.pop(s2); aux2 = Stos.empty(s2);

}
return (aux1 && aux2 && aux);

} // end equal
} // end Stos
class Undef extends Exception { ... }

E = {a, b, c, ...}
S = set of all finite sequences over alphabet E,
the empty sequence λ included.
newstack = λ
push(e, {e1, e2, ..., en}) = {e, e1, e2, ..., en}

top({e1, ..., en}) = e1
top(λ) is undefined

pop({e1, e2, e3, ..., en}) = {e2, e3, ..., en}
pop({e1}) = λ
pop(λ) is undefined

empty(s) ≡ s = λ
equality = is meant as identity

stacks are equal iff
they have the same elements
on the same positions.

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 5

This mathematical model is called the standard model of stacks. For any given set E one can construct
a standard model based on the set E. All models of the family of standard models of stacks are alike.
They need not to be isomorphic however. To see this, consider two standard models: one based on a set
E1 and another based on the set E2 of different cardinalities, card(E1) 6= card(E2).

Many authors consider S1 as a specification of stacks, c.f. [7], [3]. However it is far from expressing
the whole truth about the stacks as it is witnessed by the following lemma.

Lemma 2.1. The formula

(∀s ∈ S) ¬empty(s)⇒ s = push(top(s), pop(s))

saying: for every not empty stack s the result of push operation on element top(s) and the stack pop(s)
is the stack s itself, is independent of the axioms s1 - s4.

Proof:
Consider the data structure I2, c.f. Table 3. Check that it is a model of axioms s1 - s4, i.e. all four
formulas are valid in I2. We shall prove that the formula mentioned in the lemma is not valid in this
data structure. Consider the stack s = {e1, e2, e3, ..., en} such that e1 6= e2. Obviously top(s) = e1 and
pop(s) = {e3, ..., en}. Now push(top(s), pop(s) = {e1, e1, e3, ..., en} 6= s. ut

Table 3. Model I2
E = {a, b, c}
S = set of all finite sequences over alphabet E, the empty sequence λ included.
push(e, {e1, e2, ..., en}) = {e, e, e1, e2, ..., en}
top({e1, ..., en}) = e1

top(λ) is undefined
pop({e1, e2, e3, ..., en}) = {e3, ..., en}
pop({e1}) = pop({e1, e2}) = λ, pop(λ) is undefined

Therefore we can present another specification of stacks, c.f. Table 4.

Table 4. Specification S2 of stacks

Signature the same as in S1

Axioms

axioms s1 - s4 and
s5) (∀s ∈ S) ¬empty(s)⇒ for every not empty stack s
s = push(top(s), pop(s)) the result of operation push on element top(s) and

the stack pop(s) is the stack s

One may think the more formulas we add the better. This however may lead to inconsistent specifications.
Look at the following example S3, c.f. Table 5.

6 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

Table 5. Specification S3 of stacks

Signature like S1, augmented by two constants
a, b of type E

Axioms

axioms s1 - s5 and
sQ) ¬empty(s) =⇒ push(e, pop(s)) = pop(push(e, s))

and the axiom
s2E) a 6= b

Theorem 2.1. The set of formulas {s1− s5, sQ, s2E} is an inconsistent set.

Proof:
Axiom s2E) says that the set E has at least two elements a and b. Assume that s ∈ S is a non-empty
stack. Then we have:
(1) s1

df
= push(a, s) by definition

(2) s2
df
= push(b, s) by definition

(3) s = pop(s1) from (1) by s3)
(4) s2 = push(b, pop(s1)) from (2), (3), recall s is non-empty
(5) s2 = pop(push(b, s1)) from (4) by sQ)
(6) s2 = s1 from (5) by s3)
(7) b = top(s2) = top(s1) = a from (6) by s2)

Contradiction! It shows that the specification S3 is inconsistent. ut

Corollary 2.1. Specification S3 has no implementation.

We shall expose the importance of this fact later. Let us return to the specification S2. After closer
examination one may discover that it possible to add an infinite set of additional formulas. They all are
conform with the scheme of (structural) induction for stacks. Hence we get the next specification S4, c.f.
Table 6.

Table 6. Specification S4 of stacks

Signature the same as in S1

Axioms

axioms s1 - s5 and
all formulas of the induction scheme IS
IS) α(s/s0) ∧ {((∀s ∈ S)(∀e ∈ E) α is any first-order formula
(α(s) =⇒ α(s/push(e, s)))} =⇒ (∀s ∈ S)α(s) s0 denotes newStack

Induction scheme says: if a formula α(x) is valid for the empty stack s0 and if for every stack s and
for every element e, α(x/s) implies α(x/push(e, s)) then one may conclude that for every stack s the

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 7

formula α(x/s) holds. The formula does not say that there are not pathological stacks. One may say:
we shall consider only standard stacks, i.e. the stacks obtained from the empty stack in finite number
of operations push. But how to express this property as an axiom? Instead, one may say: I am going
to consider only programmable models of specification S4. Even adding such extra requirement we can
not eliminate pathological stacks. In fact papers [10, 11] prove that there exist pathological models of
specification S4. Pathological means here that there are stacks which can be popped without end and no
empty stack results.

Theorem 2.2. There exists a programmable model of specification S4 such that for certain stack s1 the
program

while ¬ empty(s1) do s1 := pop(s1) done

never terminates.

Such a model is called unreachable and obviously presents some pathology. For the proof see [10, 11].
The second paper proves two facts.

Theorem 2.3. The set of first order formulas valid in the data structure of stacks over a finite set E of
elements is decidable.

This seems to be a good message. It is nice to have a procedure deciding about truth of formulas.
However, it turns to a bad message as is shown by the following

Theorem 2.4. For any decidable, first order theory T there exist a programmable and unreachable (i.e.
pathological) model of T .

It would seem that we are in an impasse. That it is impossible to axiomatize data structures. In spite of
promises like [6], algorithmic logic comes here with help. One can consider the following specification
S5, where scheme of induction is replaced by one algorithmic formula, c.f. Table 7.

Table 7. Specification S5 of Stacks

Signature the same as in S1

Axioms

axioms s1 - s5 and
s6) while ¬empty(s) do s := pop(s) done true the program always terminates

i.e. every stack is finite

One may prove the following theorem on representation [9]

Theorem 2.5. Any model of the specification S5 is isomorphic with a standard model of stacks.

The theorem says that specification S5 captures all properties of data structure of stacks. If someone
presents a model of S5 then it is necessarily isomorphic to the structure, where stacks are finite sequences
of elements and the operations push, pop and top are defined as LIFO operations. What is also important
we have as an axiom which guarantees that the program mentioned in the axioms always halts. This
property can be useful in proofs of correctnes of other algorithms.

We have seen enough examples of specifications. Let us compare them, c.f. Table 8.

8 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

Table 8. Comparison of various specifications

Spec. Remarks
S1 incomplete information, e.g. formula s5 is independent of the set {s1, s2, s3, s4}

S1 has surprising implementations c.f. implementation I2
S2 assume card(E) = k is an integer(is finite), then the theory S2 is decidable,

incomplete information, allows pathological implementations

S3 inconsistent specification, c.f. Theorem 2
no implementation may exist

S4 decidable, incomplete information, allows pathological implementations

S5 complete information, any implementation is isomorphic to a standard
one, the (algorithmic) theory is undecidable.

Remark 2.1. Decidability is the property of the set of first order formulas valid in a data structure of
stack over a finite set E of elements. Nethertheless, the specifications S2 and S4 have non-standard
models.

3. Verification of algorithms - an instructive example

There are many texts on verification of algorithms. The reader will find them without difficulties. The
calculi of Floyd-Hoare and of Dijkstra are the best known examples. We recall that both calculi are
embedded in the calculus of algorithmic logic[9].
Below, we quote an example of a proof in algorithmic logic. Observe that using algorithmic axiom s6) we
were able to build a complete specification of stacks. Now, we obtain a bonus, the proof of termination
or correctness may start from the axiom. We are going to prove that the method equal always terminates
and never fails. In the view of the theorem 2.2 the specification S4 is not sufficient to prove the halting
property (and hence the correctness) of method equal. Consider the case when one of arguments of the
method equal is a nonstandard stack which can be popped ad infinitum.
If the specification S5 was used then the proof of termination is a formality.

Lemma 3.1. The algorithm of the method equal always terminates, does not fail nor throws an excep-
tion.

Proof:
A sketch of the proof is as follows. One has to demonstrate that the instruction while never leads to an
infinite computation nor to throwing an exception.

S5 ` while not empty(s1) do s1 := pop(s1) done true.

The notation Z ` φ reads ”formula φ has a proof from the set Z of formulas“,

in this case an instance of the axiom s6 is a part od the set S5, hence it is provable from S5

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 9

Now, in a few easy steps we shall deduce that the body of the method equal is a program that always
terminates. First, we rewrite the axiom according to the requirements of Java’s grammar.

S5 ` while not Stos.empty(s1) do s1 := Stos.pop(s1) done true.

We use the following (auxiliary) inference rule

while γ do K done α

while γ do N; K; M done α

where the programs M and N terminate and do not throw an exception

and do not change the variables of formulas α, γ nor variables of program K.

Now, we have

S5 `

while not Stos.empty(s1)
do

if not Stos.empty(s2) then aux := (Stos.top(s1) = Stos.top(s2)) fi;
s1 := Stos.pop(s1);

if not Stos.empty(s2) then s2 := Stos.pop(s2) fi;
done true

Next, we apply another inference rule

α⇒ β

while β do K done true ⇒ while α do K done true

in order to replace the iteration condition β : notempty(s1), by a stronger one, α : (notempty(s1)andnotempty(s2)andaux).
Now we proved

S5 `

while (not Stos.empty(s1) and not Stos.empty(s2) and aux)

do
if not Stos.empty(s2) then aux := (Stos.top(s1) = Stos.top(s2)) fi;
s1 := Stos.pop(s1);

if not Stos.empty(s2) then s2 := Stos.pop(s2) fi;
done true

At present we can apply the following rule

while α ∧ β do if β then I fi; K done γ
while α ∧ β do I; K done γ

10 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

and prove

S5 `

while (not Stos.empty(s1) and not Stos.empty(s2) and aux)

do
aux := (Stos.top(s1) = Stos.top(s2));

s1 := Stos.pop(s1);

s2 := Stos.pop(s2);

done true

Now we can apply the rule
α , Ktrue

Kα

and obtain

S5 `

aux := true;

while (not Stos.empty(s1) and not Stos.empty(s2) and aux)

do
aux := (Stos.top(s1) = Stos.top(s2));

s1 := Stos.pop(s1);

s2 := Stos.pop(s2);

done true

In this way we proved that the body of the method equal always terminate without raising an exception.
ut

We observe that this proof does not use induction. One may say that algorithmic axiom of stacks super-
sedes in a way the scheme of structural induction. Moreover, we gained in the clarity of the proof.

4. Verification of an implementation

Our present goal is to verify that the classes Elem, Stos and Undef given in Table 2 define a data
structure which models all axioms of the specification S5 of stacks. Now consider the set |Stos| of all
objects s that satisfy the relation instanceof Stos

|Stos| = {s : s instanceof Stos}

and
|Element| = {e : e instanceof Element}

together with the functions:
pushS : |Element| × |Stos| −→ |Stos|, defined by the expression push(s, e),
popS : |Stos| −→ |Stos|, defined by the expression pop(s),
topS : |Stos| −→ |Element|, defined by the expression top(s),

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 11

emptyS : |Stos| −→ {true, false}, defined by the expression empty(s),
equalS : |Stos| × |Stos| −→ {true, false} defined by the method equal.
We shall use the following notation Stos |= α and read it as ”Stos models α“, or ”the formula α is
valid in the implementation Stos“, see [9] or any textbook on logic for the definition of satisfiability and
validity. We are writing briefly Stos instead of Elem and Stos, inorder to keep our notation shorter.
On the other hand to be an object of class Elem means to be stackable and nothing more. Which again
justifies our convention.
With these notations we start the analysis of the implementation Stos against the specification ATPQ.

Lemma 4.1.
Stos |= ∀(s∈|Stos|) ∀(e∈|Elem|) ¬emptyS(pushS(e, s)) (1)

Proof:
Let s be an object of class Stos or of certain class that extends the class Stos. Let e be any object such
that the relation ”e instanceof Elem“ holds. From the definition of the metod push it follows that the
attribute topv in the object s′ being the value of push(s, e) is not null, topv 6= null. According to the
definition of the metod empty, the value returned by the method empty in the object s′ is false. ut

Lemma 4.2.
Stos |= ∀(s∈|Stos|) ∀(e∈|Elem|) e = topS(pushS(e, s)) (2)

Proof:
As the result of method top applied to the object push(s, e) one obtains the object e. ut

Lemma 4.3.
Stos |= ∀(s∈|Stos|) ∀(e∈|Element|) equalS(s, popS(pushS(e, s))) (3)

Proof:
The objects s and popS(pushS(e, s)) are not identical. However they satisfy the relation equalS defined
by the metod equal. Proof by easy verification. ut

Lemma 4.4.
Stos |= emptyS(newStos()) (4)

Proof:
The value of the field topv in the object new Stos() is null. ut

Lemma 4.5.

Stos |= ∀(s∈|Stos|) while ¬ emptyS(s) do s := popS(s) done true (5)

Proof:
The proof uses two observations:
a) If an object s instanceof Stos is the result of finitely many operations push and pop applied to the
object new Stos() then it satisfies the termination property of the above program. Proof is by induction
on the number of applied operations. It is obviously true for s0 = newStos(). Now suppose that

12 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

the program P terminates for an object sk which is the result of k operations push and pop applied to
the object s0. Let e be an arbitrarily chosen element of the set |Elem|. Consider an object sk+1 =
push(sk, e). It is evident that ¬empty(sk+1) and that the pop(sk+1) = sk. We are using an instance of
the following axiom of algorithmic logic

while γ do K done α ⇐⇒ if γ then K;while γ do K done endif α (W)

where γ is ¬empty(s), α is true, K is s := pop(s), and the value of the variable s is sk+1. The
formula on the right hand side is satisfied, it follows from the assumption on the object sk+1 and from
the induction assumption on the object sk. Hence the left hand side is also satisfied.
b) There are no other objects of class Stos. This follows from the fact that only operations of type Stos
allowed on an object of class Stos are push and pop. An attempt to manipulate the attribute next of
objects of class Linkage outside the class Stos is impossible because the inner class Linkage is private
in the class Stos. Moreover, since the methods of the class Stos are final, no one can modify them in a
class derived from the class Stos. ut

Lemma 4.6.

Stos |= ∀(s∈|Stos|) ¬ empty(s) =⇒ sequalSpushS(topS(s), popS(s))). (6)

Proof:
If s is empty then the implication is satisfied. In the view of the previous lemma we know that each
object of type Stos represents a finite sequence of elements of set |Elem|. Our proof is by induction
with respect to the length of stack. Suppose that our thesis is not valid. Let s be an object representing
the shortest sequence of elements of Elem such that the formula (6) holds. Let e be any object of type
Elem. Now consider s′ = pushS(e, s). From the lemmas 2 and 3 we know that topS(s′) = e and
sequalSpopS(s

′). Let us evaluate the formula equalS(s′, pushS(topS(s′), popS(s′)). The value of this
formula is equal to value of the following algorithmic formula.

begin
s1 := s′;

s2 := pushS(topS(s
′), popS(s

′));

aux := true;

while(aux ∧ ¬ emptyS(s1) ∧ ¬ emptyS(s2))
do

aux := (topS(s1) = topS(s2));

s1 := popS(s1);

s2 := popS(s2);

done
end (aux ∧ emptyS(s1) ∧ emptyS(s2))

Once again we can apply the axiom (W) to obtain an equivalent formula

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 13

begin
s1 := s′;

s2 := pushS(topS(s
′), popS(s

′));

aux := true;

aux := (topS(s1) = topS(s2)); // = true, for topS(s1) = e and topS(s2) = e

s1 := popS(s1); // s1 = s

s2 := popS(s2); // s2 = s

while(aux ∧ ¬ emptyS(s1) ∧ ¬ emptyS(s2))
do

aux := (topS(s1) = topS(s2));

s1 := popS(s1);

s2 := popS(s2);

done
end (aux ∧ emptyS(s1) ∧ emptyS(s2))

The loop while compares the object s to itself. It will terminate and bring answer true. Hence the object
s′ has also the property (6). This ends the proof of the lemma 4.6. ut

The six lemmas prove that all six axioms of the specification S5 are valid in the implementation
defined by the classes Elem, Stos and Undef , c.f. Table 2.
Therefore we can state that

Theorem 4.1. The classes Elem and Stos correctly implement the specification S5. ut

Remark 4.1. We can say even more: Not only the classes Elem and Stos model the axioms of algo-
rithmic theory of priority queues, but any pair of classes C,D such that class C extends Elem, and
class D extendsStos . The structure of the class C may be arbitrary, what is important can be said as
follows: any object of class C is stackable. On the other hand the class D derived upon the class Stos
can not introduce too many changes. It is guaranteed by saying that the class Linkage is private inside
the class Stos and that the methods push, top, pop, empty and equal are final.
One can prove that the relation defined by the method equal is a congruence We have proved that the
method never loops nor fails, see Lemma 3.1. It remains to be proved that the relation is an equivalence
relation: reflexive, transitive and antisymmetric. One can show this and more, namely that the relation is
congruent with respect to the methods: push, pop, top.

Remark 4.2. One may ask: From where comes our confiance to the quality of the implementation? How
you can quarantee that besides the properties expressed in the lemmas above, the implementation is free
of some strange, not yet discovered, properties?
Our answer uses the fact that the specification S5 is categorical w.r.t. the set E. It means that any model
of S5 where the set E is fixed, i.e described up to isomorphisms, is isomorphic to the standard model of
stacks over E. It means that no malicious property is hidden inside the software.

Remark 4.3. One could include the definition of equality of stacks as an axiom. We suggest to use the
algorithmic definition, i.e. the method equals. In the preceding section we proved that the termination

14 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

property of equal is provable from the other axioms and therefore it is valid in any data structure that
validates the axioms s1 - s6.

5. Methodological remarks concerning process of specification construc-
tion

Now, with the intuition guided by the three previous sections we can continue our methodological con-
siderations. The joint work of a Customer and Designer has as a goal to build a specification of software
to be constructed. One should differentiate specification SA of an algorithm A from the specification
SDS of a data structure DS. Let us discuss briefly the latter case. The specification of a data structure
(or a class) should be of quality and has to assure that the following two features are achieved:

• the data structure in question is fully specified,

• the specification provides enough properties of the data structure to be used later in analysing
termination and correctness properties of algorithms that apply the data structure.

We are hoping that the reader is now convinced that these goals are reachable. As well as the goals the
designer should be aware of dangerous traps. One should avoid

• inconsistent specifications, as well as,

• incomplete specifications.

If a specification is inconsistent then no implementation exists. Should the programmer begin the work
on implementation, then its time and money are lost. The programmer may start with the study of even-
tual inconsistencies in the submitted specification. But this is beyond his competence, or it leads to the
serious increase of the costs of software project. If the specification submitted to the programmer is
incomplete, then it can not serve as a criterion of eventual acceptance/rejection of proposed implemen-
tation. There is quite serious risk that an implementation will be accepted which does not satisfy one of
forgotten properties and that in fact it had to be rejected and replaced by a new one. Again there is a
probability of a loss of money angaged so far. Moreover, if an implementation is based on an incomplete
specification, then one may have difficulties in proving correctness of algorithms which use this data
structure. Consider the example of specification S1 and implementation I2.

6. SpecVer Example - Eclipse plugin

In this section we present some snapshots of the SpecVer environment. This is more an illustration
than a complete tool but it shows that formal specification can be adopted into popular programming
environments. Basic idea is to allow designers/programmers to create specifications using programming
development platform Eclipse, next step would be implementation of semi-automatic tools supporting
verification. At present the user of Specver plugin may create SpecVer projects, specifications of classes,
modules of source code that implements specifications and files containing arguments of verification
(analysis) of software modules such as classes or methods against their specifications.

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 15

 1

Fig. 2 Specification editor - class signature

The snapshot of Fig. 2 shows some stage in editing the signature of specification.
Such signature may be used to produce a skeleton of a class.

 1
Fig. 3 Specification editor - editing logic formulas

This snapshot shows the work on a logic formula i.e. an axiom of a specification.

16 Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming

 1

Fig. 4 Verification report editor - sample idea

The third snapshot shows that the author of verification report gave his verdict ”Proper”. In a correspond-
ing file one may write the details of verification report. The Verifier stamps the files of implementation,
specification and verification in a way. Any change in one of these files makes the verdict useless.

7. Final remarks

We show that our methodology is based on a sound and complete logic calculus of algorithmic logic,
we show also that it is possible to have one environment where all documents of a software project are
created, edited and stored: specification, modules of software, texts of program analysis, etc. Let us
stress that what we have done is only the beginning. Much work should be done. Many projects are
required to make the SpecVer environment a mature tool. On one hand we should develop the theoretical
backgrounds. Perhaps the reader remarked that the programmed and the matemathical models of Table
1 differ. In order to eliminate this difference the algorithmic logic of programs with exceptions and error
handlers should be developed. Some new tools should be constructed such as temporal logic within
algorithmic logic (it is possible) and a logic of concurrent and distributed programs. A new virtual
machine should be proposed together with its specification – axiomatization. This seem essential in
order to facilitate proofs of semantical properties of programs. On the other hand the SpecVer system
needs new modules. We plan to include the following new features:

• semi-automatic compatibility checking between specification and implementation,

• support for specification and verification documents,

• database of well-known (perhaps proved) algorithmic logic formulas for software pieces,

Mirkowska, Salwicki, Świda / AL + SpecVer = the methodology for high integrity programming 17

• model verification,

• fast prototyping,

• proof checks with Mizar software,

• object debugger.

Some friends asked: what do you mean by methodology?
Methodology – is a system of methods and principles for doing something[1].

References
[1] Collins Cobuild English Languge Dictionary, Collins, 1987.

[2] Eclipse - open development platform - homepage, http://www.eclipse.org, 2008.

[3] Abreu, J., Vasconcelos, V. T., Nunes, I., Lopes, A., Reis, L. S., Caldeira, A.: ConGu, The Specification and
the Refinement Languages, http://labmol.di.fc.ul.pt/congu/, March 2007.

[4] Amey, P.: Logic versus Magic, Critical Systems, Reliable Software Technologies - Ada Europe 2001, LNCS,
Springer, Berlin, 2001.

[5] Barnes, J.: High Integrity Software, Addison-Wesley, London, 2006.

[6] Diller, A.: Z: An Introduction to Formal Methods, J. Wiley, Chichester, 1990.

[7] Ehrig, H., Mahr, G., Eds.: Fundamentals of Algebraic Specification 1, Springer, 1985.

[8] Hoare, C.: Proof of correctness of data representation, Acta Informatica, 1, 1972, 271–281.

[9] Mirkowska, G., Salwicki, A.: Algorithmic Logic, PWN & D.Reidel, Warszawa, 1987, ISBN 90-277-1928-4.

[10] Mirkowska, G., Salwicki, A.: The Algebraic Specification do not have the Tennenbaum property, Funda-
menta Informaticae, 28, 1996, 141–152.

[11] Mirkowska, G., Salwicki, A., Srebrny, M., Tarlecki, A.: First-Order Specifications of Programmable Data
Types, SIAM Journal on Computing, 30, 2000, 2084–2096.

[12] Świda, O.: SpecVer - Specification, Programming and Verification - a plugin into Eclipse,
http://aragorn.pb.bialystok.pl/∼swida/svp, 2007.

