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ABSTRACT. 

This paper considers the semantics of coroutines and processes in block 

structured languages; in particular, the problem of existence of static and dynamic 

environments. It is shown that a definition of inaccessible module instances may 

result in an inconsistent meaning of some operations. Both an Algol-like language 

and a SIMULA-Iike language, (with pointers yet without coroutines), are proven to 

have well-defined semantics. The examples provided in this paper show that some 

coroutine and concurrent operations may, however, destroy the static environment. 

L INTRODUCTION. 

The problem of the existence of the static and dynamic environments in block 

structured languages with coroutines and processes seems to be up-to-date, see e.g. 

ADA, [i0]. The literature on coroutines and processes is rich and diverse see e.g. 

[7], [8] [9]. 

Should the structure of the module instances reflect an actual storage 

management system, it has to include an operation which deallocates inaccessible 

instances. The deletion of an instance, however, may perturb the normal program 

execution since the structure of static and dynamic connections could be destroyed. 

For completeness, Section 2 quotes the well-known results concerning the semantics 

of Algol-like languages. The following section comprises the corresponding 

analysis of language with pointers yet without coroutines. Section 4 introduces 

coroutine and semi-coroutine operations, and examines their semantics. The last 

section extends the analysis to the languages with concurrent processes. A 

conclusion is that the languages with coroutines and processes do not satisfy the 

basic requirement of an existence of the static environment. Therefore, a new 

approach to storage management and referencing mechanisms is needed. 

2. BLOCK STRUCTt~ED LANGUAGES. 

This section will introduce some basic concepts and recall the main properties 

of Algol-like languages (see [2,3,11]). Let Y be any syntactic entity, such as a 

variable or a module. We write Y decl M for Y is declared in the module M. For 

any program, the set T of all its modules with the relation decl forms a tree 

denoted T[decl] = <T,decl> with the main block (MB) as its root. For any binary 
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relation R, denote by R+ (R*) the transitive (and reflexive) closure of P~ 

A module N is a static container (cf [2]) for the occurrence of the 

identifer X in a module M, N = SC(X,M), if (i) X decl N, (ii) M decl* N, (iii) 

there is no module N' for which M decl* N' decl+ N and X decl N'. # 

The instances of a module M will be denoted by P(M), Q(M), etc. (with 

indexes, if necessary), or simply by P, Q, etc. A state of the program execution 

is considered as a finite set of instances that exist when a snap-shot of the 

execution is taken. The states will be denoted by S, S', etc. 

The changes of states will now be considered. According to the syntactic 

structure for an occurrence of the identifier X in the module M, the instance P(N) 

of the module N = SC(X,M) is accessed. The instance P is called the dynamic 

container for the occurrence of X in M, F = DC(X, M) (compare [2]). For any 

instance P (except of MB) another instance Q, called the syntactic father of P, 

will be uniquely defined (see def. 2). The relation between P and Q will be 

denoted by P => Q. ghe main property of => is 

(2.1) if P(M) => Q(N) then M decl N. # 

The relation P => Q will sometimes be denoted by P.SL = Q, because P's Static Link 

points to Q. 

Definition i. 

The sequence Pk,...,PI is the static chain of the instance Pk' if Pi+l => Pi for i 

= k-l,..,l; and P1 is the instance of the main block. # 

The existence of the static chain of the currently executed instance will be 

proved later (see 2.5). From (2.1) and the above definition, it follows: 

(2.2) If Pk(Mk), Pk_I(Mk_I),..,P!(MI) is a static chain of the instance P1 then 

Mk,..,M 1 forms a path from M k to the root MB, in the tree T[decl]. # 

(2.3) If Pk(Mk), Pk_l(Mk_l),.., PI(MI) is the static chain of the instance Pk then 

for any occurrence of an identifier Y, such that the static container SC(Y,Mk) 

exists, there is a unique j, 1 < j < k, for which Mj = SC(Y,Mk). # 

For any state S of a program execution we define a structure S[syn] = <S, =>>. 

This structure reflects the syntactic structure of the program. When acontrol 

enters a module, say M, a new instance P(M) is generated. Therefore the structure 

S[mem] with the operation insert(P) is introduced. The control structure of the 

program will be described by means of another structure S[dyn] = <S,->> where the 

relation -) determines a dynamic father. If P -> Q we shall also write P.DL = Q 

because P' S Dynamic Link points to Q. An active instance at state S is the 

instance which is being executed at S. In all sections, except the last, we 

consider sequential languages for which at most one instance is active at a given 

state. Below, the relations =>, and -> are defined, and moreover, the transitions 

between states are determined: 

Definition 2. 

Consider a state S at which an instruction call F is executed in the active 
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instance P(N). Suppose that the static container M = SC(F,N) and the static chain 

of M exist. Then, by (2.2), a unique instance R(M) of the module M belongs to this 

static chain. The generation of a new instance Q(F) results in the following 

actions: (i) insert(Q) for S[mem]; (ii) add an edge Q => R for S[syn]; (iii) add an 

edge Q -> P for S[dyn] ; (iv) the instance Q becomes active. The termination of 

the instance Q with the dynamic father P (Q->P) results in the following actions: 

(i) delete the edge Q -> P for S[dyn] ; 

(ii) the instance Q becomes active. # 

The following propositions describe the properties of the structures S[syn], 

S[dyn]. The proofs are straightforward and are therefore omitted. 

(2.4) If P => Q then non Q ->* P. # 

(2.5) The structure S[s!as] is a tree; the static chain of the active instance P 

forms a path from P to the root (so this chain always exists). # 

(2.6) The structure S[dyn] consists of a chain, (called operational chain) with 

the active instance as its leaf, and a number of isolated nodes. # 

Clearly, any real memory management system cannot afford allocating more and 

more memory fields without any garbage collection. Therefore, the structure S[mem] 

will have an additional operation delete(P) which deallocates the instance P. ~]is 

operation, however, may cause the structures S[syn] and S[dyn] to no longer be 

graphs. 

If 

then after delete(Q) we could obtain 

We shall call such an edge a pseudo-edge, and a structure with nodes and pseudo- 

edges, a pseudo-graph. 

The termination effect (def. 2) is redefined by adding the action. 

(iii) delete(Q) for S[mem]. # 

We shall investigate the following questions: 

(2.7) When an instance becomes inaccessible, and what does it really mean? 

(2.8) When the inaccessible instances should be deallocated? 

(2.9) What are the consequences of the deallocation for the semantics of the 

language? 

For an Algol-like language, an instance Q, is said to be accessible from the 

instance P at a state S iff P ->* R =>* Q (for some instance R.) The instance Q is 

said to be inaccessible in a state S, iff Q is not accessible from the active 

instance. 

The following proposition answers the question 2.7: 

(2.10) A terminated instance is inaccessible at any state. 

The proof goes by induction. Let a state S' satisfy (2.10), and state S be 

obtained from S' as a result of a termination of the instance P. Then P is 
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inaccessible from the dynamic father Q of P, because this contradicts (2.4). 

If P' ~ P is a terminated instance accessible from Q (which is active at S): P -> Q 

->* R =>* P' then P' would be accessible from P at S', which contradicts the 

inductive assumption. # 

The proofs of the following propositions are simple enough to be left to the 

reader: 

(2.11) The structure S[syn] is a tree, the active instance being its leaf. 

(2.12) The structure S[dyn] consists of an operational chain the active instance 

being its leaf. # 

(2.13) The syntactic environment of the active instance is always defined, i.e. 

the static chain of the active instance P(M) exists and contains all the dynamic 

containers for all occurrences of identifiers in M. # 

In accordance with the above follows the well known property of standard 

implementation of block structured languages follows: 

(2.14) A block structured language is "stack implementable'~, i.e. insert and 

delete operations of S[mem] are performed in the LIFO scheduling strategy. # 

In the following sections we shall investigate the semantical properties of 

the languages which extend an Algol-like language with the following properties: 

- storage management, the terminated instances are accessible; 

- control structure, the instance can be re-entered; 

- parallelism, more than one active instance may exist at a time. 

3. POINTER LANGUAGES. 

The main feature of a language with pointers is that a terminated instance can 

be accessed via the pointer, (i.e. reference variables) the value of which is the 

address of the instance. Using SIMULA notation (certify [6]) for a reference 

variable X of a module type M, the instruction 

X: = new M results in a generation of memory field for the instance P(M), an 

execution of M's instruction (if any), and eventually, assigning the address of 

P(M) to X. The relation between X and P(M) will be denoted by X ->> P(M). 

Similarly, Q ->> P means that the instance P is pointed to by an 

attribute of the instance Q. The static container for dotted identifier is defined 

as follows: Consider the occurrence of X.W in a module N. The module N' = SC(X,N) 

contains the declaration of, e.g. vat X:M. Therefore, the module N" = SC(M,N') 

contains the declaration of M. If M has the attribute W, then M = SC(X.W,N), 

otherwise the program is syntactically incorrect. Note that (2.2) from Section 2 

still holds, while (2.3) is no longer true. Consider the following: 
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Example i. 
unit N: class; 

unit M: class; 
vat W: integer; 

end M; 

unit NI: class; 
vat X: M; 
unit N2: class; 

... X.W .... 

end N2; 

i"" new M; 

i:" "= new M; 

end ~i; 

end'~i 

Then we have P(N2) =>+ P(NI) =>+ P(N) and P(M) =>+ P(N) where X points to P(M), 

hence P(SC(X.W, N2)) does not belong to the static chain of P(N2). # 

A generation and a termination of an addressable instance are described as 

follows: 

Definition 3. 

The description of a generation is similar to that of Def. 2. However, if a new 

instance Q(N) is indirectly generated from the active instance P(M), via X.N, then 

the syntactic father of Q is the object pointed to by X. Now let us consider a 

termination. Let P be the dynamic father of the instance Q, i.e., Q-> p. Then the 

following actions will be performed: (i) delete Q -> P for S[dyn] (i.e.Q.DL 

becomes none): (ii) the instance P becomes active; (iii)if Q is an addressable 

instance generated by means of X:=new M instruction, then X points to Q. # 

From this definition the analogon of (2.4) follows immediately: 

(3.1) If P => Q, then non Q ->* P. # 

Note that a structure S[slas] does not have to be a tree any longer: Suppose that 

the generation X:= new M takes place within the body of a procedure F, M is 

declared in F1 and F is called from R: 

I ° 
After the termination of F, R becomes active, P(F) is deleted, but P(M) remains 

alive and without a syntactic father: 
? 

This situation will not harm the execution of a program provided P(M) will be 

inaccessible. The latter notion has to be redefined in a language with pointers: 

Definition 4. 

An instance Q is accessible from an instance P at a state S iff 

P -> * R=>* R' ->>* Q for some instances R, R'. # 
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(3.2) I f  Q i s  non-addressabble, and [] ~ ~her! ~ ~i~ 

Proof. P(M) =>+ Q(M') so M is nested in M'. Moreover, R(N) ->> P(M) , so N 

contains the declaration of variable X of type M. Therefore, a static chain of R 

contains an instance Q'(M'). Our purpose is to show that Q = Q'. Suppose the 

contrary is true. Two different instances of the same module may communicate only 

via non-local variables, or via parameters. The first case is excluded, i.e. the 

reference to P cannot be transmitted in a remote expression via Q to Q.SL because 

M' is a non-addressable module (i.e. procedure /block instance). The second case 

is excluded because M is nested in M' and a parameter of M' has to be of a type 

which is visible from M'. # 

(3.3) If Q is non-addressable and 

~her, 
+ 

A terminated non-addressable instance may be a root of static sub-tree. A 

structure S[syn] is a pseudo-tree with pseudo-edges. By virtue of (3.3), if Q is 

a non-addressable instance and there is a reference chain between an instance P 

and a node of Q's sub,tee STQ then P belongs to STQ: 

The analogons  of  (2.5) and (2.6) a r e  the  f o l l o w i n g :  

(3.4) The structure S[syn] consists of a single tree S[T] and a 

number of pseudo-trees. Any instance P accessible from the active instance belongs 

to s[~]. 

(3.5) The structure S[dyn] consists of a chain and a number of isolated vertices, 

the active instance is the leaf of the chain. 

Proof. These propositions will be proved by simultaneous induction. If S' 

consists solely of the instance of MB, then the proof is trivial. Let S' be a 

state with the active instance Q(M). Consider a generation of an instance P(N). 

Put S = S' u (P). If P is directly generated by means of a new N instruction 

then N is visible from M; so the syntactic father R(N') of P(N) belongs to the 

static chain of Q(M): ~ ~ ) ~  

From the inductive assumption R(N') belongs to S'[T], so R(N) belongs to S[T]. 

Therefore, S[T] consists of S'[T] augmented by the leaf P(N). Any instance 

accessible from P at state S is accessible at the state S', either from Q or from 

R, therefore from the inductive assumption, (3.4) holds. If P is indirectly 
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generated by means of X.~ N instruction then 

By the inductive assumption R belongs to S'[T] and so to S[T]. Therefore (3.4) 

holds. Now the termination of Q will be considered. Put S=S'- (Q). The only non- 

trivial case is that of non-addressable Q. Clearly S'[T] = SIT] - STQ, so we shall 

prove that 

,//[~3(< * \\ 

is not possible. Note that R ~ R" = Q cannot hold because Q is non-addressable. 

Hence R =>* Q and from (3.3) R' =>* Q: ~ i ~  ~] ~ 

Therefore Q ->* R and R =>* Q which contradicts (3.1). # 

The following analagon to (2.10) holds: 

(3.6) Any accessible instance belongs to the tree S[T]. Hence, the syntactic and 

dynamic environment of the active instance is always defined as follows: the 

static chain of the active instance exists, and moreover, the dynamic containers 

(for all the occurrences of identifiers in Q) belong to the tree S[T]. # 

Let us return now to the questions (2.7)-(2.9). A language with pointers is not 

"stack implementable" and we encounter one of the most difficult implementation 

problems. There are two well-known memory management techniques, (see [3]): - 

retention technique, which retains an instance as long as this instance is 

accessible (this requires expensive garbage collection to search inaccessible 

instances); - deletion technique, which deletes non-addressable instances 

immediately after termination. The latter technique may be fully exploited by 

virtue of (3.4); together with a non-addressable instance, the entire subtree of 

this instance may be deallocated. The reader may refer to [i], and [2] for more 

detailed discussion of the subject and application to the implementation of 

universal programming language LOGLAN. 

4. COROUTINE LAN(~JAGES. 

The term "coroutines" is used for the module instances able to cooperate in a 

sequential fashion. This means that the execution of a coroutine instance can be 

suspended, and at the same time the operations of another coroutine instance are 

resumed. The coroutine instance may create a number of module instances that are 
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dynamically contained within it (e.g. some 

instances of procedures and blocks). These module instances form a coroutine 

chain, say Y: 

I a¢~ i re instance I "-~..-'~ corou t ine he~.d ~ ~ 
chain Y 

The control transfer from a coroutine chain to another one is a result of a 

certain coroutine operation, say attach. The suspended coroutine 

chain, say Z, will be pictured as follows: ll~c~ive in~t~nceI---~..----> tcor~u~ine head] 
I ,i 

chain Z 

One can define the result of attach in the following way: 

chain Z chain Y 

One can also define this result as follows: 

i~ctive ins~ancel-----~,---~-Ic0r0u~ine headl 

chain Z chain Y 

Tn this section we shall consider the second possibility, k~cause we regard 

processes to be considered the special cases of coroutines. 

A coroutine is generated by new instruction. The generation is completed when 

return instruction is performed; if Q(C) is a coroutine instance with a dynamic 

father R: 

then return will suspend Q and resume R: 

The main program MB is considered to be a coroutine instance pointed to by a 

system variable main. The user is alowed to use this variable only in the 

instruction attach(main). A chain is active if control executes its active 

instance, otherwise it is suspended. Directly from the definitions follows: 

(4.1) A coroutine chain contains neither generated nor terminated coroutine 

instances except of the head of a chain. # 

The analogon to (3.1) has the following form: 

(4.2) If P => Q and Q does not belong to the dynamic chain leading to the head of 

a suspended coroutine chain then non Q - >* P. # 

Lemma (3.2) is still valid while another auxiliary lemma is necessary to prove the 

analagons of (3.4), (3.5) : 

(4.3) If a suspended coroutine head R is accessible at a state S, then any 

instance of its chain is in S[T]. 

Proof. The only non-trivial case is that of a termination of a non-addressable 

instance Q. Consider the coroutine chain of R and the instance Q with the dynamic 

father P: ,~ ,r;- l I 
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Proof goes by induction on k. Suppose that Ri_ 1 belongs to S[T]. If R i = Q then 

R i does not belong to the chain of R after the termination of Q, so (4.3) holds. 

Suppose that R i =>+ Q. The instance R i cannot be created in Ri_ 1 directly, because 

Ri_ 1 =>* Ri.SL implies Ri_ 1 belongs to STQ. Therefore R i is created in Ri_ 1 

indirectly by means of X.new M, so Ri_ 1 =>* R'->>* R i. SL. The instance Q is 

non-addressable, so Q ~ Ri.SL; and from (3.3) 

Now Ri_ 1 =>* R' =>* Q implies that Ri_ 1 belongs to STQ which contradicts the 

inductive assumption. # 

The analogons of (3.4), (3.5) have the following form: 

(4.4) The structure S[syn] consists of a tree S[T] and a number of pseudo-trees. 

The active instance and any accessible instance belongs to S [T]. # 

(4.5) The structure S[syn] consists of a single operating chain, a number of 

suspended coroutine chains, and a number of isolated vertices. The active instance 

is a leaf of the operating chain. # 

The following example illustrates (4.3). 

Example 2. 

Consider the following the program: 

begin 

unit B: pr(~dure; 

vat X: C; 

unit C: coroutine; 

b~ 

return; 

call A; 

begin 

X: = new C: 

attach (X) ; 

end B; 

unit A: procedure; 

begin 

attach (main) 

end A; 

begm 

call B; 

end 

Just after the execution of attach(main) the state of computation looks as 
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follows : 

Thus the head Q(C) belongs to the subtree with the root Q(B), while the instance 

Q(~ d~s not. After the termination of Q(B), the he~ Q(C) will be inaccessible. 

# 

Note that in virtue of the above propositions, the proposition (3.6) still holds. 

For some applications semi-coroutines are necessary. There is an additional 

operation de~ch on semi-coroutine which returns control to the callee, i.e. the 

coro~i~ he~ which r~tly res~ed this s~i~oroutine. Unfortu~tely, such a 

~mi-coroutine operation my destroy a syntactic enviro~ent: if one ~ds detach 

after the ins~uction "call E' in ~e example 2, then after the termination of Q(~ 

we ~ve: 

Hence, Q(A) is active, Q(C) is accessible from Q(A), but Q(C) does not belong to 

SIT]. This example shows that (4.4) does not fully hold. The structure S[syn] 

consists of a tree S[T] and a number of pseudo-trees but accessible instances need 

not belong to SIT]. So some kind of run-time checking is indispensable. Note 

that the dynamic structure is not harmed by the operation detach. 

5. PARALLEL LANGUAGES. 

We consider a coroutine as a particular kind of a process; for a program with 

processes more than one instance may be active at a time. There is an important 

difference, however, between coroutines, and processes which are performed by a 

single multiplexed processor. In the former case the switch of the control from 

one coroutine chain into another one is programmable, and so it cannot happen 

behind the scenes. In the latter case, it is the scheduler which switches the 

control, so a user has no control of this, and has to consider all the active 

processes as the operating ones. 

The operations on processes are simply extensions of those on coroutines; 

stop suspends a process; resume(X) resumes the process pointed to by ~L It is easy 

to see that the basic theorems describing with syntactic and dynamic structure 

slightly generalize (4.3) and (4.4): 

(5.1) The structure S[sym] consists of a tree S[T] with main program being its 

root, and a number of pseudo-trees. # 

(5.2) The structure S[dyn] consists of a number of operating chains, and a number 

of suspended process chains, suspended coroutine chains, and isolated vertices. 

The active instances are the leafs of the operating chains. # 
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For parallel languages a syntactic environment may be destroyed, and so 

appropriate memory management systems have to be developed. A retention technique 

delays a process termination if that could destroy a syntactic environment of 

another process. A deletion technique deletes inaccessible instances, but a process 

may explicitly wait for the termination of his sons. 

It is worthwhile to notice that one can consider a programmable deallocation 

technique- an instruction, say kill(X) deallocates a memory field pointed to by X, 

(in PASCAL: dispose, in ADA: free). The point is that such an operation can be 

"secure", i.e. the access to memory instances killed as a side-effect of these 

instructions results in run-time error. Because of the lack of space, further 

issues of memory management systems and of processes synchronization will be 

considered in a forthcoming paper. 
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