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1. Introduction

The 3x + 1 problem remained open for over 80 years. It has been noticed in 1937 by Lothar Collatz. The problem
became quite popular due to its wording, for it is short and easy to comprehend.
Collatz remarked that for any given natural number n > 0 , the sequence {ni} defined by the following recurrence

n0 = n

ni+1 =

{
ni ÷ 2 when ni is even
3 · ni + 1 when ni is odd

for i ≥ 0

 (rec1)

seem always reach the value 1.

He formulated the following conjecture

for all n exists i such that ni = 1 (Collatz conjecture)

One can give another formulation of the hypothesis of Collatz 1.
The number of papers devoted to the problem surpasses 200, c.f. [Lag10] . It is worthwhile to consult social media:
wikipedia, youtube etc, there you can find some surprising ideas to prove the Collatz hypothesis as well as a technical
analysis of the problem.
Computers are used and are still crunching numbers in the search of an eventual counterexample to the Collatz con-
jecture. The reports on progress appear each year. We claim that the counterexample approach is pointless, i.e. the
computers can be turned off. Namely, we shall prove that the program that searches a counterexample will never stop.
Our goal will be achieved if we prove that for each number n the computation of the following Cl algorithm is finite.

while n ̸= 1 do
if even(n) then n := n÷ 2 else n := 3n+ 1 fi

od

 (Cl)

We need the following items

• a formula ΘCl such that it expresses the termination property of program Cl,

• a definition of relation C of logical consequence operation (provability) and

• a verifiable proof Π of the halting formula ΘCl.

Ah, we need also a specification of the domain in which the algorithm is to be executed, i.e. the axioms Ax of the
algebraic structure of natural numbers.

QUESTION 1. How to express the termination property of a program K as a formula ΘK (i.e. a Boolean expression)?

Note, there is no a universal algorithm that builds the halting formula of a given program K as an appropriate first-order
logical formula ΘK . The existence of such algorithm would contradict the theorem on incompleteness of arithmetics,

1Let f(n, 0)
df
= n , and f(n, i+ 1)

df
=

{
f(n, i)/2 if f(n, i) is even
3 · f(n, i) + 1 if f(n, i) is odd

. Now, conjecture reads ∀n ∃i f(n, i) = 1.
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cf. Kurt Gödel . According to Gödel, the property to be a natural number is not expressible by any set of first-order
formulas. The reader may wish to note, that halting property of the algoritm

q := 0;while q ̸= n do q := q + 1 od

is valid in a data structureA iff n is a standard (i.e. reachable) natural number. Therefore the halting property allow to
define the set of natural numbers. In this situation it seems natural to pass from first-order language to another more
expressive language. There are three candidates:

1° a second-order language admitting variables and quantifiers over sets,

2° the language of infinte disjunctions and conjunctions Lω1ω and

3° language of algorithmic logic.

Problem with second order logic is in lack of adequate definition of consequence operation. True, we can limit our
considerations to the case of finite sets (aka, weak second order logic). Still we do not know a complete set of axioms
and inference rules for the weak second-order logic. Applying second-order logic to program analysis results in a heavy
overhead. Because, first you have to translate the semantic property of the program into a property of a certain sequence
or set, prove this property and make a backward translation. The question of whether this approach is acceptable to
software engineers seems to be appropriate.
The language of infinite disjunctions and conjunctions is not an acceptable tool for software engeeners for the programs
are of finite length.
We shall use the language and the consequence operation offered by algorithmic logic i.e. calculus of programs. We
enlarge the set of well formed expressions: beside terms and formulas of first order language we accept algorithms and
we modify the definition of logical formulas. The simplest algorithmic formulas are of the form:

{algorithm} (formula).

As an example of an algorithmic formula consider the expression

{q := 0;while q ̸= n do q := q + 1 od} (n = q) (1)

The latter formula is valid iff every element n can be reached from 0 by adding 1.
Now our goal is to deduce the following statement

∀n∈N


while n ̸= 1 do

if even(n) then n := n
2

else n := 3n+ 1 fi

od

 (n = 1) (Θ)

from the axioms of algorithmic theory of natural numbers AT N , c.f. subsection 6.4. For the formula (Θ) expresses
the termination property of program Cl.
QUESTION 2. How to prove such algorithmic formula?
Note, all structures that assure the validity of axioms of the AT N theory are isomorphic (this is the categoricity meta-
property of the theory AT N ). Therefore, the termination formula, can be either proved (with the inference rules and
axioms of calculus of programs AL, or validated in this unique model of axioms of AT N .
Let us make a simple observation. The computation of Collatz algorithm if succesful goes through intermediate values.
The following diagram (Dg) illustrates a computation where all odd numbers were exposed as stacked fractions.

n → n

2k0
→

3 ∗ ( n

2k0
) + 1

2k1
→

3 ∗
3 ∗ n

2k0
+ 1

2k1
+ 1

2k2
· · · →

3·

3·
3·

3·

3· n

2k0
+1

2k1
+1

2k2
+1(

...

) +1

2
kx−1

+1

2kx
= 1

(Dg)
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where k0 = expo(n, 2), k1 = expo(3 · n
2k0

+1, 2), k2 = expo(3 ∗
(3· n

2k0
+1)

2k1
+1, 2), . . . 2. In our earlier paper [MS21]

we studied the halting formula of the Collatz algorithm. We remarked that the computation of Collatz algorithm is
finite iff there exist three natural numbers x, y, z such that:
a) the equation n · 3x + y = 2z is satisfied and
b) the computation of another algorithm IC, cf. page 14, is finite, the algorithm computes on triples⟨x, y, z⟩.
It is worthwhile to mention that the subsequent triples are decreasing during computation.
The proof we wrote in [MS21] is overly complicated.

Here we show that the 4-argument relation

{n, x, y, z} : {IC}(true).

is elementary recursive, since it may be expressed by an arithmetic expression with operator
∑

.
The present paper shows arguments simpler and easier to follow.

2. Collatz tree

Definition 2.1. Collatz tree DC is a subset D ⊂ N of the set N of natural numbers and the function f defined on the
set D \ {0, 1}.

DC = ⟨D, f⟩

where D ⊂ N, 1 ∈ D, f : D \ {0, 1} → D.
Function f is determined as follows

f(n) =

{
n÷ 2 when n mod 2 = 0

3n+ 1 when n mod 2 = 1 ∧ n ̸= 1

, the set D is the least set containing the number 1 and closed with respect to the function f ,

D = {n ∈ N : ∃i∈N f i(n) = 1 } .

As it is easy to see, this definition is highly entangled and the decision whether the set D contains every natural number
is equivalent to the Collatz problem.

Conjecture 2.1. The Collatz tree contains all the reachable natural numbers.

2Note, the function expo returns the largest exponent of 2 in the prime factorization of number x .

expo(x, 2)
df
= {l := 0; y := x;while even(y) do l := l + 1; y := y ÷ 2 od}(result = l) i.e. l = expo(x, 2) . We introduce the notation expo

instead exp for our friends programmers who interpret the notation exp as exponentiation operation.
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Figure 1. A fragment of Collatz tree, levels 4-15. It does not include levels 0-3, they consist of elements 1 — 2 — 4 — 8 — .



G. Mirkowska & A. Salwicki 6 Collatz conjecture becomes theorem

3. Four algorithms, relatives of Cl algorithm

In this section we present an algorithm Gr equivalent to the algorithm Cl and three algorithms Gr1, Gr2, Gr3 that are
successive extensions of the Gr algorithm.

Lemma 3.1. The following algorithm Gr is equivalent to Collatz algorithm Cl.

Gr:

while even(n) do n:= n ÷ 2 od ;
while n ̸=1 do

n:= 3*n+1;
while even(n) do n:= n ÷ 2 od

od ;

Proof:
The equivalence of the algorithms Cl and Gr is intuitive. Compare the recurrence of Collatz (rec1) and the following
recurrence (rec2 ) that is calculated by the algorithm Gr.

k0 = expo(n, 2) ∧ m0 =
n
2k0

ki+1 = expo(3mi + 1, 2) ∧ mi+1 =
3mi+1

2ki+1
for i ≥ 0

}
(rec2)

One can say the algorithm Gr is obtained by the elimination of if instruction from the Cl algorithm. However, con-
struction of a formal proof is a non-obvious task. A sketch of a proof is given in subsection 6.5 We are encouraging the
reader to fill the details. ⊓⊔

Next, we present the algorithm Gr1, an extension of algorithm Gr.

Gr1:

var n,l, i :integer ; k,m :arrayof integer;

Γ1:
i := 0; l := 0;

while even(n) do n:= n ÷ 2; l := l + 1 od ; ki := l; mi :=n:
while n ̸=1 do

∆1:

{ mi=n } n:= 3*n+1; l := 0;
while even(n) do n:= n ÷2; l := l + 1od ; ki+1 := l; mi+1 :=n;
{mi+1 = 3·mi+1

2Ki
∧ ki+1 = exp(3 ∗mi + 1, 2)} i := i+ 1

od

Lemma 3.2. Algorithm Gr1 has the following properties:
(i) Algorithms Gr and Gr1 are equivalent with respect to the halting property.

(ii) The sequences {mi} and {ki} calculated by the algorithm Gr1 satisfy the recurrence rec2.

Proof:
Both statements are very intuitive. Algorithm Gr1 is an extension of algorithm Gr. The inserted instructions do not
interfere with the halting property of algorithm Gr1. Second part of the lemma follows easily from the remark that
k0 = exp(n, 2) and m0 =

n
2k0

and that for all i > 0 we have ki+1 = exp(3 ∗mi + 1, 2) and mi+1 =
3·mi+1

2ki+1
. ⊓⊔

Each odd number m in Collatz tree, m ∈ D, initializes a new branch. Let us give a color number x + 1 to each new
branch emanating from a branch with color number x. Note, for every natural numberp the set of branches of the color
p is infinite. Let Wx denote the set of natural numbers that obtained the color x.
Besides the levels of Collatz tree, one can distinguish the structure of strata in the tree.

First, we define a congruence relation ∼ between numbers: given two odd numbers a and b the relation a ∼ b holds
iff b = 4a+ 1, We take symmetric and transitive closure of the relation ∼.
Further, if a ∼ b and two odd numbers c, d are such a = 3c+ 1 and b = 3d+ 1 then c ∼ d.
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Definition 3.1. Definition of strata. Stratum W0 consists of powers of two.

W0
df
= {n ∈ N : n = 2expo(n,2)} (W0)

Any number n /∈ W0 belongs to some set Wx, x ̸= 0.

Wx+1
df
=
{
n ∈ N : ∃m∈Wx ( 3 ·

n

2expo(n,2)
+ 1 = m )

}
(Wx+1)

A couple of observations will be used in the sequel.

Remark 3.1. Among properties of sets Wi we find

1. Each set Wi is infinite. If it contains a number n then the number 2n ∈ Wi.

2. The set W0 contains one odd number 1. All other sets contain infinitely many odd numbers. For if a = 2j + 1
and a ∈ Wi then 4a+ 1 ∈ Wi.

3. Define the function f : N → N as follow: f(n) =


n÷ 2 when n is even
3n+ 1 when n is odd n ̸= 1

undefined when n = 1

4. Let x > 0 be a natural number. Let the sequence {oj}i∈N contain all odd numbers that are in the set Wx.

Let Soj =
{
2i · oj

}
be the set. Every set Wx may be partitioned as follow Wx =

∞⋃
j=0

Soj . If j ̸= j′ then

Soj ∩ Soj′ = ∅

5. For every i, j ∈ Nat if i ̸= j then Wi ∩Wj = ∅.

6. For every n, j ∈ Nat if n ∈ Wj ∧ j > 1 ∧ n mod 2 = 1 then 3n+ 1 ∈ Wj−1.

7. The sequence of sets

{
j⋃
i=0

Wi

}
j∈N

is monotone, increasing.
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Figure 2. Strata W0 −−W4 of Collatz tree
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Let s be a variable not occurring in algorithm Gr1. The following lemma states the partial correctnes of the algorithm
Gr1 w.r.t. precondition s = n and postcondition s ∈ Wi.

Lemma 3.3. Algorithm Gr1 computes the number i of storey Wi of number n,

{Gr1}(true) =⇒
(
(s = n) =⇒ {Gr1}(s ∈ Wi)

)
Next, we present another algorithm Gr2 and a lemma.

Gr2:

var n ,l, i, x, y, z :integer ; k,m :arrayof integer;

Γ2:
i := 0; l := 0;

while even(n) do n:= n ÷ 2; l := l + 1 od ;
z, ki := l; mi:=n; y := 0;

while mi ̸=1 do

∆2:
n:= 3*n+1; i := i+ 1; l := 0 ;
while even(n) do n:= n ÷ 2; l := l + 1 od ;
ki := l; mi:=n; z := z + ki; y := 3 ∗ y + 2z; x := i

od

Lemma 3.4. Algorithm Gr2 has the following properties:
(i) Both algorithms Gr1 and Gr2 are equivalent with respect to the halting property.

(ii) Formula φ : n · 3i + y = mi · 2z is an invariant of the program Gr2 i.e. the formulas (2) and (3)

{Γ2} (n · 3i + y = mi · 2z) (2)

(n · 3i + y = mi · 2z) =⇒ {∆2}(n · 3i + y = mi · 2z) (3)

are theorems of the algorithmic theory of numbers AT N .

Proof:
Proofs of formulas (2), (3) are easy, it suffices to apply the axiom of assignment instruction Ax18, ⊓⊔
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Subsequent algorithm Gr3 exposes the history of the calculations of x, y, z.

Gr3 :

varn, i, aux,mn : integer; k,m,X, Y, Z : arrayof integer;

Γ3 :
i := 0; ki := exp(n, 2); mi :=

n,

2ki
; mn := mi;

Zi := k0; Yi, Xi := 0;

while n · 3i + Yi ̸= 2Zi do

∆3 :

aux := 3 ∗mi + 1; i := i+ 1;

ki := exp(aux, 2); mi := aux/2ki ; mn := mi;

Yi := 3Yi−1 + 2Zi−1 ; Zi := Zi−1 + ki; Xi := i

od

See some properties of the algorithm Gr3.

Lemma 3.5. Both algorithms Gr2 and Gr3 are equivalent with respect to the halting property.
For every element n after each i-th iteration of algoritm Gr3, the following formulas are satisfied

φ : n · 3i + Yi = mi · 2Zi Xi = i

Zi =
i∑

j=0
kj Yi =

i−1∑
j=0

(
3i−1−j · 2Zj

)
where the sequences {mi}and {ki} are determined by the recurrence (rec2).
in other words, the following formula is valid in the structure N

N |= Γ3

⋂
{if mi ̸= 1 then ∆3 fi}φ

Remark 3.2. Hence, for every element n algorithm Gr3 calculates an increasing, monotone sequence of triples ⟨i (= Xi), Yi, Zi⟩.

Remark 3.3. We can say informally that the algorithm Gr3 performs as follow

i := 0;
while n /∈ Wi do i := i+ 1 od

Note, {Gr3} (n ∈ Wi)

3.1. Hotel Collatz

Hotel contains rooms of any natural number. Let n = 2i · (2j + 1) . It means that the room number n is located in
tower number j on the floor number i . Each tower is equipped with an elevator (shown as a green line). Moreover,
each tower is connected to another by a staircaise that connects numbers k = 2j + 1 and 3k + 1. This is shown as a
red arrow

−−−−−−−→
⟨k, 3k + 1⟩.
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Definition 3.2. (Hotel Collatz)
The graph HC = ⟨V,E⟩ is defined as follows

V = N i.e. the set of vertices is the set of standard, reachable, natural numbers

E = {
−−−→
⟨k, p⟩ : ∃p k = p+ p} ∪ {

−−−−−−−→
⟨k, 3k + 1⟩ : ∃pk = p+ p+ 1} are edges of the graph

Note. Don’t forget, our drawing is only a small fragment of the infinite HC structure. The picture

shows a small part of red arrows. We drew only those red arrows that fit entirely on a page.

Conjecture 3.1. The hotel Collatz is an infinite, connected, acyclic graph, i.e. it is a tree. Number 1 is the root of the
tree.

Making use of the definition 3.1 one can formulate the following

Conjecture 3.2. The set W
df
=
⋃
x∈N

Wx is a partition of the set N of nodes of Hotel Collatz.

4. On finite and infinite computations of Collatz algorithm

QUESTION Can some computation contain both reachable and unreachable elements?

No. The subset of reachable elements is closed with respect of division by 2 and multiplication by 3. The same observation applies to the set of

unreachable elements.

We know, cf. subsection 6.1 that computations of nonreachable elements are infinite.

4.1. Finite computations

Let M = ⟨M ; 0, 1,+,=⟩ be any algebraic structure that is a model of elementary theory of addition of natural numbers,
c.f. subsection 6.2.
Denotation. Let θ(x, y) be a formula. The expression (µx)θ(x, y) denotes the least element x(y) such that the value
of the formula is truth.
EXAMPLE. The formula (µx)(x+ x = y ∨ x+ x+ 1 = y) defines the operation ÷, i.e. x = y ÷ 2.

The following lemma gathers the facts established earlier.

Lemma 4.1. Let n be an arbitrary element of the structure M. The following conditions are equivalent

(i) The sequence n0 = n and ni+1 =

{
ni ÷ 2 when ni mod 2 = 0

3ni + 1 when ni mod 2 = 1
determined by

the recurrence (rec1) contains an element nj = 1

(ii) The computation of the algorithm Cl is finite.

(iii) The sequence m0 =
n
2k0

and mi+1 =
3mi+1
2ki

determined by the recurrence (rec2) stabilizes, i.e. there exist l such
that mk = 1 for all k > l

(iv) The computation of the algorithm Gr is finite.

(v) The computation of the algorithm Gr1 is finite and the subsequent values of the variables Mi and Ki satisfy the
recurrence (rec2) .

(vi) The computation of the algorithm Gr2 is finite and the subsequent values of the variables mi and ki satisfy the
recurrence (rec2). The formula n · 3x + y = mi · 2z holds after each iteration of while instruction, i.e. it is the
invariant of the program ∆2. The final valuation of variables x, y, z and n satisfies the equation n · 3x + y = 2z .
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(vii) The computation of the algorithm Gr3 is finite.
The subsequent values of the variables mi and ki satisfy the recurrence (rec2) .
The subsequent values of the variables Xi, Yi, Zi form a monotone, increasing sequence of triples.
The formula n · 3Xi + Yi = mi · 2Zi is satisfied after each i-th iteration of the program Gr3, i.e. the value of the
following exression {Γ3; ∆

i
3}(Xi + Zi) is the total number of operations excuted. The value of the variable Yi

encodes the history of the computation till the i-th iteration of ∆3

Suppose that for a given element n the computationof algorithm Gr2 is finite.

Let x̄ = (µx)

(
n · 3x +

[
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)]
= 2

x∑
j=0

kj
)

. Put ȳ =
x̄−1∑
j=0

(
3x̄−1−j · 2

j∑
l=0

kl)
and z̄ =

x̄∑
j=0

kj .

We present the algorithm IC ′, which is a slightly modified version of the algorithm IC devised in [MS21] .

IC ′ :



var x, y, z, k : integer, Err : Boolean;

Err := false;

while x + y + z ̸= 0 do

Tr :

if
(
odd(y) ∧ ((x = 0) ∨ (y < 3x−1))

)
then Err := true; exit

fi;

x := x− 1; y := y − 3x; k := expo(y, 2);

y :=
y

2k
; z := z− k;

od



(IC’)

We observe the following fact

Lemma 4.2. For every element n

(n = b) ∧ {Gr2}

((
(x = x̄ ∧ y = ȳ ∧ z = z̄) ∧ (b · 3x̄ + ȳ = 2z̄)

)
⇒ {IC ′}(x = y = z = 0)

)

and

(x = x̄ ∧ y = ȳ ∧ z = z̄) ∧ (b · 3x̄ + ȳ = 2z̄)
)
∧(

{IC ′}(x = y = z = 0) =⇒ (n = b) =⇒ {Gr2}(x = x̄ ∧ y = ȳ ∧ z = z̄)

)
The contents of this lemma are best explained by the commutativity of the diagram below.

(n
b

) (x
0

y

0

z

0

) (
(
x

x̄

y

ȳ

z

z̄
)(
n

1
) ∧ (b · 3x̄ + ȳ = 2z̄)

)Gr2(n)

IC(x y z)

Proof:
The proof makes use of two facts:

1) even(n) ≡ even(
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)
)

2)
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)
= 2k0 · (3x−1 + 2k1 · (3x−2 + 2k2 · (· · ·+ 2kx · 30)))

One can prove this lemma by induction w.r.t. number of encountered odd numbers.
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The thesis of the lemma is very intuitive. Look at the Collatz hotel Fig. 4. The lemma states that for every room
number n the two conditions are equivalent (1) there is a path from room number n to the exit, which is located near
room number 1, (2) there is a path from entry to the hotel near room number 1 to the room number n. It is clear that
such a path must be complete, no jumps are allowed. ⊓⊔

Lemma 4.3. For every element n the following conditions are equivalent

(i) computation of Collatz algorithm Cl is finite,

(ii) there exists the LEAST element x such that the following equality holds

n · 3x +

(
x−1∑
j=0

3x−1−j · 2
j∑
l=0

kl

)
= 2

x∑
j=0

kj
. (Mx)

where the sequence {ki} is determined by the element n in accordance to the recurrence (rec2).

Proof:
The implication (i) ⇒ (ii) follows from lemma 4.1(vii).
Consider the inverse implication (ii) ⇒ (i). If (ii) holds, then the computation of program Gr3 reaches 1 after x-
th iteration of internal instruction ∆3. The value of mx is then 1. The computation performs x nultiplications and

z =
x∑
j=0

kj divisions.

The value of y =

(
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl))
codes the history of the computation. ⊓⊔

Which means: x0 is the number of multiplication by 3, z =
x∑
j=0

kj is the total number of divisions by 2 and for every 0 ≤ j ≤ x−1 the number

kj is the number of divisions by 2 excuted in between the j-th and j + 1-th execution of multiplication by 3.

The algorithm Cl executes x+ z iterations. The lemma 4.3 gives the halting formula i.e. a satisfactory and necessary
condition for the computation of the Collatz program to be finite.
We shall summarize the considerations on finite computations in the following commutative diagram.

4.2. Infinite computations

Do infinite computations exist?
There are two answers yes and no.

Yes Imagine your computer system is (maliciously) handled by a hacker. This can be
done by preparing its hardware or software (e.g. someone modifies the class Int in
Java). To hide the damage from the user, the hacker may come with a correct proof
that all axioms of natural numbers (e.g. of Presburger’s system) are valid. Yet, for
many n execution of the Collatz algorithm will not terminate. See subsections 4.4
and 6.1.

No If argument of Collatz procedure is a standard (i.e. reachable) natural number
then the computation is finite.

Our aim is to prove the lemma

Lemma 4.4. (noCycle)
There is no reachable, natural number n such that Collatz computation for n is a cycle.
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n m1 m2 m3 · · · mx−1 mx = 1

0, 0, 0 0, 0, k0 1, Y1, Z1 2, Y2, Z2 · · · x− 1, Yx−1, Zx−1 x, Yx, Zx

x, Yx, Zx x0, Ȳx0 , Z̄x0 x1, Ȳx1 , Z̄x1 x2, Ȳx2 , Z̄x2 · · · 1, Ȳ1, Z̄1 0, 0, 0

1 mx−1 mx−2 mx−3 · · ·m1 n

/2k0

Gr3

Gr1

3m1+1

/2k1

3m2+1

/2k2

3m3+1

/2k3

3mx−1+1

/2
kx−1

Γ3

Gr3

∆3 ∆3 ∆3 ∆3

Tr

IC′

Tr Tr Tr Tr

×2
kx−1

÷3

(·×2
kx−2 )−1

÷3

(·×2
kx−3 )−1

÷3

(·×2
kx−2 )−1

÷3

(·×2k0 )−1

÷3

Figure 5. CASE OF FINITE COMPUTATION ILLUSTRATED
Upper row, (with red arrows) represents computation of Gr1,
elements ki and mi are calculated in accordance with the recurrence (rec2)
rows 1 and 2 show computation of Gr3, the subsequent triples are Xi+1 = i+ 1, Yi+1 = 3Yi + 2Zi , Zi+1 = Zi + ki

third row (blue arrows) shows computation of algorithm IC on triples, Ȳx = Yx and Z̄x = Zx and for i = x, . . . , 1 we have Z̄i−1 = Z̄i − ki and
Ȳi−1 = (Ȳi/2

ki )− 3i−1

Proof:
Suppose that there exists a cycle and certain reachable number n is in this cycle.
Let q be the length of the cycle. Remark, in the following formulas (4) – (7) the precedent of the implication holds and
implies the inequality in its successor.
Note. Whenever the operator − of subtraction appears the first argument is bigger than the second one. Similarly,
whenever the operator ÷ appears the dividend is bigger than divisor. In the sequel we make sure that a > b before
writing a÷ b.

n · 30 + 0 = n · 20 ∧ n > 1 (4)

n · 3q + Yq = n · 2Zq =⇒ n > (2Zq − Yq)÷ 3q (5)

n · 32q + Y2q = n · 2Z2q =⇒ n > (2Z2q − Y2q)÷ 32q (6)

· · ·
n · 3r·q + Yr·q = n · 2Zr·q =⇒ n > (2Zr·q − Yr·q)÷ 3r·q where r ∈ N (7)

· · ·

From the equality n · 3q + Yq = n · 2Zq we infer inequality 3q < 2Zq .
From inequality 3q < 2Zq and equality 3q + (n− 1) · 3q + Yq = 2Zq + (n− 1) · 2Zq we infer inequality

3q + Yq < 2Zq (8)

Since the computation is a cycle we have Z2q = Zq + Zq and Y2q = 3q · Yq + 2Zq · Yq.
Similarly, Z(r+1)q = Zrq + Zq and Y(r+1)q = 3q · Yrq + 2Zrq · Yq.
Next, we are going to prove that the sequence

1, (2Zq − Yq)÷ 3q, (2Z2q − Y2q)÷ 32q, · · · , (2Zr·q − Yr·q)÷ 3r·q, (2Z(r+1)·q − Y(r+1)·q)÷ 3(r+1)·q, · · · (9)

is infinite, increasing sequence of reachable, natural numbers.
The proof is by induction with respect to r.
(Base). From inequality 3q + Yq < 2Zq we obtain 3q < 2Zq − Yq and

1 < (2Zq − Yq)÷ 3q.
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(Induction step). Without loss of the generality we can consider the step from r = 1 to r = 2.
Once again we start with the valid inequality (8).

3q + Yq < 2Zq .

Our next inequality is valid too
3q · 2Zq + 2Zq · Yq < 2Z2q .

Making use of remarks made earlier (just below the inequality (8)) we get

(2Zq − Yq) · 3q < 2Z2q − Y2q

which is equivalent to the inequality

(2Zq − Yq)÷ 3q < (2Z2q − Y2q)÷ 32q

Hence, the induction step is proved. (The reader may wish to verify our reasoning for the step from r-th to r + 1-th
iteration of the cycle.)
The sequence (9) is increasing, infinite. The number n is bigger than any element of this sequence. Therefore, the
number n is bigger than any reachable number. This contradicts the assumption that number n is reachable. ⊓⊔

Now, we are going to prove the following

Lemma 4.5. (no Divergent computations)
If for certain number n computation of Collatz algorithm is infinite then n is not a reachable, natural number.

We remark that the semantical property: for a given element n the computation of Collatz algorithm may be continued
at will , i.e. it is an infinite computation, is expressed by the following formula

{Γ3}
⋂

{∆3} (mn ̸= 1) ( Π)

where denotations Γ3 and ∆3 and mn were introduced on page 11, see program Gr3.

We verify this assertion in a few steps

1◦ Define an infinite sequence of formulas {ϑi}∞i=0 as follows

ϑi
df
= {Γ3} {∆3}i (mi = 1)

2◦ Let V be the set of all variables appearing in program Gr3. We put v0(n) = n0, the values of the remaining
variables are not important.
For i = 1, 2, . . . we put vi = ({Γ3} {∆3}i)N(v0)

3◦ By the definition of semantics of general iteration quantifier we have the following equation(
{Γ3}

⋂
{∆3} (mn ̸= 1)

)
N
(v) = g.l.b. {(ϑi)N (v0)}i∈N = g.l.b. {(mi ̸= 1)N (vi)}i∈N

For it says: after every iteration of subprogram
{
Γ3; ∆

i
3

}
of the program Gr3 the value of the variable mn is not equal

1.
Now, he following formula

{i := 0; }
⋂

{i := i+ 1} (n · 3i +
i−1∑
j=0

3i−1−j · 2
∑j
l=0 kl ̸= 2

∑i
l=0 kl) ( Ξ)

where the values of kl are defined by recurrence rec2 see page 6
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does express the semantical property: for every reachable, natural number i the inequality (n·3i+
∑i−1

j=0 3
i−1−j ·2Zj ̸=

2Zi) holds. By transposition, it is is equivalent to following statement: there is no reachable number i such that the
equality (n · 3i +

∑i−1
j=0 3

i−1−j · 2Zj = 2Zi) holds. In other words

l.u.b.(n · 3i +
i−1∑
j=0

3i−1−j · 2Zj = 2Zi)N(v) = truth where i = 1, 2, . . . ,

Hence our goal is to prove the implication (Π =⇒ Ξ).
We begin with simple observation that every formula of the following set Sa is a tautology

Sa
df
= { ({Γ3} {∆3}r (mi ̸= 1) =⇒ {Γ3} {∆3}r (mi ̸= 1)) }r∈N

here r = 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
r times

is any reachable, natural number.

For every natural number r the following equivalence is a theorem of algorithmic theory of numbers AT N

AT N ⊢
(
{Γ3} {∆3}r (mi = 1) ⇔ {Γ3} {∆3}r (n · 3i +

i−1∑
j=0

3i−1−j · 2Zj = 2Zi)
)

see lemma 4.1(vii), page 13. Hence the following set Sb consists of theorems of theory AT N

Sb
df
=

{
({Γ3} {∆3}r (mi ̸= 1) ⇒ {Γ3} {∆3}r (n · 3i +

i−1∑
j=0

3i−1−j · 2Zj ̸= 2Zi))

}
r∈N

Look at programs {Γ3} and {∆3}, on page 11. Note that first program contains instruction i := 0 and the second
program contains the instruction i := i+ 1, other instructions can be dropped. Hence the set Sc of formulas

Sc
df
=

{
{Γ3} {∆3}r (ni ̸= 1) ⇒ {i := 0} {i := i+ 1}r (n · 3i +

i−1∑
j=0

3i−1−j · 2Zj ̸= 2Zi)

}
r∈N

contains only theorems of theory AT N . Now by induction with respect to r we can prove that every formula of the
set Sd is a theorem of theory AT N . I.e. we introduce the universal iteration quantifier

⋂
in the precedent of every

implication of the set Sc of theorems of theory AT N .

Sd
df
=

{
{Γ3}

⋂
{∆3} (mi ̸= 1) ⇒ {i := 0} {i := i+ 1}r (n · 3i +

i−1∑
j=0

3i−1−j · 2Zj ̸= 2Zi)

}
r∈N

In the proof we used axiom Ax23 of calculus of programs, de Morgan’s laws (case of infinite operations in a Boolean
algebra) and propositional calculus, c.f. page 30.
Now, we are ready to use the inference rule R5, see page 30 and to obtain the desired theorem of algorithmic theory
AT N

{Γ3}
⋂

{∆3} (mi ̸= 1)︸ ︷︷ ︸
Π

⇒

Ξ︷ ︸︸ ︷
{i := 0}

⋂
{i := i+ 1} (n · 3i +

i−1∑
j=0

3i−1−j · 2Zj ̸= 2Zi) (10)

which reads:
if for a given number n the computation of Collatz algorithm is infinite then the number n is an unreachable element
of non-standard model M of Presburger arithmetic.
Why it is so?

• the formula Ξ is eqivalent to

¬{i := 0}
⋃

{i := i+ 1} (n · 3i +
i−1∑
j=0

3i−1−j · 2Zj = 2Zi)
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• If the formula Ξ holds then the value of i such that the equation n · 3i +
∑i−1

j=0 3
i−1−j · 2Zj = 2Zi is satisfied,

must be an unreachable number.

• Note, if the equation n · 3i +
∑i−1

j=0 3
i−1−j · 2Zj = 2Zi holds then the elements n and i are either both reachable

or both unreachable numbers,c.f. remark 6.1 on page 24.

This ends the proof of the lemma 4.5.

4.3. Collatz theorem

Till now we proved that Collatz conjecture is valid in the structure N of standard (reachable) natural numbers as it is
witnessed by the following lemma.

Lemma 4.6. Let n be any standard element of the structure N. The computation of Collatz algorithm Cl that begins
with n is finite.

Proof:
The proof follows immediately from the lemmas 4.3 and 4.5. ⊓⊔

Corollary 4.1. Three conjectures 2.1, 3.1 and 3.2 formulated above are valid statements.

We are ready to prove the main result of this paper.

Theorem 4.1. The formula ΘCL is a theorem of the algorithmic theory of natural numbers AT N ⊢ ΘCL.

{n := 1}
⋂

{n := n+ 1}︸ ︷︷ ︸
∀n∈N,n≥1



while n ̸= 1 do

if odd(n) then

n := 3 ∗ n+ 1

else

n := n÷ 2

fi

od


(n = 1) (ΘCL)

Proof:
The following formula ΨCL is valid in the algebraic structure N i.e. in the standard model of theory AT N .

⋃


if n ̸= 1 then

if odd(n) then

n := 3 ∗ n+ 1

else

n := n÷ 2

fi

fi


(n = 1) (ΨCL)

For we have established two facts

• if the argument n of the Collatz program is an unreachable element then the computation is infinite, c.f. remark
(6.1 on page 24),

• if for a certain argument n the computation of the Collatz program is infinite then the element is an unreachable
number c.f. (lemma 4.6).

Now, we ought to precede the formula ΨCl by a general quantifier ∀n∈N . However, the membership predicate ∈ does
not belong to the language of any theory considered so far.
Fortunately, the expression ∀n∈N,n≥1 α(n) can be replaced by

{n′ := 1}
⋂

{n′ := n′ + 1}
(
n = n′ ∧ α(n)

)︸ ︷︷ ︸
∀n∈N,n≥1
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For the correctness of this replacement you can consult [Sal23], thm 6.1, page 15.
Hence, we know that the following formula

{n′ := 1}
⋂

{n′ := n′ + 1}︸ ︷︷ ︸
∀n∈N,n≥1

((
n = n′) ∧⋃



if n ̸= 1 then

if odd(n) then

n := 3 ∗ n+ 1

else

n := n÷ 2

fi

fi


(n = 1)

)
(Θ′

CL)

is valid in the structure N of standard, reachable natural numbers . Note, the formulas (Θ′
CL) and (ΘCL) are equivalent,

they express the halting property of Collatz algorithm.

Now, we shall use two meta-mathematical facts, c.f. [MS87] pages 94 and 155.

Completenes
thm

For every consistent algorithmic theory T , for any formula α, the formula is a theorem of T iff the formula α is

valid in every model of theory T .

Categoricity
thm

Every two models of the theory AT N are isomorphic.

From these observations we obtain the desired conclusion

AT N ⊢ {n := 1}
⋂

{n := n+ 1}︸ ︷︷ ︸
∀n∈N,n≥1



while n ̸= 1 do

if odd(n) then

n := 3 ∗ n+ 1

else

n := n÷ 2

fi

od


(n = 1) (ΘCL)

⊓⊔

Someone may ask: why this awkward prefix in the formula ΘCL?
Note the difference between phrases ∀n and ∀n∈N .

4.4. A counterexample
We argue, that the formulation of the Collatz problem requires more precision. For there are several algebraic structures
that can be viewed as structure of natural numbers of addition. Some of them admit infinite computations of Collatz
algorithm.
We recall less known fact: arithmetic (i.e. first-order theory of natural numbers) has standard (Archimedean) model
N as well as another non-Archimedean model M3. The latter structure allows for the existence of infinitely great
elements.
Goedel’s incompleteness theorem shows that there is no elementary theory T of natural numbers, such that every model
is isomorphic to the standard model.
Two things are missing from the commonly accepted texts: 1) What do we mean by proof? 2) what properties of natural
numbers can be used in the proof? We recall an algebraic structure M that models [Grz71] all axioms of elementary
theory of addition of natural numbers, yet it admits unreachable elements [Tar34]. It means that the model contains
element ε, such that the computation of Collatz algorithm that starts with ε is infinite.

3A. Tarski [Tar34] confirms that S. Jaśkowski observed (in 1929) that the subset of complex numbers M
df
=

{
a+bi ∈ C :

(
a ∈ Z∧b ∈ Q∧(b ≥

0 ∧ (b = 0 =⇒ a ≥ 0))
}

satisfies all axioms of Presburger arithmetic.
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Example of a finite execution

⟨13, 0⟩ ×3+1→ ⟨40, 0⟩ ÷ 2→ ⟨20, 0⟩ ÷ 2→ ⟨10, 0⟩ ÷ 2→ , ⟨5, 0⟩ ×3+1→ ⟨16, 0⟩ ÷ 2→ ⟨8, 0⟩ ÷ 2→ ⟨4, 0⟩ ÷ 2→ ⟨2, 0⟩ ÷ 2→ ⟨1, 0⟩

Example of an infinite execution

⟨8,
1

2
⟩ ÷ 2→ ⟨4,

1

4
⟩ ÷ 2→ ⟨2,

1

8
⟩ ÷ 2→ ⟨1,

1

16
⟩ ×3+1→ ⟨4,

3

16
⟩ ÷ 2→ ⟨2,

3

32
⟩ ÷ 2→ ⟨1,

3

64
⟩,×3+1→ ⟨4,

9

64
⟩ ÷ 2→ ⟨2,

9

128
⟩ ÷ 2→ · · ·

As you can guess, the data structure contains pairs ⟨k,w⟩ where k is an integer and w is a non-negative, rational
number. The addition operation is defined componentwise. An element ⟨k,w⟩ is even if k is even, otherwise is odd..
A pair ⟨k,w⟩ divided by 2 returns ⟨k ÷ 2, w ÷ 2⟩ .
The reader may prefer to think of complex numbers instead of pairs, e.g. (2 + 9

128 i) may replace the pair ⟨2, 9
128⟩.

The following observation seems to be of importance:.

Remark 4.1. There exists an infinite computation c of Collatz algorithm in the structure M , such that the computation
c does not contain a cycle, and the sequence of pairs is not diverging into still growing pairs. The latter means, that
there exist two numbers l1 ∈ Z and l2 ∈ Q, such that for every step ⟨k, v⟩ of computation c, the inequalities hold
k < l1 ∧ v < l2.

More details can be found in subsection 6.1.

5. Final remarks

Our message does not limit itself to the proof of Collatz theorem.
We show that the algorithmic language of program calculus is indispensable for expressing the semantic properties
of programs. Halting property of program, axiomatic specification of data structure of natural numbers can not be
expressed by (sets) of first-order formulas.
We show the potential of calculus of programs as a tool for

• specification of semantical properties of software and

• verification of software against some specifications.

We hope the reader will forgive us for a moment of insistence (is it a propaganda?).
Calculus of programs AL is a handy tool. For there are some good reasons to use the calculus of programs

(i) The language of calculus AL contains algorithms (programs) and algorithmic formulas besides terms
and first-order formulas.

(ii) Any semantical property of an algorithm can be expressed by an appropriate algorithmic formula. Be
it termination, correctness or other properties.

(iii) Algorithmic formulas enable to create complete, categorical specifications of data structures in the
form of algorithmic theories.

(iv) Calculus of programs AL offers a complete set of tools for proving theorems of algorithmic theories.

For over 50 years we are studying the program calculus and use it in specification and verification of software. Some
examples can be found in [MS87], [Sal23] and other publications.
In spite of appearance of ω-rules4 one can verify proofs in an automatic way.

4I.e. the inference rules with enumerably many premises.
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Historical remarks

Pàl Erde̋s said on Collatz conjecture: "Mathematics may not be ready for such problems."
We disagree. In our opinion a consortium of Alfred Tarski, Kurt Goedel and Stephen C. Kleene was able to solve the
Collatz conjecture in 1937. (Tarski was advisor of M. Presburger and S. Jaśkowski.)

• Mojżesz Presburger has proved the completeness and decidability of arithmetic of addition of natural numbers
in 1929.

• In the same year Stanisław Jaśkowski found a non-standard model of Presburger theory (see a note of A. Tarski
of 1934).

• Kurt Gödel (1931) published his theorem on incompleteness of Peano’s theory. His result is of logic, not an
arithmetic fact.

• Thoralf Skolem (in 1934) wrote a paper on the non-characterization of the series of numbers by means of a finite
or countably infinite number of statements with exclusively individual variables [Sko34]

• Stephen C. Kleene has shown (in 1936) that any recurrence that defines a computable function can be replaced
by the operation of effective minimum (nowadays one can say every recursive function in the integers, is pro-
grammable by means of while instruction).

• Summing up, it seems that P. Erde̋s overlooked the computability theory, his colleagues - professors Rozsa Peter
and Laszlo Kalmar (specialists in the theory of recursive functions) were able to point it out to him.

Andrzej Mostowski had a hope that many arithmetic theorems independent of the Peano axioms should be found.
Collatz theorem is an example. The theorem on termination of Euclid’s algorithm is another example of a theorem
which is valid and unprovable in Peano theory. The law of Archimedes is yet another example. Note, both theorems
need to be stated as algorithmic formulas, there is no first-order formula that expresess the termination property of
Euclid’s4.2 algorithm or law of Archimedes.

Further research

Perhaps you noted that two parts of our proof are formal (subsection 6.6) or near formal (subsection 4.2 ) proofs. We
hope that a complete, easy to verify proof will be done in future.
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6. Suplements

For the reader’s convenience, in this section we have included some definitions, some useful theorems, and samples of
proofs in algorithmic natural number theory.

6.1. A structure with counterexamples

where Collatz computations may be of infinite length
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Here we present some facts that are less known to the IT community.
These facts may seem strange. The reader may doubt the importance of those facts. Yet, it is worth considering, non-
standard data structures do exist, and this fact has ramifications. Strange as they seem, still it is worthwhile to be aware
of their existence.
Now, we will expose the algebraic structure J, which is a model of the theory Ar, i.e. all axioms of theory Ar are true
in the structure J. First we will describe this structure as mathematicians do, then we will write a class (i.e. a program
module) implementing this structure.

Mathematical description of Jaśkowski’s structure

J is an algebraic structure
J = ⟨M ; 0, 1,⊕; =⟩ (NonStandard)

such that M is a set of complex numbers k + ıw, i.e. of pairs ⟨k,w⟩, where element k ∈ Z is an integer, and element
w ∈ Q+ is a rational, non-negative number w ≥ 0 and the following requirements are satisfied:

(i) for each element k + ıw if w = 0 then k ≥ 0,

(ii) 0 df
= ⟨0 + ı0⟩ ,

(iii) 1 df
= ⟨1.+ ı0⟩ ,

(iv) the operation ⊕ of addition is determined as usual

(k + ıw)⊕ (k′ + ıw′)
df
= (k + k′) + ı(w + w′).

(v) the predicate = denotes as usual identity relation.

Lemma 6.1. The algebraic structure J is a model of first-order arithmetic of addition of natural numbers T .

The reader may check that every axiom of the T theory (see definition6.2, p.26), is a sentence true in the structure J,
cf. next subsection 6.2.

The substructure N ⊂ J composed of only those elements for which w = 0 is also a model of the theory T .
It is easy to remark that elements of the form ⟨k, 0⟩ may be identified with natural numbers k, k ∈ N . Have a look at
table 1

The elements of the structure N are called reachable, for they enjoy the following algorithmic property

∀n∈N {y := 0;while y ̸= n do y := y + 1 od}(y = n)

The structure J is not a model of the AT N , algorithmic theory of natural numbers, cf . subsection 6.4. Elements of
the structure ⟨k,w⟩. such as w ̸= 0 are unreachable. i.e. for each element x0 = ⟨k,w⟩ such that w ̸= 0 the following
condition holds

¬{y := 0;while y ̸= x0 do y := y + 1 od}(y = x0)

The subset N ⊂ J composed of only those elements for which w = 0 is a model of the theory AT N c.f. subsection
6.4. The elements of the structure N are called reachable. A very important theorem of the foundations of mathematics
is

Lemma 6.2. The structures N and J are not isomorphic.
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For the proof see [Grz71], p. 256. As we will see in a moment, this fact is also important for IT specialists.

An attempt to visualize structure M is presented in the form of table 1. The universe of the structure J decomposes
onto two disjoint subsets (one green and one red). Every element of the form ⟨k, 0⟩ (in this case k > 0) represents the
natural number k. Such elements are called reachable ones. Note,

Definition 6.1. An element n is a standard natural number (i.e. is reachable ) iff the program of adding ones to initial
zero terminates

n ∈ N
df⇔ {q := 0; while q ̸= n do q := q + 1 od}(q = n)

or, equivalently

n ∈ N
df⇔ {q := 0}

⋃
{if n ̸= q then q := q + 1 fi}(q = n)

Table 1. Model J of Presburger arithmetic consists of complex numbers a + ı b where b ∈ Q+ and a ∈ Z, additional condition: b = 0 ⇒ a ≥ 0.

Definition of order n > m
df
≡ ∃u̸=0m+ u = n. Invention of S. Jaśkowski (1929).

STANDARD (reachable) elements Unreachable ( INFINITE ) elements

· · ·
−∞ · · · −11 + ı2 −10 + ı2 · · · 0 + ı2 1 + ı2 2 + ı2 · · ·∞

· · ·
−∞ · · · −11 + ı 53

47
−10 + ı 53

47
· · · 0 + ı 53

47
1 + ı 53

47
2 + ı 53

47
· · ·∞

· · ·
−∞ · · · −11 + ı 28

49
−10 + ı 28

49
· · · 0 + ı 28

49
1 + ı 28

49
2 + ı 28

49
· · ·∞

· · ·
−∞ · · · −11 + ı 3

47
−10 + ı 3

47
· · · 0 + ı 3

47
1 + ı 3

47
2 + ı 3

47
· · ·∞

· · ·
0 1 2 · · · 101 · · · ∞

Note that the subset that consists of all non-reachable elements is well separated from the subset of reachable elements.
Namely, every reachable natural number is less that any unreachable one. Moreover, there is no least element in the set
of unreachable elements. I.e. the principle of minimum does not hold in the structure M.
Moreover, for every element n its computation contains either only standard, reachable numbers or is composed of
only unreachable elements. This remark will be of use in our proof.

Remark 6.1. For every element n the whole Collatz computation is either in green or in reed quadrant of the table 1.

Elements of the structure M are ordered as usual

∀x,y x < y
df
= ∃z ̸=0 x+ z = y.

Therefore, each reachable element is smaller than every unreachable element.
The order defined in this way is the lexical order. (Given two elements p and q, the element lying higher is bigger, if
both are of the same height then the element lying on the right is bigger.)
The order type is ω + (ω∗ + ω) · η

Remark 6.2. The subset of unreachable elements (red ones on the table 1) does not obey the principle of minimum.
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Definition in programming language

Perhaps you have already noticed that the M is a computable structure. The following is a class that implements the
structure M. The implementation uses the integer type, we do not introduce rational numbers explicitly.

unit StrukturaM: class;
unit Elm: class(k,li,mia: integer);
begin

if mia=0 then raise Error fi;
if li * mia <0 then raise Error fi;
if li=0 and k<0 then raise Error fi;

end Elm;

add: function(x,y:Elm): Elm;
begin

result := new Elm(x.k+y.k, x.li*y.mia+x.mia*y.li, x.mia*y.mia )
end add;

unit one : function:Elm; begin result:= new Elm(1,0,2) end one;

unit zero : function:Elm; begin result:= new Elm(0,0,2) end zero;

unit eq: function(x,y:Elm): Boolean;
begin

result := (x.k=y.k) and (x.li*y.mia=x.mia*y.li )
end eq;

end StrukturaM

The following lemma expresses the correctness of the implementation with respect to the axioms of Presburger arith-
metic AP (c.f. subsection 6.2) treated as a specification of a class (i.e. a module of program).

Lemma 6.3. The structure E = ⟨E, add, zero, one, eq⟩ composed of the set E = {o object : o inElm} of objects of
class Elm with the add operation is a model of the AP theory,

E |= AP

Infinite Collatz algorithm computation

How to execute the Collatz algorithm in StructuraM? It’s easy.

pref StrukturaM block
var n: Elm;
unit odd: function(x:Elm): Boolean; ... result:=(x.k mod 2)=1 ... end odd;
unit div2: function(x:Elm): Elm; ...
unit 3xp1: function(n: Elm): Elm; . . . result:=add(n,add(n,add(n,one))); . . . end 3xp1;

begin
n:= new Elm(8,1,2);

Cl:

while not eq(n,one) do
if odd(n) then

n:=3xp1(n) else n:= div2(n)
fi

od

(* a version of algorithm Cl that uses class Elm *)

end block;

Below we present the computation of Collatz algorithm for n = ⟨8, 12⟩.

⟨8,
1

2
⟩, ⟨4,

1

4
⟩, ⟨2,

1

8
⟩, ⟨1,

1

16
⟩, ⟨4,

3

16
⟩, ⟨2,

3

32
⟩, ⟨1,

3

64
⟩, ⟨4,

9

64
⟩, ⟨2,

9

128
⟩, · · ·

Note, the computation of algorithm Gr for the same argument, looks simpler

⟨8,
1

2
⟩, ⟨4,

1

4
⟩, ⟨2,

1

8
⟩, ⟨1,

1

16
⟩, ⟨1,

3

64
⟩, ⟨1,

9

256
⟩, · · ·

None of the elements of the above sequence is a standard natural number. Each of them is unreachable. It is worth
looking at an example of another calculation. Will something change when we assign n a different object? e.g. n: =
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new Elm (19,2,10)?

⟨19, 10
2
⟩, ⟨58, 30

2
⟩, ⟨29, 30

4
⟩, ⟨88, 90

4
⟩, ⟨44, 90

8
⟩, ⟨22, 90

16
⟩, ⟨11, 90

32
⟩, ⟨34, 270

32
⟩, ⟨17, 270

64
⟩,

⟨52, 810
64

⟩, ⟨26, 405
64

⟩, ⟨13, 405
128

⟩, ⟨40, 1215
128

⟩, ⟨20, 1215
256

⟩, ⟨10, 1215
256

⟩, ⟨5, 1215
512

⟩, ⟨16, 3645
512

⟩, ⟨8, 3645
1024

⟩,
⟨4, 3645

2048
⟩, ⟨2, 3645

4096
⟩, ⟨1, 3645

8192
⟩, ⟨4, 3∗3645

8192
⟩, ⟨2, 3645∗3

2∗8192 ⟩, ⟨1,
3∗3645
4∗8192 ⟩, ⟨4,

9∗3645
4∗8192 ⟩, · · ·

And one more computation.

⟨19, 0⟩, ⟨58, 0⟩, ⟨29, 0⟩, ⟨88, 0⟩, ⟨44, 0⟩, ⟨22, 0⟩, ⟨11, 0⟩, ⟨34, 0⟩, ⟨17, 0⟩, ⟨52, 0⟩, ⟨26, 0⟩,
⟨13, 0⟩, ⟨40, 0⟩, ⟨20, 0⟩, ⟨10, 0⟩, ⟨5, 0⟩, ⟨16, 0⟩, ⟨8, 0⟩, ⟨4, 0⟩, ⟨2, 0⟩, ⟨1, 0⟩.

Corollary 6.1. The structure M, which we have described in two different ways, is the model of the AP theory with
the non-obvious presence of unreachable elements in it.

Corollary 6.2. The halting property of the Collatz algorithm cannot be proved from the axioms of the T theory, nor
from the axioms of AP theory.

6.2. Presburger’s arithmetic

Presburger’s arithmetic is another name of elementary theory of natural numbers with addition.
We shall consider the following theory , cf. [Pre29],[Grz71] p. 239 and following ones.

Definition 6.2. Theory T = ⟨L, C, Ax⟩ is the system of three elements:

L is a language of first-order. The alphabet of this language consist of: the set V of variables, symbols of operations:
0, S,+, symbol of equality relation =, symbols of logical functors and quantifiers, auxiliary symbols as brackets
...
The set of well formed expressions is the union of te set T of terms and the set of formulas F .
The set T is the least set of expressions that contains the set V and constants 0 and 1 and closed with respect to
the rules: if two expressions τ1 and τ2 are terms, then the expression (τ1 + τ2) is a term too.
The set F of formulas is the least set of expressions that contains the equalities (i.e. the expressions of the form
(τ1 = τ2)) and closed with respect to the following formation rules: if expressions α and β are formulas, then
the aexpression of the form

(α ∨ β), (α ∧ β), (α =⇒ β), ¬α

are also formulas, moreover, the expressions of the form

∀x α, ∃x α

where x is a variable and α is a formula, are formulas too.

C is the operation of consquence determined by axioms of first-order logic and the inference rules of the logic,

Ax is the set of formulas listed below.

∀x x+ 1 ̸= 0 (a)

∀x ∀y x+ 1 = y + 1 =⇒ x = y (b)

∀x x+ 0 = x (c)

∀x,y (y + 1) + x = (y + x) + 1 (d)

Φ(0) ∧ ∀x [Φ(x) =⇒ Φ(x+ 1)] =⇒ ∀xΦ(x) (I)



G. Mirkowska & A. Salwicki 27 Collatz conjecture becomes theorem

The expression Φ(x) may be replaced by any formula. The result is an axiom of theory This is the induction scheme.
We augment the set of axioms adding four axioms that define a coiple of useful notions.

even(x)
df
≡ ∃y x = y + y (e)

odd(x)
df
≡ ∃y x = y + y + 1 (o)

x div 2 = y ≡ (x = y + y ∨ x = y + y + 1) (D2)

3x
df
= x+ x+ x (3x)

The theory T ′ obtained in this way is a conservative extension of theory T .

Below we present another theory AP c.f. [Pre29], we shall use two facts: 1) theory AP is complete and hence is
decidable, 2) both theories are elementarily equivalent.

Definition 6.3. Theory AP = ⟨L, C, AxP ⟩ is a system of three elements :

L is a language of first-order. The alphabet of this language contains the set V of variables, symbols of functors :
0,+, symbol of equality predicate =.
The set of well formed-expressions is the union of set of terms T and set of formulas F . The set of terms T is
the least set of expressions that contains the set of variables V and the expression 0 and closed with respect to
the following two rules: 1) if two expressions τ1 and τ2 are terms, then the expression (τ1+ τ2) is also a term, 2)
if the expression τ is a term, then the expression S(τ) is also a term.

C is the consequence operation determined by the axioms of predicate calculus and inference rules of first-order
logic

AxP The set of axioms of the AP theory is listed below.

∀x x+ 1 ̸= 0 (A)

∀x x ̸= 0 =⇒ ∃yx = y + 1 (B)

∀x,y x+ y = y + x (C)

∀x,y,z x+ (y + z) = (x+ y) + z (D)

∀x,y,z x+ z = y + z =⇒ x = y (E)

∀x x+ 0 = x (F)

∀x,z ∃y (x = y + z ∨ z = y + x) (G)

∀x ∃y (x = y + y ∨ x = y + y + 1) (H2)

∀x ∃y (x = y + y + y ∨ x = y + y + y + 1 ∨ x = y + y + y + 1 + 1) (H3)

. . . . . . . . .

∀x ∃y



x = y + y + · · ·+ y︸ ︷︷ ︸
k

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1 + 1︸ ︷︷ ︸
2

∨

. . .

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−2

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−1



(Hk)
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. . .

The axioms H2 -Hk ... may be given a shorter form. Let us introduce numerals, ie. the constants representing term of
the form

2 df
= 1 + 1

3 df
= 1 + 1 + 1

· · ·

k df
= 1 + 1 + . . . 1︸ ︷︷ ︸

k times

· · ·

Now, the axioms take form

∀x xmod 2 = 0 ∨ xmod 2 = 1 (H2’)

∀x xmod 3 = 0 ∨ xmod 3 = 1 ∨ xmod 3 = 2 (H3’)

· · ·

∀x
k−1∨
j=0

xmod k = j (Hk’)

Let us recall a couple of useful theorems
F1. Theory T is elementarily equivalent to the theory AP .[Pre29] [Sta84]
F2. Theory AP is decidable. [Pre29].
F3. The computational complexity of theory AP , is double exponential O(22

n
) this result belongs to Fisher and Rabin,

see [MF74].
F4. Theories T and AP have non-standard model, see section 6.1, p. 22.
Now, we shall prove a couple of useful theorems of theory T .

First, we shall show that the sentence ∀n∃x,y,z n · 3x + y = 2z is a theorem of the theory T of addition. Operations of
multiplication and power are inaccessible in the theory T . However, we do not need them.
We enrich the theory T adding two functions P2(·) and P3(·.·). defined in this way

Definition 6.4. Two functions are defined P2 (of oneargument) and P3 (of two-arguments).

P2(0)
df
= 1 P3(y, 0)

df
= y

P2(x+ 1)
df
= P2(x) + P2(x) P3(y, x+ 1)

df
= P3(y, x) + P3(y, x) + P3(y, x)

Lemma 6.4. The definitions given above are correct, i.e. the following sentences aretheorems of the theory with two
definitions

T ⊢ ∀x∃y P2(x) = y and
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T ⊢ ∀x,y,zP2(x) = y ∧ P2(x) = z =⇒ y = z.

Similarly, the sentences ∀y,x∃z P3(y, x) = z and ∀y,x,z,uP3(y, x) = z ∧ P3(y, x) = u =⇒ z = u are theorems of
theory T .

An easy proof goes by induction with respect to the value of variable x.

In the proof of the lemma 6.5 , below, we shall use the definition of the order relation

a < b
df
= ∃c ̸=0 a+ c = b.

Making use of the definition of function P2 and P3 we shall write the formula P3(n, x) + y = P2(z) as it exppresses
the same content as expression n · 3x + y = 2z .

Lemma 6.5. The following sentence is a theorem of the theory T enriched by the definitions of P2 and P3 functions.

∀n∃x,y,zP3(n, x) + y = P2(z)

Proof:
We begin proving by induction that T ⊢ ∀n n < 2n. It is easy to see that T ⊢ 0 < P2(0). We shall prove that
T ⊢ ∀n(n < P2(n) =⇒ (n + 1 < P2(n + 1)). Inequality n + 1 < P2(n + 1) follows from the two following
inequalities T ⊢ n < P2(n) and T ⊢ 1 < P2(n). Hence the formula n+1 < P2(n)+P2(n)) is a theorem of theory
T . By definition P2(n) + P2(n) = P2(n+ 1).
In the similar manner, we can prove the formula T ⊢ ∀n ∀x P3(n, x) < P2(n+ x+ x)
As a consequence we have T ⊢ ∀n∃x,y,z P3(n, x) + y = P2(z). ⊓⊔

Lemma 6.6. Let M be any model of Presburger arithmetic. If there exists a triple ⟨x, y, z⟩ of reachable elements such
that it satisfies the equation P3(n, x) + y = P2(z) i.e. n · 3x + y = 2z then the element n is reachable.

Proof:
If the following formulas are valid in the structure M
{q := 0; while q ̸= x do q := q + 1 od}(x = q),
{q := 0; while q ̸= y do q := q + 1 od}(y = q),
{q := 0; while q ̸= z do q := q + 1 od}(z = q)
and the following equation is valid too P3(n, x) + y = P2(z) then it is easy to verify that the formula {t :=
0; while n ̸= t do t := t+ 1 od}(t = n) is valid too.

Nr Reason
1 a1=P2(z) is reachable
2 y+a2 =a1, a2 is reachable and a2=2z-y
3 a3=P3(1,x) is reachable , a3=3x

4



q := 1; a5 := a3;

while a5 ̸= a2 do
q := q + 1;

a5 := a5 + a3

od


(q ∗ a3 = a2) hence q=n

⊓⊔

6.3. An introduction to the calculus of programs AL
For the convenience of the reader we cite the axioms and inference rules of calculus of programs i.e. algorithmic logic
AL.
Note. Every axiom of algorihmic logic is a tautology.
Every inference rule of AL is sound. [MS87]

Axioms
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axioms of propositional calculus

Ax1 ((α ⇒ β) ⇒ ((β ⇒ δ) ⇒ (α ⇒ δ)))

Ax2 (α ⇒ (α ∨ β))

Ax3 (β ⇒ (α ∨ β))

Ax4 ((α ⇒ δ) ⇒ ((β ⇒ δ) ⇒ ((α ∨ β) ⇒ δ)))

Ax5 ((α ∧ β) ⇒ α)

Ax6 ((α ∧ β) ⇒ β)

Ax7 ((δ ⇒ α) ⇒ ((δ ⇒ β) ⇒ (δ ⇒ (α ∧ β))))

Ax8 ((α ⇒ (β ⇒ δ)) ⇔ ((α ∧ β) ⇒ δ))

Ax9 ((α ∧ ¬α) ⇒ β)

Ax10 ((α ⇒ (α ∧ ¬α)) ⇒ ¬α)

Ax11 (α ∨ ¬α)

axioms of predicate calculus

Ax12 ((∀x)α(x) ⇒ α(x/τ)))
where term τ is of the same type as the variable x

Ax13 (∀x)α(x) ⇔ ¬(∃x)¬α(x)

axioms of calculus of programs

Ax14 K((∃x)α(x)) ⇔ (∃y)(Kα(x/y)) for y /∈ V (K)

Ax15 K(α ∨ β) ⇔ ((Kα) ∨ (Kβ))

Ax16 K(α ∧ β) ⇔ ((Kα) ∧ (Kβ))

Ax17 K(¬α) ⇒ ¬(Kα)

Ax18 ((x := τ)γ ⇔ (γ(x/τ) ∧ (x := τ)true)) ∧ ((q := γ′)γ ⇔ γ(q/γ′))

Ax19 begin K;M end α ⇔ K(Mα)

Ax20 if γ then K else M fi α ⇔ ((¬γ ∧Mα) ∨ (γ ∧Kα))

Ax21 while γ do K od α ⇔ ((¬γ ∧ α) ∨ (γ ∧K(while γ do K od(¬γ ∧ α))))

Ax22

⋂
Kα ⇔ (α ∧ (K

⋂
Kα))

Ax23

⋃
Kα ≡ (α ∨ (K

⋃
Kα))

Inference rules

propositional calculus

R1
α, (α ⇒ β)

β
(also known as modus ponens)

predicate calculus

R6
(α(x) ⇒ β)

((∃x)α(x) ⇒ β)

R7
(β ⇒ α(x))

(β ⇒ (∀x)α(x))
calculus of programs AL

R2
(α ⇒ β)

(Kα ⇒ Kβ)

R3
{s(if γ thenK fi)i(¬γ ∧ α) ⇒ β}i∈N

(s(while γ doK od α) ⇒ β)

R4
{(Kiα ⇒ β)}i∈N
(
⋃

Kα ⇒ β)

R5
{(α ⇒ Kiβ)}i∈N
(α ⇒

⋂
Kβ)
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In rules R6 and R7, it is assumed that x is a variable which is not free in β, i.e. x /∈ FV (β). The rules are known
as the rule for introducing an existential quantifier into the antecedent of an implication and the rule for introducing a
universal quantifier into the successor of an implication. The rules R4 and R5 are algorithmic counterparts of rules R6

and R7. They are of a different character, however, since their sets of premises are infinite. The rule R3 for introducing
a while into the antecedent of an implication of a similar nature. These three rules are called ω-rules. The rule R1 is
known as modus ponens, or the cut-rule. In all the above schemes of axioms and inference rules, α, β, δ are arbitrary
formulas, γ and γ′ are arbitrary open formulas, τ is an arbitrary term, s is a finite sequence of assignment instructions,
and K and M are arbitrary programs.

Theorem 6.1. (theorem on completeness of the calculus AL)
Let T = ⟨L, C,Ax⟩ be a consistent algorithmic theory, let α ∈ L be a formula. The following conditions are equivalent

(i) Formula α is a theorem of the theory T, α ∈ C(Ax),

(ii) Formula α is valid in every model of the theory T, Ax |= α.

The proof may be found in [MS87].

6.4. An introduction to the algorithmic theory of numbers AT N

The language of algorithmic theory of natural numbers AT N is very simple. Its alphabet contains one constant 0 zero
, one one-argument functor s and predicate = of equality. We shall write x+ 1 instead of s(x). Axioms of AT N were
presented in the book [MS87]

A1) ∀x{q := 0; while q ̸= x do q := s(q) od}(q = x) (R)

A2) ∀x s(x) ̸= 0 (N)

A3) ∀x∀y s(x) = s(y) =⇒ x = y (J)

We can add another two-argument functor + and its definition

A4) ∀x ∀y


q := 0;w := x;

while q ̸= y do
q := s(q) ;w := s(w)

textbfod

 (x+ y = w) (D)

The termination property of the program in A4 is a theorem of AT N theory as well as the formulas x + 0 = x and
x+ s(y) = s(x+ y).

A sample (11 – 15) of Theorems of AT N

AT N ⊢ ∃x α(x) ⇔ {x := 0}
⋃

{x := x+ 1}α(x) (11)

AT N ⊢ ∀x α(x) ⇔ {x := 0}
⋂

{x := x+ 1}α(x) (12)

Law of Archimedes

AT N ⊢ 0 < x < y =⇒ {a := x; while a < y do a := a+ x od}(a ≥ y) (13)

Scheme of induction

AT N ⊢
(
α(x/0) ∧ ∀x

(
α(x) ⇒ α(x/s(x))

))
=⇒ ∀xα(x) (14)
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Correctness of Euclid’s algorithm

AT N ⊢
(

n0 > 0∧
m0 > 0

)
=⇒



n := n0; m := m0;

whilen ̸= mdo

if n > m then n := n ._ m
else m := m ._ n

fi

od


(n = gcd(n0,m0)) (15)

The theory AT N enjoys an important property of categoricity.

Theorem 6.2. ( meta-theorem on categoricity of AT N theory)
Every model A of the algorithmic theory of natural numbers is isomorphic to the structure N, c.f. subsection 6.1.

6.5. Proof of lemma 3.1
Let P and P ′ be two programs. Let α be any formula. The semantic property programs P and P ′ are equivalent with respect to the postcondition α is expressed
by the formula of the form ({P}α⇔ {P ′}α).
We shall use the following tautology of calculus of programs AL.

⊢



P :︷ ︸︸ ︷
while γ do

if δ then K else M fi
od;

 α⇔

P ′:︷ ︸︸ ︷
while γ do

while γ ∧ δ do K od;
while γ ∧ ¬δ do M od

od

 α


(16)

We apply the axioms Ax20 and Ax21

⊢




while γ do

if δ then K else M fi
od;

 α⇔



if γ then
while γ ∧ δ do K od;
while γ ∧ ¬δ do M od ;

while γ do
while γ ∧ δ do K od;
while γ ∧ ¬δ do M od

od
fi


α


(17)

We can omit the instruction if (why?) . We swap internal instructions while inside the instruction while.

⊢




while γ do
if δ then K else M fi

od;

 α⇔



while γ ∧ δ do K od ;

while γ ∧ ¬δ do M od
while γ do

while γ ∧ ¬δ do M od;
while γ ∧ δ do K od

od


α


(18)

We can safely skip the second instruction while.

⊢




while γ do
if δ then K else M fi

od;

 α⇔



while γ ∧ δ do K od ;

while γ do
while γ ∧ ¬δ do M od;
while γ ∧ δ do K od

od


α

 (19)

Now, we put (γ
df
= n ̸= 1), (δ

df
= even(n)), (K

df
= {n := n÷ 2}) and (M

df
= {n := 3n+ 1}). We make use of two theorems (even(n) =⇒ n ̸= 1) and

(Mδ) of theory AP c.f. subsection 6.2.

T ⊢





while n ̸= 1 do
if even(n)
then n := n÷ 2

else n := 3n+ 1

fi
od;


(n = 1) ⇔



while even(n) do n := n÷ 2 od;
while n ̸= 1 do

n := 3n+ 1;

while even(n) do n := n÷ 2 od
od


(n = 1)


. (20)
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6.6. Proof of invariant of algorithm Gr3

We are going to prove the following implication (22) is a theorem of algorithmic theory of natural numbers AT N .

AT N ⊢ (φ =⇒ {∆3}φ) (21)

φ︷ ︸︸ ︷

n · 3i + Yi = mi · 2Zi∧

Zi =
i∑

j=0
kj ∧Xi = i∧

Yi =
i−1∑
j=0

(
3i−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤i

(
ml = ml−1/2

kl∧

kl = exp(ml, 2)
)


=⇒

∆3︷ ︸︸ ︷

aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;

Xi := i; ;

i := i+ 1;



φ︷ ︸︸ ︷

n · 3i + Yi = mi · 2Zi∧

Zi =
i∑

j=0
kj ∧ ∧Xi = i

Yi =
i−1∑
j=0

(
3i−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤i

(
ml = ml−1/2

kl∧

kl = exp(ml, 2)
)


(22)

We apply the axiom of assignment instruction Ax18. Note, we applied also axiom Ax19 of composed instruction. Namely, in the implication (22) we replace the
its successor {∆3}φ by the formula {∆(1)

3 }φ(1).

φ =⇒

∆
(1)
3︷ ︸︸ ︷

aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;

Xi := i; ;



φ(1)︷ ︸︸ ︷

n · 3(i+1) + Y(i+1) = m(i+1) · 2
Z(i+1)∧

Z(i+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(23)

φ =⇒



aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;





n · 3(i+1) + Y(i+1) = m(i+1) · 2
Z(i+1)∧

Z(i+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)
∧


(24)

φ =⇒


aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;





n · 3(i+1) + Y(i+1) = m(i+1) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(25)

φ =⇒


aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;





n · 3(i+1) + (3Yi + 2Zi ) = m(i+1) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi ) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(26)

φ =⇒
{

aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

}


n · 3(i+1) + (3Yi + 2Zi ) = (aux/2ki+1 ) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi ) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(27)
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φ =⇒
{

aux := 3 ∗mi + 1;
}


n · 3(i+1) + (3Yi + 2Zi ) = (aux/2(exp(aux,2))) · 2(Zi+(exp(aux,2)))∧

(Zi + (exp(aux, 2))) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi ) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(28)

φ =⇒ {}

ψ︷ ︸︸ ︷

n · 3(i+1) + (3Yi + 2Zi ) = ((3 ∗mi + 1)/2(exp((3∗mi+1),2))) · 2(Zi+(exp((3∗mi+1),2)))∧

(Zi + (exp((3 ∗mi + 1), 2))) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi ) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(29)

The implications (22) –(29) are mutually equivalent.
One can easily verify that the last implication (φ =⇒ ψ) (29) is a theorem of Presburger arithmetic T and hence it is a theorem of AT N theory.
Therefore the first implication (φ =⇒ {∆3}φ) (22) is a theorem of algorithmic theory of natural numbers AT N .

q.e.d.

Remark 6.3. Note, the process of creation a proof like this can be automatized.
The verification of the above proof can be automatized too.
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