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1 Introduction

The 3z + 1 problem remained open for over 80 years. It has been
noticed in 1937 by Lothar Collatz. The problem became quite pop-
ular due to its wording, for it is short and easy to comprehend.
Collatz remarked that for any given natural number n > 0 , the
sequence {n;} defined by the following recurrence

Nogo=—mn
n; — 2 when n; 1s even , (recl)
Njr1 = . for + >0
3-n;+1 when n;is odd
seem always reach the value 1.
He formulated the following conjecture
for all n exists ¢ such that n; =1 (Collatz conjecture)

One can give another formulation of the hypothesis of Collatz B
The number of papers devoted to the problem surpasses 200, c.f.
[Lag10] . It is worthwhile to consult social media: wikipedia, youtube

U Let f(n,0) L n | and f(n,i+1) 2 {f(”vi)/Q if f(n,i) is even

3-f(n,i)+1 if f(n,i)is odd

Now, con-

jecture reads V,, 3; f(n,i) = 1.



etc, there you can find some surprising ideas to prove the Collatz
hypothesis as well as a technical analysis of the problem.
Computers are used and are still crunching numbers in the search of
an eventual counterexample to the Collatz conjecture. The reports
on progress appear each year. We claim that the counterexample
approach is pointless, i.e. the computers can be turned off. Namely,
we shall prove that the program that searches a counterexample
will never stop.

Our goal will be achieved if we prove that for each number n the
computation of the following C1 algorithm is finite.

while n # 1 do
Cl:q ifeven(n)thenn:=n-+2elsen:=3n+1f
od

One needs

e a formula ©¢; such that it expresses the termination property of
program C'l,

e a verifiable proof II of the formula and

e a definition of relation C of deducibility.

Ah, we need also a specification of the domain in which the algo-
rithm is to be executed, i.e. the axioms Ax of the algebraic struc-
ture of natural numbers.

QUESTION 1. How to express the termination property of a pro-
gram K as a formula Ok (i.e. a Boolean expression)?

Note, there is no a universal algorithm that expresses the halting
property of a given program K by an appropriate first-order logi-
cal formula Og. First, let us recall the theorem on incompleteness
of arithmetics, c¢f. Kurt Godel . According to Godel, the property
to be a natural number is not expressible by any set of first-order
formulas. The reader may wish to note, that halting property of
the algoritm

q :=0;while g #ndo g:=¢q+1 od



is valid in a data structure iff n is a standard (i.e. reachable) natu-
ral number. Therefore the halting property allow to define the set
of natural numbers. In this situation it seems natural to pass from

first-order language to another more expressive language. There
are three candidates: 1°a second-order language admitting variables
and quantifiers over sets, 2°the language of infinte disjunctions and
conjunctions L, and 3°language of algorithmic logic. Problem
with second order logic is in lack of adequate definition of conse-
quence operation. True, we can limit our considerations to the case
of finite sets (aka, weak second order logic). Still we do not know
a complete set of axioms and inference rules for the weak second-
order logic. Applying second-order logic to program analysis results
in a heavy overhead. Because first you have to translate the seman-
tic property of the program into a property of a certain sequence
or set. prove this property and make a backward translation. The
question of whether this approach is acceptable to software engi-
neers seems to be appropriate.

The language of infinite disjunctions and conjunctions is not an
acceptable tool for software engeeners.

We shall use the language and the consequence operation offered
by algorithmic logic i.e. calculus of programs. We enlarge the set
of well formed expressions: beside terms and formulas of first order
language we accept algorithms and we modify the definition of
logical formulas. The simplest algorithmic formulas are of the form:
(algorithm) (formula).

As an example of an algorithmic formula consider the expression

V.{q :=0;while ¢ #n do ¢:=q+ 1 od} (n = q)

The latter formula is valid iff every element n can be reached from
0 by adding 1.



Now our goal is to prove the following formula

while n # 1 do
if even(n) then n :=n + 2
elsen:=3n+11f

od

from the axioms of algorithmic theory of natural numbers ATN,
c.f. subsection 6.4 For the formula expresses the termination
property of program CI.

QUESTION 2. How to prove such algorithmic formula?

Note, all structures that assure the validity of axioms of the ATN
theory are isomorphic (this is the categoricity meta-theorem). There-
fore, the termination formula, can be either proved (with the infer-
ence rules and axioms of calculus of programs AL, or validated in
this unique model of axioms of ATN .

Let us make a simple observation. The computation of Collatz algo-
rithm if succesful goes through intermediate values. The following
diagram illustrates a computation where all odd numbers were
exposed as stacked fractions.

' N
3»2%0+1
3 P +1+1
n T oky T
3h(— )41 3 ol 1 I

n * (270) + * ok = gk o +1 .
ST ok T ok ~ o2 00 = o =1
(Dg)

where kg = expo(n,2),ki = expo(3 - 55 + 1,2), ke = expo(3 *
341
( 22'“,21+ ) +1,2),... . In our earlier paper [MS21] we studied the

halting formula of the Collatz algorithm. We remarked that the
computation of Collatz algorithm is finite iff there exist three nat-
ural numbers x, y, z such that:

a) the equation n - 3" 4+ y = 27 is satisfied and

2 Note, the function expo returns the largest exponent of 2 in the prime factoriza-
tion of number z .

expo(x,?2) 4 {l :== 0;y := x; while even(y) do | :=1+1; y := y/2 od}(result =)
ie. | = expo(x,2) . We introduce the notation expo instead exp for our friends
programmers who interpret the notation exp as exponentiation.



b) the computation of another algorithm IC| cf. page , is finite,
the algorithm computes on triples(z, y, z).

It is worthwhile to mention that the subsequent triples are decreas-
ing during computation.

The proof we wrote there [MS21] is overly complicated.

Here we show that the 4-argument relation

{n,z,y,z} : {IC}(true).

is elementary recursive, since it may be expressed by an arihmetic
expression with operator ..
The present paper shows arguments simpler and easier to follow.

2 Collatz tree

Definition 1 Collatz tree DC s a subset D C N of the set N of
natural numbers and the function f defined on the set D\ {0, 1}.

DC = (D, f)

where D C N,1e D, f: D\ {0,1} — D.
Function f is determined as follows

fn) =

n—-—2 whenn mod2=0
3n+1 whenm mod2=1

, the set D 1is the least set containing the number 1 and closed with
respect to the function f,

D={neN:Jiey filn)=11}.

As it is easy to see, this definition is highly entangled and the deci-
sion whether the set D contains every natural number is equivalent
to the Collatz problem.



Remark 2 Set D has the following properties :

re€D = (x+z)eD (2)

(reD = (Fz=y+y = yeD)) (3)

(reD = Fr=y+y+1 = (z+z+z+1)€eD)) (4)
(re€D = (JFie=z+z2+1Az=c+e+te+1l = ec D)) (5)

Implications and show left and right son of element x.

Conjecture 3 The Collatz tree contains all the reachable natural
numbers.
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Fig. 1. A fragment of Collatz tree, levels 4-15. It does not include levels 0-3, they consist of elements 1 —2 — 4 — 8 — .



3 Four algorithms, relatives of C! algorithm

In this section we present an algorithm Gr equivalent to the algo-
rithm C'l and three algorithms Grl, Gr2, Gr3 that are successive
extensions of the Gr algorithm.

Lemma 4 The following algorithm Gr s equivalent to Collatz al-
gorithm C1.

while even(n) do n:=n + 2 od;
while n #1 do
Gr: ni=3*n+1;
while even(n) do n:=n + 2 od

od ;

Proof. The equivalence of the algorithms Cl and Gr is intuitive.
Compare the recurrence of Collatz (recl|) and the following recur-
rence (rec2] ) that is calculated by the algorithm Gr.

ko = expo(n,2) N my = 55

(rec2)
kiv1 = expo(3m; +1,2) Amq = Smy+1 for: >0

okit1

One can say the algorithm Gr is obtained by the elimination of
if instruction from the C1 algorithm. However, construction of a
formal proof is a non-obvious task. A sketch of a proof is given in
subsection We are encouraging the reader to fill the details. =

Next, we present the algorithm Gr1, an extension of algorithm Gr.



var n,l,i :integer ; k,m :arrayof integer;

1:=0;1:=0;
Fli
while even(n) do ni=n +2; [:=1+10d; k;i:=1; m; :=n:

while n #1 do

Grl:
{mi=n} nm=3*n+1; [:=0;
A1:| while even(n) do n:=n =2; l:=1+1lod ; ki1 :=1; m;qq :=n;
{mip1 =20 Ak = exp(3xmi+1,2)} i=i+1
od

Lemma 5 Algorithm Grl has the following properties:

(1) Algorithms Gr and Grl are equivalent with respect to the halt-
1ng property.

(it) The sequences {m;} and {k;} calculated by the algorithm Grl
satisfy the recurrence [rec.

Proof. Both statements are very intuitive. Algorithm Grl is an
extension of algorithm Gr. The inserted instructions do not inter-
fere with the halting property of algorithm Grl. Second part of
the lemma follows easily from the remark that ky = exp(n, 2) and
my = 5i; and that for all i > 0 we have ki1 = exp(3 x m; +1,2)

and mi41 = it - |

Each odd number m in Collatz tree, m € D, initializes a new
branch. Let us give a color number x 4 1 to each new branch ema-
nating from a branch with color number x. Note, for every natural
numberp the set of branches of the color p is infinite. Let W, de-
note the set of natural numbers that obtained the color x.
Besides the levels of Collatz tree, one can distinguish the structure
of strata in the tree.

Definition 6 Inductive definition of strata.

Wo 2 {neN:n=oern2y (W0)
df n

10



A couple of observations will be used in the sequel.

Remark 7 Among properties of sets W; we find

(1)
(2)

(3)

(4)

(5)
(6)

(7)

Each set W; is infinite. If it contains a number n then the number 2n € W;.

The set Wy contains one odd number 1. All other sets contain infinitely many
odd numbers. For if a =2j 4+ 1 and a € W; then 4da+1 € W;.

n-=+2 when n is even
We define the function f: N — N as follow: f(n) =< 3n +1 when n is odd n # 1

unde fined whenn =1

Let x > 0 be a natural number. Let the sequence {0}, contain all odd num-
bers that are in the set W,. Let So]. = {2i . oj} be the set. Every set W, may

be partitioned as follow Wy = \J So,. If j # j' then S,, N Soj, =0
j=0

For every i,j € Nat if i # j then W; N W; = 0.

For everyn,j € Nat ifn€ W; Aj>1An mod2=1 then3n+1€ W;_1.

J
The sequence of sets { U VVZ} 1§ monotone, increasing.
=0 JEN

11
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Let s be a variable not occurring in algorithm Gr1. The following
lemma states the partial correctnes of the algorithm Grl w.r.t.
precondition s = n and postcondition s € W.

Lemma 8 Algorithm Grl computes the number i of storey W; of
number n,

{Gr1}(true) = ((3 =n) = {Grl}(s e VVz))

Next, we present another algorithm Gr2 and a lemma.

var n,l,i,x,y,z :integer ; k,m :arrayof integer;

1:=0; [ :=0;
Is:| while even(n) do n:i=n =2, [:=1+1o0d;

z, ki =1, my:=n; y:=0;

Gr2:| while m; #1 do

ni=3*n+1; i:=i+1;1:=0;
As: | while even(n) do ni=n +2;l:=1+1od;

ki:=1,my=n, z:=z2+k;;y:=3xy+2% x:=1

od

Lemma 9 Algorithm Gr2 has the following properties:
(i) Both algorithms Grl and Gr2 are equivalent with respect to the
halting property.

(ii) Formula ¢ : | n-3" 4y =m;-2° | is an invariant of the pro-

gram Gr2 i.e. the formulas (@ and @

{Ty} (n-3" 4+ y=m;-2°) (6)

(n-3"+y=m;-2°) = {Ao}(n-3+y=m;-2°) (7)
are theorems of the algorithmic theory of numbers ATN. .

Proof. Proofs of these formulas are easy, it suffices to apply the
axiom of assignment instruction Axg, =

13



vl

768 22 136 138 23 140 141 848152 853 5120

\/ Vo
384 (4,133,10);; 68 69 2560
VAAVA
192 (3,106, 10)34 208 35 212 213 1280
N/ N/
96 (3,53,9) 106 640
\ /"
(2,80,9) 45 (2,44,9)5, (2,35,9)53 (1,64,10) 350
(2,40, 8)24 (2,22,8)96 (1,32,9)160
(2,20, 7)1 (2,11, )13 (1,16,8)s0
\ /
(2,10, 6)¢ (1,8, a0
|
(2,5,5)3 (1,4,6)20
\ /
(1,2,5)10
(1,1,4)
(0,0,4) 4

5376 150 904 906 5440 151 908 909 5456 460 5461 32768
VARV Y
2688 452 453 2720 454 2728 2730 (0,0,14)
\/\/
1344 226 1360 227 1364 1365  (0,0,13)
N/ N/
672 113 680 682 (0,0,12)
N/
(1,16,10)336 (1,4,10)340 (1,1,10)341 (0,0,11)
N\
168 170 (0,0,10)
84 (1,1,8)s (0,0,9)
\ /
42 (0,0,8)
(1,1,6)9 (0,0, )18
\ /
(0,0,6)¢
|
<0707 5>32

Fig. 3. Tree of triples (levels 4 — 15)



Subsequent algorithm G73 exposes the history of the calculations
of z,y, z

var n,i,aux :integer ; k,m,X)Y,Z : arrayof integer;

Is:| i:=0; k; := exp(n,2); m; := zk s Zii=ko; Vi, X; = 0;

while n - 3" +Y; # 2% do

aux:=3*m;+1;

Gr3:
1:=1+1;
Ag:
ki == exp(aux, 2); m; :=aux,/2"i;
Y; = 3Yi + 2% Z; = Zi oy + kyy Xy =
od

See some properties of the algorithm Gr3.

Lemma 10 Both algorithms Gr2 and Gr3 are equivalent with re-
spect to the halting property.

For every element n after each i-th iteration of algoritm Gr3, the
following formulas are satisfied

0: n-3+Y; =m,- 2% X, =
Zz' = .ZZ:O ]{Zj Y Z (?)ilj . 223)
]: :

where the sequences {m;}and {k;} are determined by the recurrence

frecd).

in other words, the following formula is valid in the structure N

N =T {if m; # 1 then A; fi} o

Remark 11 Hence, for every element n algorithm Gr3 calculates an increasing,
monotone sequence of triples (i (= X;),Y;, Z;).

Remark 12 We can say informally that the algorithm Gr3 performs as follow

1:=0;
whilen ¢ Wy doi:=i+1 od

Note, {Grs} (n € W;)

15
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3.1 Hotel Collatz

Hotel contains rooms of any natural number. Let n = 2°- (25 + 1) . It means that the room number n is
located in tower number j on the floor number i . Each tower is equipped with an elevator (shown as a green
line). Moreover, each tower is connected to another by a staircaise that connects numbers k = 25 + 1 and

3k + 1. This is shown as a red arrow (k, 3k + 19,

uouge o ougs o upe o

F U TR I TN T VA TR (O R O I 1

.
.
L
L
|
L
il i 0 m K ll\“\ﬂ\“ i i E £ ki 1] k) 1 i il
L]
L
.y
L
~
14 15 b 13 1 H/§ i 1] 1 13 1 16 1 il 13 18 m 1
- /><S p 4
g
L— | _—t
L—T L—T
//
\ L —T
-
1 3 0 o ks Ed il ® L3 L3 L T k3 E’>( 70><;l 8 8 8 L a o L3 a7 L 101 103 103 107 100 u m lli\llf

Fig. 4. Hotel Collatz



Definition 13 (Hotel Collatz) The graph HC = (V, E) is de-
fined as follows

V=N i.e. the set of vertices s the set of standard, reachable, natural
numbers

E = {{k,p): Hpk:p+p}u{<k,3k+1§ cdk=p+p+1}

are edges of the graph

Note. Don’t forget, our drawing is only a small fragment of the infinite HC
structure. The picture shows a small part of red arrows. We drew only those

red arrows that fit entirely on a page.

Conjecture 14 The hotel Collatz is an infinite, connected, acyclic
graph, i.e. it 1s a tree. Number 1 is the root of the tree.

Making use of the definition [ one can formulate the following

Conjecture 15 The set W i UN W, is a partition of the set N
HAS
of nodes of Hotel Collatz.

4 On finite and infinite computations of Collatz algorithm

QUESTION Can some computation contain both reachable and unreachable ele-
ments?

No. The subset of reachable elements is closed with respect of division by 2 and mul-
tiplication by 3. The same observation applies to the set of unreachable elements.

We know, cf. subsection [6.1]that computations of nonreachable elements are infinite.

4.1  Finite computations

Let 9 = (M; 0,1, +, =) be any algebraic structure that is a model
of elementary theory of addition of natural numbers, c.f. subsection
0.2l

Denotation. Let 0(z, y) be a formula. The expression (uz)d(x,y)
denotes the least element x(y) such that the value of the formula
is truth.

17



EXAMPLE. (ux)(z +x > y).
The following lemma gathers the facts established earlier.

Lemma 16 Letn be an arbitrary element of the structure N. The
following conditions are equivalent

n;, —2 when n; mod2 =20

(i) The sequence ng = n andn;yq = {37% 1 when ny mod 2 — 1
determined by
the recurrence contains an element nj = 1

(1i) The computation of the algorithm C1 is finite.

(iii) The sequence my = o and m; = > determined by the
Tecurrence stabilizes, i.e. there exist | such that m; =1
for all k >1

(v) The computation of the algorithm Gr is finite.

(v) The computation of the algorithm Grl is finite and the subse-
quent values of the variables M; and K; satisfy the recurrence
.

(vi) The computation of the algorithm Gr2 is finite and the subse-
quent values of the variables m; and k; satisfy the recurrence
. The formula n - 3% +y = m; - 2% holds after each itera-
tion of while instruction, i.e. it is the invariant of the program
As. The final valuation of variables x,y,z and n satisfies the
equation n - 3* +y = 2°.

(vii) The computation of the algorithm Gr3 is finite.

The subsequent values of the variables m; and k; satisfy the

recurrence .

The subsequent values of the variables X;,Y;, Z; form a mono-

tone, increasing sequence of triples.

The formula n - 3% +Y; = m; - 2% is satisfied after each i-th
iteration of the program Gr3, i.e. the value of the following
exression {T'3; ALHX; + Z;) is the total number of operations
excuted. The value of the variable Y; encodes the history of the
computation till the i-th iteration of As

Suppose that for a given element n the computationof algorithm
Gr2 is finite.

18



x—1 ) ; k 2"”: k;

Let £ = (px) (n - 3" + 120(3”3_1_3 : 2120 l) = 2=0 ) Put g =
]:

z—1, _ . S k T

Z (31’*17] . 2l§O l) and Z = Z k]

J=0 J=0

We present the algorithm /C’, which is a slightly modified version
of the algorithm /C' devised in [MS21] .

.
var x,y,z k : integer, Err : Boolean;

Err := false;
while x+y+2z#0 do
if (odd(y) A ((x=0) V (y <3*71)))

IC’ . then Err := true; exit (1C)
Tr:|fi;
x:=x—1; y:=y—3% k:=expo(y,2);
y
y = 2—,{;z::z—k;

od

\

We observe the following fact

Lemma 17 For every element n
(n =b)N{Gr2} (((a: =Ny = Az = 2)A0:3+y =27)) = {ICH z =y =z = 0))

and

(z=ZAy=gAz=2)A(b-3"+§=2))A

({IO’}(:v:y:z:()) — (n=1"0) = {Gr2}(a::a_:/\y:y/\z:,§))

The contents of this lemma are best explained by the commutativ-
ity of the diagram below.

19



Gr2(n)

el (@O s a2
000 (m Z5z 1

Proof. The proof makes use of two facts:

z—1 . XJ: k
1) even(n) = even( .zo(ga:—pj o z))
J:
Xr— . J k
2) ,Z;(Bl"—l—J .2123 l) — Zko.(Sx—1+2k1.(3x—2_|_2/€2.(. . ._|_2km.30)))
]:

One can prove this lemma by induction w.r.t. number of encoun-
tered odd numbers.

The thesis of the lemma is very intuitive. Look at the Collatz hotel
Fig. . The lemma states that for every room number n the two
conditions are equivalent (1) there is a path from room number
n to the exit, which is located near room number 1, (2) there is
a path from entry to the hotel near room number 1 to the room
number n. It is clear that such a path must be complete, no jumps
are allowed. =

Lemma 18 For every element n the following conditions are equiv-
alent

(1) computation of Collatz algorithm Cl is finite,
(ii) there exists the LEAST element x such that the following equality
holds

r—1 . ; k i k;
e[t o
=0

where the sequence {k;} is determined by the element n in accordance to the recurrence .

Proof. The implication (i) = (i¢) follows from lemma [L6|( vii).

Consider the inverse implication (i) = (7). If (4) holds, then the
computation of program Grz reaches 1 after xz-th iteration of in-
ternal instruction As. The value of m, is then 1. The computation

performs x nultiplications and z = fj k; divisions.
j=0

20



z—1 . EJ: Ky
The value of y = jZO(?)x_l_J - 21=0 ) codes the history of the
computation. m
Which means: zg is the number of multiplication by 3, z = i k; is the total num-
ber of divisions by 2 and for every 0 < j < x — 1 the numljagg k; is the number of
divisions by 2 excuted in between the j-th and j + 1-th execution of multiplication

by 3.

The algorithm C1 executes x + z iterations.

Remark 19 Let n be a reachable natural number. The least triple
(x,y,2) such that n - 3% +y = 2% is greater than (0,20°8n+1 _
n, [logn] + 1).

The lemma [18) gives the halting formula i.e. a satisfactory and
necessary condition for the computation of the Collatz program to
be finite.

We shall summarize the considerations on finite computations in
the following commutative diagram.

3mi+1 3m3z+1

3mo+1

m3 mg =1

:’{ /2%0 "\; /21 n:; J2k2 \% J2k3 e \%/ /2%71 I

3

A A A A
0,0,0 —2 5 0,0,kg — =25 1,¥1,21 — =24 2Yp, Zy —=3 % oo+ 2 —1,Ys 1, Zs 1 x, Yy, Za
Gr3

1c’

x7Y(L'7Z(L‘ T>$O7YLL‘0,Z:L'0 T>x17§_/(l/'172w1 T>$27YJL'27Z(L'2 T> 17Y17Z1 T 07030
I wokz—1 I (-x2Fe—2)_1 I (-x2Fz—3)_1 I (-x2Fz—2)_1 I (-x2k0y—1
1 — Mg—1 > My—2 = Mg—3 — ceemy =
=3 =3 =3 =3 =3
Fig. 5. CASE OF FINITE COMPUTATION ILLUSTRATED
Upper row, (with red arrows) represents computation of Grl,
elements k; and m; are calculated in accordance with the recurrence (rec2)
rows 1 and 2 show computation of Gr3, the subsequent triples are

Xip1=i41,Yiq1 =3Yi4+2Z,Zi1 = Zi + ks
third row (blue arrows) shows computation of algorithm IC on triples, Yy = Y, and Z, = Z, and for

i=ux,...,1 we have ZZ',1 = Zl — k; and Yi*l = (ﬁ/le) —3i-1

21



4.2 Infinite computations

Do infinite computations exist?
There are two answers yes and no.

Yes Imagine your computer is (maliciously) handled by a
hacker. It can be done by preparing its hardware or soft-
ware (e.g. someone modifies the class Int in Java). To hide
the damage from the user, the hacker may come with a
correct proof that all axioms of natural numbers (e.g. of
Presburger’s system) are valid. Yet, an execution of the
Collatz algorithm for some n, will not necessarily termi-
nate. See subsections [4.4] and 6.1}

No If argument of Collatz procedure is a standard (i.e. reach-
able) natural number then the computation is finite.

We shall use the properties of strata, see definition [6] and remark
[7. A look on figures 2] and ] may help.

Lemma 20 Ifn # 0 is a standard, reachable natural number then
the Collatz computation starting with n is finite.

Proof. A) (There is no cycle.)

Suppose that for a certain element n the Collatz computation con-
tains a cycle b = (b1, ba,...,b; = b1). Consider the subsequence

—

a= (ay,...,a) of b that results by throwing off all even num-
bers b;. For every 1 <1 < k we have a;41 = % From the
definition [f] of strata we have: 1° every number n € N belongs to

certain set W; and 2° it a; € W, then a;11 € W;_1. 3°The strata of

1 711 a 3az+1 . L. 3ak72+\1 3ag=

ag—1 ———.a
/2¢ewpolal;2) 2/261110(”‘2,,2) /zezm(ak:z,?) k 1/261100(%71,2) k

<L I I

W:c Wx—l cee Wz—k+2 Wm—k+1

different indices are disjoint = # y = W, N W, = (. Therefore
for every number n € N its Collatz computation is cycle-free.
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B) (There is no unboud infinite computation.)

— j
Let W; & 'Uo W; be the union of consecutive strata W;, where 1 <

1=
1 < 7.
Let Mg(7) g (px) {z+1¢ W]} i.e. x is the biggest number in the
initial segment of the set /I/V] that contains all numbers 0O, ..., x.
It means that

Vm<arg(y)m € W

Consider the sequence {VVj}je Nat
bers Mg(j) is monotone, non-decreasing.

of sets /Wj. The sequence of num-

ViMg(j) < Mg(j+1)

Example. The table below shows a couple of values of the function Mg;

] ‘ 01 2 3 45 6 7 8 9
min(W;) |1 5 3 17 11 7 9 61 7 7
Mg(j) |2 2 6 6 6 8 14 14 14 14

Obviously, for every natural number n there is number j such that
n < Mg(j), hence n € Wj. This proves that for every natural
number 7 its Collatz computation is finite. m

We can state the same fact in another way, if there is unbound
infinite computation for a number n then for every natural number
j the inequality n > Mg(7) holds.

This happens only if n is a non-reachable element of the structure
N that is a non-standard model of Presburger theory of addition of
natural numbers, c.f. the subsection [4.4] q.e.d.

4.8  Collatz theorem

Till now we proved that Collatz conjecture is valid in the structure
M of standard (reachable) natural numbers.

Lemma 21 Letn be any standard element od the structure Yt. The
computation of Collatz algorithm C1 that begins with n is finite.
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Proof. The proof follows immediately from the lemmas [18 and 20
]

Corollary 22 Conjectures|3, [14 and[15 formulated above are valid
statements.

Now, making use of the completeness theorem of calculus of pro-
grams we argue that the terminatiom formula of the Collatz algo-
rithm possedes a proof in the algorithmic theory of natural numbers

ATN.
Let O¢y, be the following formula of ATN

if n # 1 then
if odd(n) then

n:=3xn+1
{n:=1} ﬂ{n =n+1} U else (n=1) (©cL)
VneN, n>1 n=n-=+2
fi

fi

\

The formula expresses the termination property of Collatz algo-
rithm. The lemma states that the formula ©¢f is valid in the
standard model 1.

Theorem 23 The formula O¢y, is a theorem of the theory ATN .

Proof. Recall that the ATN theory is categorical. It means that
every model of this theory is isomorphic to the standard model 1.
The sentence O¢y, is valid in N, i.e. in every model of ATN.

By the completeness property of the calculus of programs, the the-
ory contains the proof of the sentence G¢r. =

4.4 A counterexample

We argue, that the formulation of the Collatz problem requires
more precision. For there are several algebraic structures that can

be viewed as structure of natural numbers of addition. Some of
them admit infinite computations of Collatz algorithm.

We recall less known fact: arithmetic (i.e. first-order theory of nat-
ural numbers) has standard (Archimedean) model M as well as
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another non-Archimedean model . The latter structure allows
for the existence of infinitely great elements.

Goedel’s incompleteness theorem shows that there is no elementary
theory T' of natural numbers, such that every model is isomorphic
to the standard model.

Two things are missing from the commonly accepted texts: 1) What
do we mean by proof? 2) what properties of natural numbers can
be used in the proot? We recall an algebraic structure 99t that mod-
els [Grz71] all axioms of elementary theory of addition of natural
numbers, yet it admits unreachable elements [Tar34]. It means that
the model contains element ¢, such that the computation of Collatz
algorithm that starts with e is infinite.

Example of a finite execution
(13,0) “% (40,0) =¥ (20,0) 5 (10,0) =, (5,0) *2F" (16,0) =¥ (8,0) TF (4,0) =5 (2,0) =¥ (1,0)

Example of an infinite execution

X3+1 3 =2 3 =2 3 X3+1 9 =2 9 =2

+2 ’ 9,5
16 32

2 unHendas

87
{ 8

)

N
=

As you can guess, the data structure contains pairs (k, w) where k
is an integer and w is a non-negative, rational number. The addition
operation is defined componentwise. A pair (k,w) divided by 2
returns (k + 2,w + 2) .

The reader may prefer to think of complex numbers instead of
pairs, e.g. (2 + %i) may replace the pair (2, %).

The following observation seems to be of importance:.

Remark 24 There exists an infinite computation c of Collatz al-
gorithm in the structure 9N , such that the computation c does
not contain a cycle, and the sequence of pairs is not diverging into
still growing pairs. The latter means, that there exist two numbers
li € Z and ly € Q, such that for every step (k,v) of computation
c, the inequalities hold k < 11 Av < [s.

More details can be found in subsection [6.1].

3 A. Tarski [Tar34] confirms that S. Jagkowski observed (in 1929) that the subset of

complex numbers M 4 {a+bieC: (a€ZAbEQA(b>0A(b=0 = a>0))}
satisfies all axioms of Presburger arithmetic.
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5 Final remarks

The contribution presented here leaves some open questions: first
of all the cost of the algorithm C! remains to be estimated. The

lower bound is obviously O(x + z). A tight upper bound remains
to be found .

Another goal, that will take more time, is to write a complete
syntactical (i.e. free of any semantical considerations, like studies
of computation ) proof of Collatz theorem. We expect that the
proof will pass the checking by a proof-checker proper for calculus
of programs AL [*] The subsections and contribute to this

work.

5.1 Historical remarks

Pal Erdés said on Collatz conjecture: "Mathematics may not be

ready for such problems.”
We disagree. In our opinion a consortium of Alfred Tarski, Kurt
Goedel and Stephen C. Kleene was able to solve the Collatz con-

jecture in 1937.

Mojzesz Presburger has proved the completeness and decidabil-
ity of arithmetic of addition of natural numbers in 1929.

In the same year Stanistaw Jaskowski found a non-standard
model of Presburger theory (see a note of A. Tarski of 1934).
Kurt Gédel (1931) published his theorem on incompleteness of
Peano’s theory. His result is of logic, not an arithmetic fact.
Thoralf Skolem (in 1934) wrote a paper on the non-characterization
of the series of numbers by means of a finite or countably infi-
nite number of statements with exclusively individual variables
[Sko34]

Uber die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich

4

such proof-checker does not exists yet and it is to be built
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oder abzihlbar unendlich vieler Aussagen mit ausschliefilich Zahlen-
variablen , Fundamenta Mathematicae, ,23,1, 150-161, http:
//matwbn.icm.edu.pl/ksiazki/fm/fm23/fm23115.pdf

e Stephen C. Kleene has shown (in 1936) that any recurrence that
defines a computable function can be replaced by the opera-
tion of effective minimum (nowadays one can say every recursive
function in the integers, is programmable by means of while
instruction).

e Summing up, it seems that P. Erdés overlooked the computabil-
ity theory, his colleagues - professors Rozsa Peter and Laszlo
Kalmar (specialists in the theory of recursive functions) were
able to point it out to him.

Andrzej Mostowski had a hope that many arithmetic theorems in-
dependent of the Peano axioms should be found. Collatz theorem
is an example. The theorem on termination of Euclid’s algorithm
is another example of a theorem which is valid and unprovable in
Peano theory. The law of Archimedes is yet another example. Note,
both theorems need to be stated as algorithmic formulas, there is
no first-order formula that expresess the termination property of
Euclid’s algorithm or law of Archimedes.

Acknowlegments

6 Suplements

For the reader’s convenience, in this section we have included some
definitions, some useful theorems, and samples of proofs in algo-
rithmic natural number theory.

6.1 A structure with counterexamples

where Collatz computations may be of infinite length
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Here we present some facts that are less known to the I'T commu-
nity.

These facts may seem strange. The reader may doubt the impor-
tance of those facts. Yet, it is worth considering, non-standard data
structures do exist, and this fact has ramifications. Strange as they
seem, still it is worthwhile to be aware of their existence.

Now, we will expose the algebraic structure 931, which is a model
of the theory Ar, i.e. all axioms of theory Ar are true in the struc-
ture M. First we will describe this structure as mathematicians
do, then we will write a class (i.e. a program module) implement-
ing this structure.

Mathematical description of the structure
2 is an algebraic structure
M= (M;0,1,&; =) (NonStandard)

such that M is a set of complex numbers k41w, i.e. of pairs (k, w),
where element k € Z is an integer, and element w € Q7 is a ra-
tional, non-negative number w > 0 and the following requirements
are satisfied:

(7) for each element k + 1w if w = 0 then k£ > 0,
(77) O 2 (04 10) ,
(i) 1L (1. +10) |
(7v) the operation @ of addition is determined as usual

(k+ww) @ (K + ') L (k+ &) + 1w + ).
(v) the predicate — denotes as usual identity relation.

Lemma 25 The algebraic structure N is a model of first-order
arithmetic of addition of natural numbers T, cf. next subsection
0.2
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The reader may check that every axiom of the T theory (see defi-
nition32] p[33)), is a sentence true in the structure M.

The substructure 91 C 991 composed of only those elements for
which w = 0 is also a model of the theory T.

It is easy to remark that elements of the form (k,0) may be iden-
tified with natural numbers k, k € N. Have a look at table

The elements of the structure Ot are called reachable, for they enjoy
the following algorithmic property

Vien {y :=0;while y #n do y:=y+ 1 od}(y = n)

The structure 91 is not a model of the AT N, algorithmic theory
of natural numbers, cf . subsection [6.4] .Elements of the structure

(k,w). such as w # 0 are unreachable. i.e. for each element xy =
(k,w) such that w # 0 the following condition holds

—{y := 0;while y # xp do y :=y + 1 od}(y = zy)

The subset 9T C 9N composed of only those elements for which
w = 0 is a model of the theory ATN c.f. subsection [6.4. The
elements of the structure O are called reachable. A very important
theorem of the foundations of mathematics is

Fact 1 The structures M and M are not isomorphic. See [Grz71),
p. 256.

As we will see in a moment, this fact is also important for IT
specialists.

An attempt to visualize structure 91 is presented in the form of
table [l The universe of the structure 9T decomposes onto two
disjoint subsets (one green and one red). Every element of the form
(k,0) (in this case k > 0) represents the natural number k. Such
elements are called reachable ones. Note,

Definition 26 An element n is a standard natural number (i.e. is
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reachable ) iff the program of adding ones to initial zero terminates
nENg){q:: 0, while ¢ #n do q:=q+ 1 od}(q=n)
or, equivalently

nENg){q::O}U{ifn;éqthenq::quIﬁ}(Q=n)

Table 1

Model 9 of Presburger arithmetic consists of complex numbers a +2b where b € QT and a € Z,
additional condition: b = 0 = a > 0. Definition of order n > m dzf Juzo m~+u = n. Invention of S. Jagkowski
(1929).

STANDARD | (reachable) elements Unreachable ( INFINITE ) elements
—o00--+ —11+4+22 —10+22 --- 0+22 1422 2412 ---00
—oo-- —1141233 —10+232 ... 04052 1+032 24433 .0
—00 - —11+z% —10+1% 0+z% 1+z% 2+1% <200
—oo-r =114 =10+ - 0+ 2 1+ 24+0% - 00
012..--101 --- o0

Note that the subset that consists of all non-reachable elements
is well separated from the subset of reachable elements. Namely,
every reachable natural number is less that any unreachable one.
Moreover, there is no least element in the set of unreachable ele-
ments. [.e. the principle of minimum does not hold in the structure
.

Moreover, for every element n its computation contains either only
standard, reachable numbers or is composed of only unreachable
elements. This remark will be of use in our proof.

Remark 27 For every element n the whole Collatz computation
is either in green or in reed quadrant of the table 1]
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Elements of the structure 9 are ordered as usual
df
Vey T <y=Tz0r+2=1y.

Therefore, each reachable element is smaller than every unreach-
able element.

The order defined in this way is the lexical order. (Given two ele-
ments p and ¢, the element lying higher is bigger, if both are of the
same height then the element lying on the right is bigger.)

The order type is w + (w* +w) - n

Remark 28 The subset of unreachable elements (red ones on the
table (1)) does not obey the principle of minimum.

Definition in programming language

Perhaps you have already noticed that the 90 is a computable
structure. The following is a class that implements the structure
2. The implementation uses the integer type, we do not introduce
rational numbers explicitly.

unit StrukturaM: class;
unit Elm: class(k,li,mia: integer);
begin
if mia=0 then raise Error fi;
if li * mia <0 then raise Error fi;
if li=0 and k<0 then raise Error fi;

end Elm;

add: function(x,y:Elm): Elm;
begin

result := new Elm(x.k+y.k, x.|li*y.mia+x.mia*y.li, x.mia*y.mia )
end add;
unit one : function:Elm; begin result:= new EIm(1,0,2) end one;
unit zero : function:Elm; begin result:= new EIm(0,0,2) end zero;
unit eq: function(x,y:Elm): Boolean;
begin

result := (x.k=y.k) and (x.li*y.mia=x.mia*y.li )
end eq;

end StrukturaM

The following lemma expresses the correctness of the implementa-
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tion with respect to the axioms of Presburger arithmetic AP (c.f.
subsection treated as a specification of a class (i.e. a module
of program).

Lemma 29 The structure € = (E, add, zero, one, eq) composed
of the set E = {o object : o inElm} of objects of class Elm with
the add operation is a model of the AP theory,

¢ AP

Infinite Collatz algorithm computation

How to execute the Collatz algorithm in StructuraM? It’s easy.

pref StrukturaM block

var n: Elm;

unit odd: function(x:Elm): Boolean; ... result:=(x.k mod 2)=1 ... end odd;

unit div2: function(x:Elm): Elm; ...

unit 3xpl: function(n: EIm): Elm; ... result:=add(n,add(n,add(n,one))); ...end 3xp1;
begin

n:= new EIm(8,1,2);

while not eq(n,one) do
if odd(n) then

Cl: n:=3xpl(n) else n:= div2(n) (* a version of algorithm CI that uses class Elm *)
fi

od

end block;

Below we present the computation of Collatz algorithm for n =
8, 3)-

1 1 1 1 3 3 3 9 9

<875>7 <471>7<27§>7 <17E>7 <47E>’ <2’372>7 <17&>> <4» &)7 <2758>""

Note, the computation of algorithm Gr for the same argument,

looks simpler
1 1 1 1 3 9

<87§>7 <471>7<27§>7 <17E>7 <17674>7 <17ﬁ>7
None of the elements of the above sequence is a standard natural
number. Each of them is unreachable. It is worth looking at an
example of another calculation. Will something change when we
assign n a different object? e.g. n: = new Elm (19,2,10)?

» 16 32 )64
3645 3645 3645 3%3645 3645%3 3x3645 9%3645
(4, 5015 (2 Joo6 ) (L 5102 )» (4 5102 )» (2 2ust0 ) (L istoa ) (4 Tston )

(19,19), (58, 30),(29, 82), (88, 92), (44, L), (22, 90), (11, 33), (34, 22), (17, 212),
0
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And one more computation.

(19,0), (58,0), (29,0), (88,0), (44,0), (22,0), (11,0), (34,0), (17,0), (52, 0), (26,0),
(13, 0), (40, 0), (20, 0), (10, 0), (5, 0), (16, 0), (8,0), (4,0),(2,0),(1,0).

Corollary 30 The structure M, which we have described in two
different ways, is the model of the AP theory with the non-obvious
presence of unreachable elements in it.

Corollary 31 The halting property of the Collatz algorithm can-
not be proved from the axioms of the T theory, nor from the axioms

of AP theory.

6.2 Presburger arithmetic

Presburger arithmetic is another name of elementary theory of nat-
ural numbers with addition.

We shall consider the following theory , cf. [Pre29],[Grz71] p. 239
and following ones.

Definition 32 Theory T = (L,C, Ax) is the system of three ele-
ments:

L 1s a language of first-order. The alphabet of this language consist
of: the set V' of variables, symbols of operations: 0,5, 4, symbol
of equality relation =, symbols of logical functors and quanti-
fiers, auxiliary symbols as brackets ...

The set of well formed expressions is the union of te set T of
terms and the set of formulas F'.

The set T s the least set of expressions that contains the set V'
and constants 0 and 1 and closed with respect to the rules: if two
expressions T and Ty are terms, then the expression (11 + T2) is
a term too.

The set F' of formulas is the least set of expressions that con-
tains the equalities (i.e. the expressions of the form (1 = 1))
and closed with respect to the following formation rules: if ex-
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pressions o and B are formulas, then the aexpression of the form
(@VB), (anp), (0 = f), ~a
are also formulas, moreover, the expressions of the form
V.o, 4, «
where x 1s a variable and o is a formula, are formulas too.
C s the operation of consquence determined by axioms of first-

order logic and the inference rules of the logic,
Ax is the set of formulas listed below.

Veox+1#0 (a)
VoVyo+1l=y+1 = o=y (b)
Vex+0=ux (c)
Yoy W+ 1D +2=(y+2)+1 (d)
O0) AV, [P(r) = P(z+1)] = V,P(2) (T)

The expression ®(x) may be replaced by any formula. The result
15 an axiom of theory This is the induction scheme.

We augment the set of axioms adding four axioms that define a
coiple of useful notions.

even(x) = d,r=y+vy (e)
d

odd(x)zfﬂyx:y+y+1 (0)

rdiv2=y=(x=y+yVae=y+y+1) (D2)

rLrtata (3x)

The theory T’ obtained in this way is a conservative extension of
theory T .

Below we present another theory AP c.f. [Pre29], we shall use two
facts: 1) theory AP is complete and hence is decidable, 2) both
theories are elementarily equivalent.
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Definition 33 Theory AP = (L,C,AxP) is a system of three

elements :

L 1s a language of first-order. The alphabet of this language con-
tains the set V' of variables, symbols of functors : 0,+, symbol
of equality predicate =.
The set of well formed-expressions is the union of set of terms T’
and set of formulas F'. The set of terms T is the least set of ex-
pressions that contains the set of variables V' and the expression
0 and closed with respect to the following two rules: 1) if two
expressions 11 and Ty are terms, then the expression (1i + T2) is
also a term, 2) if the expression T is a term, then the expression
S(1) is also a term.

C s the consequence operation determined by the axioms of predi-

cate calculus and inference rules of first-order logic
AxP The set of axioms of the AP theory is listed below.

Vex+1#0

Ve #0 = Jpr=y+1
VeyT+y=y+x
VoyT+(y+2)=(@+y) +=2
VeyT+z=y+2 = v=y
V. x+0=x

Voo dy (@=y+2Vz=y+2x)
Vo3, (e=y+yVe=y+y+1)
V.3, (x=y+y+yVe=y+y+y+1lvVe=y+y+y+1

S+t E oS00 =

e = e o e e e e e

)

~
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r=y+y+---+yV

k
r=y+y+---+y+lv
k
t=y+y+---+y+1l+1V
V. 3y k 2 (Hk)

r=y+y+---+y+l+1+---4+1V

k k—2
r=y+y+---+y+l+1+---4+1
k k—1

The axioms H2 -Hk ... may be given a shorter form. Let us intro-
duce numerals, ie. the constants representing term of the form

29141
3914141

EL1 4141

k times

Now, the axioms take form
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Ve xmod2=0Vxmod2=1 (H2')

Ve, xmod3=0Vxmod3=1Vxrmod3=2 (H3")
k-1

VoV xmod k=3 (Hk?)
j=0

Let us recall a couple of useful theorems

F1. Theory T is elementarily equivalent to the theory AP.[Pre29]
[Sta8&4]

F2. Theory AP is decidable. [Pre29].

F3. The computational complexity of theory AP, is double expo-
nential O(22") this result belongs to Fisher and Rabin, see [MFT74].

F4. Theories T and AP have non-standard model, see section [6.1]
p. 27}

Now, we shall prove a couple of useful theorems of theory 7.

First, we shall show that the sentence V,3,,.n-3" +y =2%is a
theorem of the theory T of addition. Operations of multiplication
and power are inaccessible in the theory 7. However, we do not
need them.

We enrich the theory 7 adding two functions P2(-) and P3(-.).
defined in this way

Definition 34 Two functions are defined P2 (of oneargument)
and P3 (of two-arguments).

P2(0) £1 P3(y,0) Ly
P2(z +1) £ P2(x) + P2(2)|P3(y, = + 1) £ P3(y,z) + P3(y, 2) + P3(y, )

Lemma 35 The definitions given above are correct, i.e. the fol-
lowing sentences aretheorems of the theory with two definitions
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T FV.3,P2(x) =y and
TEVyy P2(x) =yANP2r) =2 = y ==

Similarly, the sentences Vy 3. P3(y,x) = 2z and Yy, ., P3(y, v) =
2 AN P3(y,x) =u = z =u are theorems of theory T .

An easy proof goes by induction with respect to the value of vari-
able x.

In the proof of the lemma 36|, below, we shall use the definition of
the order relation

a<bZ 3 0a+c=0b

Making use of the definition of function P2 and P3 we shall write
the formula P3(n,z)+y = P2(z) as it exppresses the same content
as expression n - 3* +y = 2%

Lemma 36 The following sentence is a theorem of the theory T
enriched by the definitions of P2 and P3 functions.

Vn3ey - P3(n,x) +y = P2(2)

Proof. We begin proving by induction that 7 F V,n < 2". It is
easy to see that 7 F 0 < P2(0). We shall prove that T - V,(n <
P2(n) = (n+1 < P2(n+1)). Inequality n + 1 < P2(n + 1)
follows from the two following inequalities 7 + n < P2(n) and
T F 1 < P2(n). Hence the formula n + 1 < P2(n) + P2(n)) is a
theorem of theory 7. By definition P2(n) 4+ P2(n) = P2(n + 1).

In the similar manner, we can prove the formula 7 + V,, V, P3(n,x) <
P2(n+z + x)

As a consequence we have T = V,3,, . P3(n,z)+y = P2(z). m

Lemma 37 Let M be any model of Presburger arithmetic. If there
exists a triple (x,y, z) of reachable elements such that it satisfies
the equation P3(n,z) +vy = P2(2) i.e. n-3% +y = 27 then the
element n 1is reachable.
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Proof. If the following formulas are valid in the structure 9
{q:=0; while ¢ #x do ¢:=q+ 1 od}(z = q),

{¢:=0; while ¢ # y do ¢ := ¢+ 1 od}(y = q),

{g:=0; while ¢ # zdo g := ¢+ 1 od}(z = q)

and the following equation is valid too P3(n,x) +vy = P2(z) then
it is easy to verify that the formula {t := 0; while n # ¢ do t :=
t+ 1 od}(t =n) is valid too.

Nr Reason
1 al=P2(z) is reachable

2 y+a2 =al, a2 is reachable and a2=2%-y
3 a3=P3(1,x) isreachable , a3=3"
q:=1;ad5 := a3;
while ab # a2 do

4 q:=q+1; (¢ *x a3 = a2) hence q=n
ad = ad + a3
od
]

6.8 An introduction to calculus of programs AL

For the convenience of the reader we cite the axioms and inference
rules of calculus of programs i.e. algorithmic logic AL.

Note. Every axiom of algorihmic logic is a tautology.

FEvery inference rule of AL is sound. [MS87|

Axioms

azioms of propositional calculus
Azy ((a= ) = (8= 0) = (= 1))
Azy (o= (aVP))
Azy (B = (Vv 5))

Azy ((a=96) = ((B=19) = ((aVp)=19))
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Azs (@ AB) = )
Azg (N p) = B)
Azz (6= a)=((6=8) = (6 = (a A D))))
Azg ((a = (B=10)) < ((aAB) =9))
Az (@A —a) = B)
Az1p ((a = (aA—a)) = -a)
Az1y (aV —a)
azioms of predicate calculus

Az ((Vx)a(l') = a(x/T)))

where term 7 is of the same type as the variable x

Aziz (Vz)a(z) < —(3z)-a(z)

azioms of calculus of programs
Aziy K(Ez)a(z)) & Gy)(Ka(z/y))  fory ¢ V(K)
Azis K(aVv ) & (Ka)V (KB))
Az K(aAp) < (Ka) A (KB))
Azrr K(-a) = ~(Ka)
Azis ((x:=7)y & (v(@/7) A (x = 7)true)) A((q =)y < v(a/7))
Az19 begin K; M end o < K(Ma)
Azgy if 7 then K else M fi a & ((—y A Ma) V (y A Ka))

Azx9; while vdo K od a< ((—yAa)V (y A K(while v do K od(— A «))))

Axag ﬂKOz < (aA (KﬂKoz))

Azgs | JKa = (a v (K| JKa))

Inference rules

propositional calculus

a, (o= p)

Ry 3

(also known as modus ponens)
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predicate calculus

(a(z) = B)
o @@ = 5
(B = a(z))
B W)
calculus of programs AL
(a = f)
f2 (Ko = KB)
R {s(if v then K fi)/(=y A @) = B}icen
s (s(while v do K od «) = f3)
R, {(K'a = B)}ien
(UKa=p)
R {(a = K'B)}ien
i (a=NEKB)

In rules Rg and Ry, it is assumed that x is a variable which is
not free in 3, i.e. « ¢ FV(f). The rules are known as the rule
for introducing an existential quantifier into the antecedent of an
implication and the rule for introducing a universal quantifier into
the successor of an implication. The rules R4 and Rj are algorithmic
counterparts of rules Rg and R;. They are of a different character,
however, since their sets of premises are infinite. The rule R3 for
introducing a while into the antecedent of an implication of a
similar nature. These three rules are called w-rules. The rule R is
known as modus ponens, or the cut-rule. In all the above schemes
of axioms and inference rules, a, 8, d are arbitrary formulas, v and
~" are arbitrary open formulas, 7 is an arbitrary term, s is a finite
sequence of assignment instructions, and K and M are arbitrary
programs.

Theorem 38 (theorem on completeness of the calculus AL)
Let T = (L,C, Ax) be a consistent algorithmic theory, let o € L
be a formula. The following conditions are equivalent

(1) Formula v is a theorem of the theory T, o € C(Ax),
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(1) Formula « is valid in every model of the theory T, Ax = a.

The proof may be found in [MS87].

6.4 An introduction to algorithmic theory of natural numbers ATN

The language of algorithmic theory of natural numbers ATN is
very simple. Its alphabet contains one constant 0 zero , one one-

argument functor s and predicate = of equality. We shall write x+1
instead of s(x). Axioms of AT N were presented in the book [MS87]

Ay) Vz{q := 0; while ¢ # = do ¢ := s(q) od}(q = x) (R)
Ag) VYV s(z) #0 (N)
Ag) VaVy s(x) = s(y) = z =y (/)
We can add another two-argument functor + and its definition

q :=0;w = z;

while ¢ # y do
Ay) YV Vy 7 (x+y=w) (D)

q:=s(q) ;w = s(w)
textbfod

The termination property of the program in A, is a theorem of
ATN theory as well as the formulas z + 0 = z and = + s(y) =
s(x +y).

A sample (8§ -[13) of Theorems of ATN

ATN 3, a(z) < {z =0} U{a: =z + 1}a(z) (8)
ATN + Y, a(z) < {z = 0} ﬂ{x =z + 1}a(z) (9)
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Law of Archimedes
ATN FO0<z <y = {a:=z; whilea <y doa:=a+x od}(a>y) (10)

Scheme of induction
ATN + (oc(x/O) AV (a(@) = a(m/s(w)))) = Yya(z) (11)
Correctness of Euclid’s algorithm

n = ng; M = mo;
whilen # mdo
ATN - <n0 >0/\> _ ifn>mthen n:=n - m (n = ged(no, mo)) (12)
mo >0 else m:=m - n
fi
od

The theory AT N enjoys an important property of categoricity.

Theorem 39 ( meta-theorem on categoricity of ATN') Every
model A of the algorithmic theory of natural numbers is isomorphic
to the structure N, c.f. subsection |0.1)

6.5 Proof of lemma [

Let P and P’ be two programs. Let a be any formula. The semantic property programs P and P’ are
equivalent with respect to the postcondition o is expressed by the formula of the form ({P}a < {P'} ).
We shall use the following tautology of calculus of programs AL.

P’
P:
while v do
while v do
while y A 6 do K od;
= if then Kelse M i p a& e? (13)
while vy A =6 do M od
od;
od
We apply the axioms Ax20 and Ax21
if v then

while y A § do K od;

while vy A =6 do M od ;
while v do
while v do
= if then Kelse M i ) a& a (14)

q while y A § do K od;
od;

while y A =6 do M od
od
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We can omit the instruction if (why?) . We swap internal instructions while inside the instruction while.

while y A J do K od ;
while y A =6 do M od

while v do
while v do
= if then Kelse M fi ) a & o (15)
d while y A =6 do M od;
od:

)

while y A 6 do K od
od

We can safely skip the second instruction while.

while y A § do K od ;

while v do while v do
F if then Kelse M fi p a & while YA -d do M od; p « (16)
od; while y A d do K od
od

Now, we put (y g #1), (6 ¥ even(n)), (K & {n:=n-+2}) and (M i {n :=3n + 1}). We make use of
two theorems (even(n) = n # 1) and (MJ) of theory AP c.f. subsection

while n # 1 do

while even(n) do n:=n + 2 od;
while n # 1 do
then n:=n-+2

TH (n=1) < n:=3n+1; (n=1) . (17)
elsen:=3n+1

fi
od;

if even(n)

while even(n) don:=n-+2od

od

6.6 Proof of invariant of algorithm Gr3

We are going to prove the following implication ((19) is a theorem of algorithmic theory of natural numbers

ATN.
ATNF (9 = {As}p) (18)

® @
Ag

n-3t+Y; =m; - 2%iA n-3+Y; =m; 2%iA

i aux ;= 3xm; + 1; i
Zi = Z kj /\Xi =1A ki+1 = emp(aux, 2); Zz = E kj A /\Xi =1
j=0 j=0
i—1 4 mip1 = aux/2Fi+1; i—1 s
Y; = (314# -2 j)/\ ) _ Y; = (31'*1*1' -2 f)/\
' ];0 = Yiq1 := 3Y; + 2%i; ' ];o
mo =nA ko = exp(mo,2)A Ziy1 = Z;i + kit1; mo =nA ko = exp(mo,2)A
4 (ml :ml_l/le/\ X =153 \4 (ml :ml_l/le/\
0<I<i 0<i<i
=14+ 1

k; = exp(my, 2)) k; = exp(my, 2))

(19)
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We apply the axiom of assignment instruction Azig. Note, we applied also axiom Azig9 of composed in-
struction. Namely, in the implication 1} we replace the its successor {Az}y by the formula {Agl)}gp(l).

(1)
Ay

e

n-30HD £ V(1) = m(ipy - 276D A

aux =3 *xm; + 1;
kit1 := exp(auz, 2);
miy1 = aux/2Fi+1;
Yiq1 = 3Y; +2%;
Zit1 = Z;i + kiy1;

(i+1)

Ziyy= 3, ki AXig1= (I +1)A
i=0

Yy = ) (3(i+1)_1_j '2Zj)/\
J=0

mo =nA ko = exp(mo, 2)A

Xi =15

aux ;= 3xm; + 1;
kit1 := exp(auz, 2);
¢ = { myp1 = auz/2Fi+1;

Yiq1 1= 3Y; + 2755

Zit1 = Zi + kit1;

aur :=3xm; + 1;

kit1 = exp(auz, 2);

\4
0<I< (i41)

n- 30D £ Y ) = m(iq) - 2%G+1) A

(i+1)
Z(i+1) = Z kj AN X1‘+1 = (z + 1)/\
=0
7
Yiisn) = 2 (3@‘“)717]. 'QZj)/\
3=0
mo =nA ko = exp(mo,2)A

\4
0<I<(i+1)

n - 30+ 4 Yiit1) = M(it1) - 2/ Zit+kiy1) A

(i+1)
(Zi + ki+1) = Z k:j NXiy1 = (’L + 1)/\
§=0
7
Vi = ) (3(i+1)717j ‘2Zj)/\

Jj=0

p =
mit1 = aux/2Fit1;
Yiy1 :=3Y; + 2%
aur := 3 xm; + 1;
¢ = { kiy1 = eaplaus, 2);

miyy = aux/2Fi+1;

auxr :=3xm; + 1;

ki1 := exp(auz, 2);

mo =nA ko = exp(mo, 2)A

0<I<(3+1)

(i+1)
(Z»L' + kiJrl) = Z k]‘ ANXiy1 = (1, + 1)/\
§=0
i
(3Y; +2%) = 3 (3(i+1>—1—j -2ZJ'>/\
j=0
mo =nA ko = exp(mo,2)A

0<I<(i+1)

n - 30+ (8Y; 4 2%i) = (auz/2Fi+1) - 2/ Zit+kiv1) A

(i+1)

(Zi+kiz1) = >, ki AXip1 =+ 1A
j=0

(3Yi +2%) = 3 (360715 2% ) A
j=0

mo =nA ko = exp(mo,2)A

N (mz =my_1/2F Nk = eﬂﬂp(mzﬂ))
0<I< (i41)
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(ml =my_1/2F Nk = 61p(ml,2))

(ml =m_1/2M Ak = el?’P(mz,?))/\

" (ml =my_1/2R Nk = e:cp(ml,Z))

n - 30+ 4 (3y; + 2%i) = M(i41) 2(Zi+kiv1) A

Vo (= mq /28 ARy = eap(my, 2))

(20)

(22)

(23)

(24)



n - 30+ (3Y; +2%i) = (aux/g(ew(auzﬂ))) . 9(Z;+(exp(auz,2))) A
(i4+1)
(Zi + (exp(auz,2))) = Y kj AXit1 = (i+ 1A
§=0
p = { aur ;=3 xm; + 1; } (3Y; +2%i) = ZZ: (3(’i+1)*1*j .QZJ)/\
j=0

mo =nA ko = exp(mo,2)A

v (mz =m—1/2M Ny = e:cp(ml,Q))
0<I< (i41)
(25)
P
n - 30HD | (3 4 2%1) = (3% my + 1)/2(cxp((rmit1).2)) . o(Zit+(exp(3rmi+1).2)) o
(i+1)
(Zi + (exp((3 % m; +1),2))) = Y kj AXip1 = (i+ 1A
=0
o = | Grit27)=% (3(”1)*1*3' .2ZJ‘)/\
=0
mo =nA ko = exp(mo,2)A
v (ml =my_1/25 ANk = exp(my, 2))
0<I<(i+1)
(26)

The implications 7 are mutually equivalent.

One can easily verify that the last implication (¢ = ) is a theorem of Presburger arithmetic 7
and hence it is a theorem of AT N theory.

Therefore the first implication (¢ = {Az}y) is a theorem of algorithmic theory of natural numbers
ATN.

g.e.d.

Remark 40 Note, the process of creation a proof like this can be automatized.
The verification of the above proof can be automatized too.
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