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Abstract
Some object oriented programming languages allow inner classes. All

of them admit inheritance. This combination of inner classes and

inheritance is very fruitful however less known. On the other hand

it creates a serious problem: how to determine the direct superclass

of a given class C, i.e., the class which class C directly inherits

from. For there may be several classes of the same name in one

program. A specification of the problem and a non-deterministic

algorithm are provided. We prove that the algorithm is correct w.r.t.

the specification and complete, i.e., if the algorithm signals an error

then no solution exists. We show that the specification itself has

at most one solution, in other words, it is a complete specification.

This proves also that the corresponding parts of Java Language Spec-

ification are consistent and define uniquely a fragment of Java semantics.

Key words: object oriented programming, inheritance, inner
classes, direct superclass, static semantic analysis, static binding
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1 Introduction

In the paper we address the problem of determining direct super-
classes. This problem becomes hard to answer when an object-
oriented programming language admits inner classes. Inner classes
of Simula67 [13], Loglan’82 [2,5], BETA [3] and Java (Java 1.2
and subsequent versions) [10,11,12] introduce block structure for
class declarations. Consider an arbitrary Java-program. The set
of classes of the program together with the relation class A is an
inner class of class B is a forest structure. (The roots of trees
are top level classes.) Therefore several classes of a program may
be given the same name (See the examples 1 and 2). Classes
use the clause extends C, (to be read as ”this class inherits
from a class named C”). However, the meaning of the name C
is not unique. Which of possibly many classes named C is the
direct superclass of our class? The consequences of a possible er-
ror in inheriting may be dramatic if the author(s) and readers of
a program interpret the meaning of inherited classes differently.
Obviously, compilers are readers of programs. Therefore we pos-
tulate as a matter of course: for every program P , its author and
the compilers should identify the direct superclasses in the same
way. This implies the necessity of a clear and compact criterion
which would guarantee the existence of a solution of the prob-
lem of determining direct superclasses, whether the solution was
guessed by a programmer in an intuitive way or whether it was
computed mechanically by a compiler. To find a solution is so
challenging because the Java Language Specification JLS [11] is
defining inheritance or superclassing rather implicitly: 1) Inheri-
tance is defined by the help of the binding function which binds
applied identifier occurrences in a program to their declaring oc-
currences. 2) The binding function on the other hand is defined
by use of the inheritance. Therefore we need a more formalized
specification of the problem and a constructive way of solving it,
i.e. an algorithm. The algorithm should be applied as the first
step in the static semantic analysis performed by the compiler.
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Example 1 In the program below there are three classes named
B. We can identify them as follows: class B, class A$B, class
A$D$B.

class B { }
class A {

class B { }
class C extends B { }
class D {

class B { }
}
class E extends D.B { }

} //end A

Which class inh(C) is the direct superclass of the class C? Which
class inh(E) is inherited by the class E?
The answer is easy, inh(C) = A$B, inh(E) = A$D$B. We
guessed the first answer following the usual method of static bind-
ing that for any applicative occurrence of an identifier finds a dec-
laration of this identifier that is appropriate. The second answer
was found in two steps: first we searched a declarative occurrence
of D which is A$D, next, we searched a class named B declared
inside the class D. �

The second example shows that the complexity of the problem is
non-trivial.

Example 2 Consider the following classes

class A extends B { // this can be class B or A$B

class C extends D { // this can be class B$D or E$D

class F extends G {} // this can be class A$E$G or E$G

} // end C

class E {
class G {}
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A ext B B E

G ext BD ext EB ext EEC ext D

F ext G G

D

Fig. 1. The diagram of Example 2 shows the structure of classes, solid arrows lead
from a class to its enclosing class. Dashed arrows lead from a class to its direct
superclass, they show the unique solution inh.

} // end E

class B extends E {} // this can be class E or A$E

} // end A

class B {
class D extends E {} // this can be class E or A$E

} // end B

class E {
class G extends B {} // this can be class B or A$B

class D {}
} // end E

In this example the function inh that for every class K associates
with it its direct superclass inh(K) may be defined on 26 possible
ways. For we have six clauses extends and for each clause there
are two classes of the name mentioned in it. �

This example shows that searching all possible candidates for inh
function is not a good approach as in general the number of can-
didates for the mapping inh may be exponential function of the
length of a given Java program. The compiler would be stuck for
indefinite amount of time.
The next example shows that the solutions may be counter intu-
itive.
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Example 3 This example shows that the requirement “a class
may not depend on itself” is essential. The natural, however
complicated, requirement that all types mentioned in the extends
phrases have some meaning, is not sufficient. Adding a natural,
additional requirement that there is no cycle in the inheritance
relation does not help. We show that there exist two different and
astonishing functions, candidates for inh.

class A extends B.C { }
class B extends A.D { }
class G {

class D {
class C extends G { }

}
}
class I {

class C {
class D extends I { }

}
}

Two candidate functions: inh1 and inh2 may be guessed

A B G$D$C I$C$D

inh1 G$D$C G$D G I

inh2 I$C I$C$D G I

Both functions seem to be correct since inhi(K) is reestablished
by binding the extends type of every class declaration occurrence
K. Both functions inh1 and inh2 satisfy conditions mentioned in
JLS [11] in 6.5.5 (later in Problem 7 formalized as condition I1).
Still we feel uneasy because the program would have two differ-
ent dynamic semantics what is not appropriate for a well-formed
program. Which of two is the right inheritance function? Or are
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both of them wrong with respect to Java’s static semantics? The
answer, namely the rejection of well-formedness of program Ex-
ample 3 due to JLS [11], will be given later by Theorems 17, 27
and 34. Example 3 uncovers the decisive rôle of the dependency
relation which JLS [11] is introducing. This example violates the
requirement “no class depends on itself“ of JLS [11] 8.1.4 (later
in Problem 7 formalized as condition I2). This implicit condition
can not be directly included into a compiler. However, we need
a precise criterion, in form of an algorithm, to be used by the
constructors of compilers for some code of any length. �

The fourth example demonstrates that compilers may compile
the same program in different ways. It has little to do with the
problem of determining direct superclasses, yet, it shows the scale
of disagreement on the meaning of program.

Example 4 We asked several Java programmers to tell what the
program would print. The answers came in two classes: ”prints
1”, ”prints 2”. Next, we tested the program by five Java compilers
{javac, gcj, jikes, kopi, ecj }. The results were in three (!) classes.
For one compiler said: The program has an error. In this way
an open question arises: Is Java an unambiguous programming
language?

class B1 {
int f() { return 1; }
class A { int x = f(); }
class B2 {

int f(){return 2;}
class A { int x = f(); }
class B extends B1.A {}

}
}
class UnHidden {

public static void main( String[] argv) {
System.out.println(new B1().new B2().new B().x);
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}
}

�

These examples show that the problem of determining direct su-
perclasses is of importance for compiler writers and for pro-
grammers as well. Even short programs may create problems
in proper determination of their meaning. It seems that the ma-
jority of programmers is unaware of subtle problems that can
appear during their work with programs. The help provided by
the reference book Java Language Specification [11] is clumsy.
The book requires that a programmer reads several sections (e.g.
8.1.4 Superclasses and Subclasses, 8.5 Member Type Declarations, 6.5.5 Meaning of

Type Name.) before he/she is able to understand what is happening
in a given program.
Someone may say: ”your examples are unrealistic. The program-
mers do not write such weird programs”. Let us remark that the
programs become longer and more complicated than our exam-
ples. Compilers must be prepared to detect any possible error in
any source code.

Another doubt may appear: ”are inner classes needed at all?
Some descendants of Simula67 such as SMALLTALK, C++, C#
forbid inner classes.”

It turns out that the combination of inheritance and inner classes
offers many interesting possibilities:

• it allows to obtain most of the effects of multiple inheritance
c.f.[19, Chapter 10],
• instead of passing classes as parameters one can extend ab-

stract inner classes which serve as counterparts of formal pa-
rameters [20 p.176],
• provides a convenient way to express call back objects [19],
• allows to inherit certain patterns of architecture, e.g. a class
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pattern of the model-view-controller system can be defined and
extended by inheriting classes [2, 19],
• allows to inherit protocols[2 p.112-113],
• enables inheritance of a class put earlier into a tree-like library

of classes,
• and many others. ?

The structure of the paper is as follows: In Section 2 we introduce
the necessary notations and definitions and we give the specifica-
tion of the problem. Section 3 contains the algorithm. In Section
4 we analyse the correctness and the completeness of the algo-
rithm. Section 5 is devoted to the analysis of the problem. We
ask whether the specification of the problem is consistent and
complete, moreover we estimate the complexity of the problem.
Section 6 compares our results with earlier works and makes some
final conclusions.

2 Notations and formulation of the problem

We assume that the reader is accustomed to the programming
language Java [11] and the notions of class, top-level class, direct
superclass.
In this section we generalize the intuitions which arise from the
examples. We begin with the observation that instead of Java-
programs it suffices to consider their structures of classes. Let P
be a given Java-program. We add two predefined classes {Root,
Object}. We may assume that P ’s top level classes are con-
tained in the additional class Root. We assume also that the
class Root contains the additonal class Object. Now, we strip the
program ?? and leave only the clauses

class A {, or

? The present authors study these possibilities for over 30 years c.f.[2,8,9] and still
do not know all advantages of combined usage of inner classes and inheritance.
??i.e. we throw away all instructions and all declarations other than class declara-
tions
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class A extends B {, or
(?) class A extends B1.B2. ... .Bn{

and the corresponding closing braces }.
In this way one obtains a Java-program which exhibits the struc-
ture of all classes. It contains all classes declared in the program
and two predefined classes Root and Object. Each user declared
class has its name - an identifier introduced by the declaration.
Additionally we assume that the name of class Object is the
identifier Object. Let Classes be the set of user defined class
declarations occurrences in a program P. The structure of classes
is equipped with a partial function decl which for every class
K but Root points to that class in which class K is declared,
i.e. the textually directly enclosing class. It is easy to observe
that the structure 〈Classes∪{Root, Object}, decl〉 of classes is a
tree. Class Root is the root of this tree. ? The clauses extends
bring another function defined on the set of user defined classes,
namely, for each class except Root and Object we have a type as-
sociated to it. For some classes the type is empty (in these cases
the keyword extends is omitted), for some other classes the type
consists of one class identifier, for other classes the type is a qual-
ified type, i.e. a finite sequence of class identifiers separated by
dots. If a type consists of just one identifier then it is the name of
the direct superclass (the directly inherited class). One program
may contain many classes of the same name which makes the
problem of determining which class is direct superclass of a given
class a non-trivial task. Every well-formed program satisfies the
local distinctness property which says that every two different
directly inner classes directly declared in a class have different
names. The property will be useful in our considerations. Now,
Java allows the types of length > 1, c.f.(?). The identifiers occur-
ring in a type are names of classes. The declaring occurrence of

? There is a bijection between the set of Classes and the set T of finite sequences
of names of classes such that a sequence s ∈ T iff it is a code of a path leading
from a top-level class to a given class. This concept is present already in [16]. For
example, A.B.F denotes the class F declared inside the class B which is declared in
a top level class A.
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class named B1 should be visible from the place where the class
A is declared and for every 1 ≤ i < n the class Bi+1 is a member
(an attribute) ?? of the class named Bi (i.e. an inner class of Bi

or an inner class of a direct or indirect superclass of class Bi).

Let P be a (stripped) Java program. Sometimes we shall use a
formal description of the structure of classes of the program P :

SP = 〈Classes, Id, Types, decl, name, ext, Root, Object〉

where

• Classes is the set of classes declared (more distinctly: class
declaration occurrences) in the stripped program P,
• Id is the set of identifiers found in the stripped program P plus

the identifier Object,
• Types is the set of types found in the stripped program P after

the keyword extends,
• decl : Classes ∪ {Object} −→ Classes ∪ {Root}

is the function which for each class K ∈ Classes ∪ {Object}
returns the textually directly enclosing class of the class K,
• name : Classes ∪ {Object} −→ Id

is the function that returns the identifier of a given class.
The additional class Root has no name. For the class Object
name(Object) = Object,
• ext : Classes −→ Types is the function which for each class
K ∈ Classes returns the (extension) type found in its exten-
sion clause. If the extension clause is omitted in the declaration
of class K then ext(K) = ε.

Below we list properties of the structure SP .

• decl(Object) = Root.
• The pair 〈Classes ∪ {Root, Object}, decl〉 is a tree. The class
Root is its root.
• If decl(K) = decl(M) then name(K) 6= name(M) or K = M .

??”Attribute” is the jargon of Simula67, Loglan’82 and BETA, ”member” is the
jargon of SMALLTALK, C++ and Java.
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Let C be an identifier. In the remainder of this paper we shall
use partial function

.C : Classes ∪ {Root} −→ Classes.

Let K be a class. The expression K.C denotes a class Y which
is declared within class K and its name is C, K.C is defined
⇐⇒ (∃Y )(decl(Y ) = K ∧ C = name(Y )). The well-definedness
of .C follows from the third property listed above.
One can conceive this structure as a graph. The set Classes is
the set of nodes of the graph. Each node has two attributes as-
sociated with it: name - the name of the class, ext - the type
designating its direct superclass. The function decl defines the
edges of the graph. An example of the graph is shown in Fig. 1.
The same graph may be obtained from the SymbolTable - the
data structure built by the compiler for the program P . One
takes the SymbolTable and throws away (ignores) all irrelevant
information about declarations of variables, methods, construc-
tors, etc., only information about classes is retained.
Speaking informally, for a given structure S the problem is to
obtain a partial function inh, (or equivalently, a set of edges of
colour inh), which for every given class K ∈ Classes returns
the direct superclass of class K or to assure that such a func-
tion does not exist, signalling that the class structure S is not a
(static semantically) correct one. Fig. 1 has continuous edges -
edges showing the decl function and dashed edges - edges show-
ing inh function.
In the sequel we shall use the following notations. Let f be a
partially defined mapping f : X → X. An i-th iteration of the
function f is defined by induction

f 0(x) = x f i+1(x) = f(f i(x)).

The notation f ∗ denotes zero or more iterations of the function
f , while f+ denotes one or more iterations of the function f . Let
Y be a subset of the set X. Notation f |Y denotes the restriction
of the function f to the set Y . Before we specify the problem, we
need definitions of a partial function bind, which is based on a
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given function inh, partially defined on a subset of Classes.
Below we shall give an inductive definition of the partial function

bind : Types× Classes→ Classes

which to a given pair 〈type T, class C〉 associates a class D. An
equation bind(T in C) = D reads informally as: the meaning of
type T inside the class C is the class D, or in other words inside
the class C the type T is bound to the class D. Note that the
same type T may have a different meaning inside another class
C ′.

Definition 5 A1) ( base of induction 1) For any class K the meaning
of the empty type ε is bound to Object. We define

bind(ε in K)
df
= Object.

A2) ( base of induction 2 ) Let K be a class. An applied occurrence of
a (class) identifier C in the class K is bound to a class named
C such that

bind(C in K)
df
= (inhideclj(K)).C

where the pair (j, i), j ≥ 0, i ≥ 0, is the least pair in the lexico-
graphic order such that the class (inhideclj(K)).C is defined. The

pairs are compared according to the lexicographical order, i.e. the pair (j, i) is less

than the pair (q, p) if j < q or j = q and i < p. The value of bind(C in K)
is undefined in the remaining cases.

B) ( inductive step ) Let X 6= ε. For any class K the meaning of a
type of the form X.C in the class K is determined in two steps.

bind(X.C in K)
df
= (inhi(bind(X in K)).C

where i ≥ 0, is the least natural number such that the class
(inhi(bind(X in K)).C is defined,
the value of bind(X.C in K) is undefined in the remaining cases.
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Compare our definition with the text of JLS[11](Sections 6.3, 6.5.5,

8.1.4). We believe that our definition of the function bind corre-
sponds most closely to the lengthy and scattered description of
meaning of Java’s type name. Notice that the partial function
bind can be given an algorithmic definition (in the form of a
procedure) as well, c.f. Appendix C.

The following relation dep plays an important rôle in the further
considerations. In the description of the Java [11] it is called the
dependency relation (induced by a superclassing function inh).
Let ext(K) be the following type C1.C2. ... .Ci. ... .Cn. Then
ext(K)|i denotes the initial segment C1.C2. ... .Ci of length i, of
the type ext(K).

Definition 6 The dependency relation dep is

dep
df
= {〈K, bind(ext(K)|i in decl(K))〉 :

K ∈ Classes,
0 < i ≤ length(ext(K)) for ext(K) 6= ε,

i = 0 for ext(K) = ε}.

The above definition can be read as follows: let a class K be of
the form: class C extends C1.C2. ... .Ci. ... .Cn { ... } then the
class K depends on every class designated by the type ext(K)|i.
In JLS[11] (Section 8.1.4) one finds the following sentence: It is a
compile-time error if a class depends on itself. The word depends
in this sentence is to be meant as the transitive closure of the
relation dep.

Figure 2 illustrates the way of computing the value of the function
inh and the relation dep. Now we are ready to specify the problem
of determining the direct superclasses.

Problem 7 For a given structure of classes S, find a solution
which is either a total superclassing (inheritance) function

inh : Classes −→ Classes ∪ {Object}

or an object ERROR of type Exception, such that the following
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class C extends C
1 
... C

n
class C

n

class C
n-1

class C
2

class C
1

class C'

decl+

decl

decl

decl

decl

decl

inh

inh*

inh*

inh*

inh*

dep
dep

dep

dep

...

.C
n

.C
n-1

.C
2

.C
1

Fig. 2. Direct superclass of class C extends C1.C2. ... .Cn−1.Cn.
Let K denote the class named C.
The diagram can be viewed from several angles.
First, if we delete the arrows dep and decl and keep the arrow decl+, then the di-
agram obtained in this way commutes. This is so for every class in a well-formed
structure of classes. Note however, that the diagrams themselves may differ accord-
ingly to the length of type mentioned in the extends clause.
Second, the commutativity of the modified diagram illustrates the condition I1, i.e.

inh(K) = bind(ext(K) in decl(K)).
Third, the diagram may help to understand how to calculate the inh-arrow for
class K (Note, this is not an algorithm!). In this case we assume that all other
inh-arrows appearing in the diagram were calculated earlier. We are to identify
class M1 of name C1, M1 = (inhideclj(K)).C1 where the pair 〈j, i〉 is the least pair
such that the value of the expression inhi(declj(K)).C1 defined, next the class M2

of name C2, M2 = inhi(M1).C2 where i is the least integer, such that the value of
inhi(M1).C2 is defined, ... class Mn of name Cn, Mn = inhi(Mn−1).Cn where i is
the least integer such that the value of inhi(Mn−1).Cn is defined, in this order.
Now we can put an arrow inh leading from K to Mn.
During the above process, we put arrows dep leading from the class K to the classes
Mi, 1 ≤ i ≤ n . The diagram of the structure of classes enriched with inh-arrows
and dep-arrows may not contain a cycle of dep-arrows.
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properties of inh respectively of ERROR object hold:
Solution inh: inh and its induced binding function bind (Defini-
tion 5,equations A1, A2 and B) and the dependency relation dep
satisfy the conditions I1 and I2,
I1) for every class K ∈ Classes the value inh(K) is defined and
the following equality holds

inh(K) = bind(ext(K) in decl(K)).

I2) The relation dep contains no cycle.
Solution ERROR: There does not exist any total inheritance
function inh with the above mentioned properties.
The structure S is said well-formed if solution inh exist, other-
wise it is said to be erroneous.

3 The algorithm

Below, we present a non-deterministic, abstract algorithm named
LSWA, which computes the function inh. The algorithm uses
function bind.
Data Structure: The class structure S of a program.
Argument: The graph G representing the structure S.
Result: The function inh which for each class A ∈ Classes shows
a class B, the direct superclass of class A, or executes a command
Error signalling that the structure of classes is erroneous.
Specification: See the Problem 7. The function bind satisfies
the conditions mentioned in the Definition 5.

Algorithm LSWA:

V isited := {Root, Object};
inh := ∅ ;
while V isited 6= (Classes ∪ {Root, Object})
do

Candidates := {K : decl(K) ∈ V isited ∧K /∈ V isited}
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if (∃K ∈ Candidates) bind(ext(K) in decl(K)) ∈ V isited
then

let K be a Candidate found in the above test ;
M := bind(ext(K) in decl(K));
inh := inh ∪ {〈K,M〉};
V isited := V isited ∪ {K}

else
Error

endif
endwhile

The values of function bind are computed using the current dia-
gram of function inh computed so far. For an algorithm of bind
consult Appendix C.

The word Error is an abbreviation of the following instruction
if ∃KK∈ Candidates∃i1≤i≤length(ext(K))∀j1≤j<i(bind(ext(K)|j in decl(K)) ∈ V isited
∧ bind(ext(K) |i in decl(K)) is undefined)

then

throw new Signal ConditionI1 violated() // a direct superclass of K cannot

//be detected. There is no declaration

//of a class named ext(K)[i]

else //∀KK∈ Candidates∃i1≤i≤length(ext(K))∀j1≤j<i(bind(ext(K)|j in decl(K))

// ∈ V isited ∧ bind(ext(K) |i in decl(K)) ∈ Candidates)
throw new Signal ConditionI2 violated() //there is a cycle in the dep-relation

endif

We shall prove: In this way the algorithm brings the correct diag-
nosis of the reasons why either it is impossible to find a function
inh satisfying condition I1 or if this were possible then the func-
tion’s inh dependency relation dep would have a cycle.
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4 Analysis of the algorithm

4.1 Correctness and completeness

We are going to prove that the algorithm terminates and is correct
i.e. that if it halts in a successful way (i.e. without signalling an
error) then the computed function inh is satisfying the conditions
I1 and I2. Moreover the algorithm is complete meaning that if it
signals an error that this diagnosis is correct, i.e. there is no
function inh satisfying both I1 and I2. Finally, we are going to
prove the uniqueness. We show that any solution satisfying the
conditions I1 and I2 is identical to the solution computed by the
algorithm.

Lemma 8 ( on termination) The algorithm terminates.

Proof. In each step of iteration of the algorithm either the set
V isited is increased or the algorithm signals an error and stops.
It is easy to observe that the number of iterations is not bigger
than the number of declared classes.

Definition 9 A state S is the pair 〈V isitedS, inhS〉 of values of
corresponding variables, computed by the algorithm at the mo-
ment of testing the condition of the while instruction. �

Obviously, inhS is a set of pairs of classes, V isitedS denotes a
subset of the set Classes ∪ {Root, Object}.

Remark 10 For every state S, the graph

G1S = 〈V isitedS, decl|V isitedS
〉

is a tree with the root Root. Graph

G2S = 〈V isitedS�{Root}, inhS〉

is a tree with the root Object.
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Proof. Proof goes by induction w.r.t. n, number of iterations
of the algorithm. For n = 0 the tree G2S contains only its root.
Suppose that the thesis is true for a number k of iterations. In
the next iteration one adds an edge going from outside the set
V isited to a certain node in this set. Therefore the new graph is
a tree again.

Lemma 11 For every state S = 〈V isitedS, inhS〉, for every
class K ∈ V isitedS and for every type P :
If bindinhS

(P in K) ∈ V isitedS then bindinhS
(P |i in K) ∈

V isitedS for 1 ≤ i < length(P ).

Proof. Assume the thesis of the lemma is wrong. Then there
is a greatest i0 such that 1 ≤ i0 < length(P ) and class Ci0 =
bindinhS

(P |i0 in K) /∈ V isitedS. The subsequent class Ci0+1 =
bindinhS

(P |i0+1 in K ) ∈ V isitedS, and, from the definition of
bind, we have: Ci0+1 = inhkS(Ci0).name(Ci0+1) where k is the
smallest integer such that the right side is defined. From Re-
mark 10 we obtain that since Ci0 /∈ V isitedS then k = 0. Then
Ci0+1 = Ci0.name(Ci0+1) and decl(Ci0+1) = Ci0. Again from Re-
mark 10 since Ci0+1 ∈ V isitedS then also Ci0 ∈ V isitedS. Con-
tradiction.

Lemma 12 Let S = 〈V isitedS, inhS〉 be a state.
Let inh be an arbitrary extension of function inhS on the set
Classes.
A) For every class K ∈ V isitedS, and i ≥ 0 : inhiS(K) = inhi(K)
or both sides are undefined.
B) For every class K ∈ V isitedS and for every type P :
if for every 1 ≤ i < length(P ), bindinhS

(P |i in K) ∈ V isitedS
then
∀M∈Classes(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).

Proof. Proof of A)
First we are going to prove that for every K ∈ V isitedS, inhS(K)
= inh(K).
Case 1) K /∈ {Root, Object}. Then inhS(K) is defined due to

19



Remark 10. Hence 〈K, inhS(K)〉 ∈ inh since inhS ⊆ inh.
Case 2) K ∈ {Root, Object}. Then inhS(K) and inh(K) are both
undefined.
Using the remark on graph G2S we conclude that inhiS(K) =
inhi(K) or both sides are undefined.
Proof of B)
0) (base of induction) For types of length 0 the lemma is obvious.
1) (base of induction) Consider types of length 1. Let P = C, C
is a name of a class.We are going to prove
(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).
By definition bindinhS

(P in K) = M iff M = (inhiS(declj(K))).C
where the pair 〈j, i〉 is the least pair in the lexicographic or-
der such that the expression (inhiS(declj(K))).C has a value. We
are going to show that for any pair 〈m, l〉 less or equal the pair
〈j, i〉 and for any class N, N = (inhlS(declm(K))).C ⇔ N =
(inhl(declm(K))).C.
If declm(K) has a value then it denotes a class in V isitedS. Put
K0 = declm(K). Using A) we see that for any p : inhpS(K0) =
inhp(K0) or both sides are undefined.
From here one obtains
(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).
I) (induction step) Let us assume that the lemma is true for types
P of length not greater than n, n ≥ 1. Let us consider type P.C.
From the assumptions of this lemma we have

bindinhS
(P.C|i in K) ∈ V isitedS for 1 ≤ i ≤ length(P ).

Therefore bindinhS
(P |i in K) ∈ V isitedS for 1 ≤ i < length(P ).

By inductive assumption bindinhS
(P in K) = bindinh(P in K).

Now we use the definition to calculate bindinh(P.C in K). Argu-
ments similar to those of point 1) lead to the result

bindinhS
(P.C in K) = bindinh(P.C in K)

or to the conclusion that both sides of the equality are undefined,
which ends the proof of the lemma.

Lemma 13 Let S = 〈V isitedS, inhS〉 be an arbitrary state. Let
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inh be a function satisfying condition I1.
Then inhS ⊆ inh.

Proof. Consider the sequence of states (a computation) lead-
ing to the state S. Let us consider the longest initial segment
{Si}i=0, ... ,q of the computation such that for every state Si the
inclusion inhSi

⊆ inh holds. Such segment exists for ∅ = inhS0
⊆

inh. If Sq = S then the thesis of the lemma is true. Suppose Sq 6=
S. Then for a certain candidate K in the state Sq we added the
pair 〈K, bindinhSq

(ext(K) in decl(K))〉. Now, the function inhSq
,

the state Sq and the function inh satisfy the premises of the pre-
ceding lemma. We put decl(K) instead ofK and we put ext(K) as
P. From the algorithm we know that bindinhSq

(ext(K) in decl(K))
∈ V isitedSq

. Using Lemma 11 we have bindinhSq
(ext(K)|i in

decl(K)) ∈ V isitedSq
for i = 1, ..., length(ext(K))− 1. Let

M
df
= bindinhSq

(ext(K) in decl(K)). Now we can apply the pre-
ceding lemma to conclude that M = bindinh(ext(K) in decl(K)).
Since inh satisfies condition I1 we get 〈K,M〉 ∈ inh. There-
fore the state Sq+1 satisfies inhSq+1

⊆ inh which contradicts our
assumption.

Remark 14 The set S of states is partially ordered by the rela-
tion ≺ being the transitive closure of the relation of immediate
successorship of states.
Given two states S1 and S2 , if S1 ≺ S2 then then inhS1

⊂ inhS2

and V isitedS1
⊂ V isitedS2

Lemma 15 Let S be a state S = 〈V isitedS, inhS〉. S satisfies
condition I1 restricted in this way that in this condition the set
V isitedS, takes place of set Classes ∪ {Root, Object}, and func-
tion inhS the place of inh.

Proof. Let K be a class from V isitedS\{Root, Object}. Let S1 be
a state earlier than S , S1 ≺ S, such that instruction inh := inh∪
{〈K,M〉} is going to be executed, i.e. the state S2 next to S1 is the
first state such that 〈K, inhS2

(K)〉 ∈ inhS2
. Then inhS2

(K) =
bindinhS1

(ext(K) in decl(K)). By Remark 14 inhS1
⊆ inhS2

⊆
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inhS. From the algorithm the class bindinhS1
(ext(K) in decl(K)) ∈

V isitedS1
. Then, by Lemma 11 for every 1 ≤ i < length(ext(K))

the class bindinhS1
(ext(K)|i in decl(K)) ∈ V isitedS1

. Now by the
Lemma 12
bindinhS

(ext(K) in decl(K)) = bindinhS1
(ext(K) in decl(K))

bindinhS1
(ext(K) in decl(K) = inhS2

(K) (see above)

inhS2
(K) = inhS(K) (by the above inclusion).

This ends the proof of property I1.

Lemma 16 With the assumptions of the previous lemma we ob-
serve that if there exists a cycle in the relation depS then no one
of the classes of this cycle will ever be included to the set V isited.

Proof. Suppose that there exists a cycle in the relation depS.
Let V = {K1

←−−−−−−−−−−−
→ K2 → ... →Kp} be this cycle. I.e. for j = 1, ..., p−

1 pairs 〈Kj, Kj+1〉 ∈ dep and pair 〈Kp, K1〉 ∈ dep. W.l.g. assume
that K1 is the class which was added to the set V isited as the
first one. Then K2 = bindinhS

(ext(K1)|i in decl(K1)) for some
1 ≤ i ≤ length(ext(K1)). Let S0, S1 be two consecutive states
such that inhS1

(K1) is computed in the state S0. By the algo-
rithm inhS1

(K1) = bindinhS0
(ext(K1) in decl(K1)) ∈ V isitedS0

.
By Lemma 11, for every 1 ≤ j < length(ext(K1)) the class
bindinhS0

(ext(K1)|j in decl(K1)) ∈ V isitedS0
.

According to Lemma 12 bindinhS0
(ext(K1)|i in decl(K1)) =

bindinhS
(ext(K1)|i in decl(K1)) = K2. In this way we proved that

K2 ∈ V isitedS0
and K1 /∈ V isitedS0

. Contradiction!

The above lemma leads immediately to the following

Theorem 17 (on correctness) Suppose that the algorithm stops
without signalling an error. Then the resulting function inh sat-
isfies the conditions I1, I2 and the structure of classes is well-
formed.

Now we are going to prove the completeness property of the al-
gorithm. Namely, if the algorithm stops and signals error then no
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total function inh exists of desired properties. We begin with
the remark that the instruction Error may be considered as
an abbreviation of a conditional statement, look at Section 3.
This splitting in two cases is motivated by the following ob-
servation: Should the algorithm come up with Error then the
set Candidates is not empty and ext(K) 6= ε for all K ∈
Candidates. For every such K there is a uniquely associated i
such that 1 ≤ i ≤ length(ext(K)) with bind(ext(K)|j in decl(K))
∈ V isited for all 1 ≤ j < i and bind(ext(K)|i in decl(K)) /∈
V isited. There are two possible reasons for the latter situation:
Either bind(ext(K)|i in decl(K)) is undefined or a class M ∈
Candidates.
The following program examples illustrate these two cases.

Example 18 In this example no class named C is visible in the
place where class A is declared which is to inherit a class named
C.

class A extends C {}
class B {

class C {}
}

The algorithm terminates erroneously in final state

Sfin = 〈V isited, inh〉 = 〈{Root, Object, B}, {〈B,Object〉}〉.

Class A is the only one candidate. The value of bind(C in Root)
is undefined what is showing up the first case.
A compiler should report “there is no appropriate class C de-
clared“. �

Example 19 We consider the instructive Example 3 again. It
is showing up the second case. Our algorithm terminates erro-
neously in final state shown on Fig.3.
A and B are the two candidates. The value bind(A in Root) is A,
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grey  rectangles show Visited 

Fig. 3. Final state for Example 19 (and Example 3)

the value bind(B in Root) is B. �

Example 20 This example has exactly one solution inh which
fulfills I1. inh has no cycles, but its dependency relation dep has
a cycle.

class A extends B . D {
class C {}}

class B extends A . C {
class D {}}

Our algorithm terminates erroneously in final state
Sfin = 〈{Root, Object}, ∅〉.

A and B are the candidates. bind(B in Root) is B and bind(A in

Root) is A, so there is a cycle A
dep−→ B

dep−→ A.
This example is so instructive also because it is showing that
Igarashi’s and Pierce’s so called sanity conditions 6) and 7) in
[16] are more liberal than the condition ”no class depends on it-
self“ taken from JLS[11]. Condition 6) is saying that inh has no
cycles. Condition 7) is saying that no class A is inheriting its

own inner class (no A
inh+

−→ B
decl+−→ A is allowed)”. �

The example 18 motivates the following

Definition 21 We say that in a given state S = 〈V isitedS, inhS〉
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the permanent lack of a class to be inherited occurs iff there ex-
ists a class K such that for a certain 1 ≤ i ≤ length(ext(K)),
decl(K) ∈ V isitedS and bindinhS

(ext(K)|i in decl(K)) is unde-
fined and for all 1 ≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈
V isitedS.

Lemma 22 If in a certain state S = 〈V isitedS, inhS〉 occurs
the permanent lack of a class to be inherited then no function
inh exists which satisfies condition I1.

Proof. Suppose that a function inh satisfying I1 exists. Let K
and i be a class and an integer that have properties mentioned
in Definition 21. By Lemma 13, inhS ⊆ inh. Moreover, for all
1 ≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS . The
values inh(Root) and inh(Object) are undefined. Observe that
decl(K) ∈ V isitedS.
By Lemma 12 we have ∀M∈Classes(bindinhS

(ext(K)|i in decl(K)) =
M ⇔ bindinh(ext(K)|i in decl(K)) = M).
Since inh satisfies I1, bindinh(ext(K) in decl(K)) = inh(K) is
defined. Hence the righthand side of the equivalence above holds
for some class M .
So bindinhS

(ext(K)|i in decl(K)) is defined contrary to our as-
sumption!
Now we shall analyze the remaining case and prove that if for a
certain state S = 〈V isitedS, inhS〉 the following condition holds
c1) the algorithm signals an error in this state, and
c2) the property permanent lack of a class to be inherited does

not hold for S
then there exists a cycle in the dep relation for every dep relation
induced by any function inh satisfying I1.

Definition 23 Each state S determines the set CandidatesS which
is evaluated just after the test V isited 6= (Classes∪{Root, Object})
is performed.

We begin with an auxiliary lemma

Lemma 24 Let S be a state such that the conditions c1) and
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c2) are satisfied then for every class K ∈ CandidatesS there
exists a class M ∈ CandidatesS such that for a certain 1 ≤ i ≤
length(ext(K)), M = bindinhS

(ext(K)|i in decl(K)) and for all
1 ≤ j < i , bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS.

Proof. Let IK = {l : 1 ≤ l ≤ length(ext(K)) ∧ (∀1 ≤ j <
l) bind(ext(K)|j in decl(K)) ∈ V isitedS}. First, we show that
the set IK is non-empty. We demonstrate that 1∈ IK . We can
assume that length(ext(K)) ≥ 1 for in the opposite case of
length(ext(K)) = 0 the algorithm would not signal error and
add the pair 〈K,Object〉 to inh. Consider l = 1, the formula
(∀1 ≤ j < l) bind(ext(K)|j in decl(K)) ∈ V isitedS is valid.
Hence the set IK contains 1 and is non-empty.
An upper bound of the set IK is length(ext(K)), hence max(IK)
is defined, denote it by i.
Suppose now, that the value of bindinhS

(ext(K)|i in decl(K)) is
undefined. It would mean that the condition of permanent lack
of a class to be inherited occurs which was excluded by the as-
sumption. Therefore there exists a class M defined by this ex-
pression M = bindinhS

(ext(K)|i in decl(K)). We are going to
show that M /∈ V isitedS. Let us assume that M ∈ V isitedS.
Suppose moreover that i = length(ext(K)). In this case the al-
gorithm would add the pair 〈K,M〉 to inhS instead of signalling
error. Hence i < length(ext(K)). In this case i + 1 ∈ IK which
contradicts the assumption i = max(IK). In this way we proved
that M /∈ V isitedS.
It remains to be proved that M ∈ CandidatesS. In order to do so
it suffices to show that decl(M) ∈ V isitedS. Put C = name(M).
Consider the case i = 1. We have M = bindinhS

(C in decl(K)).
By the definition of bindinhS

M = (inhlS(declk decl(K))).C for
some l and k. Hence decl(M) = inhlS(declk decl(K)). Since K ∈
CandidatesS we know decl(K) ∈ V isitedS. From Remark 10 we
obtain decl(M) ∈ V isitedS.
Consider the case i > 1. From the definition of i we have
bindinhS

(ext(K)|i−1 in decl(K)) ∈ V isitedS . Let P = ext(K)|i−1

then ext(K)|i = P.C. Since M = bindinhS
(P.C in decl(K)) then
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by definition of bindinhS
we obtain

decl(M) = inhlS(bind(P in decl(K)) for some l ≥ 0.

Now we apply Remark 10 and obtain decl(M) ∈ V isitedS.

Corollary 25 Suppose that the assumptions of lemma 24 are
satisfied. Let M be a class such that

M = bindinhS
(ext(K)|i in decl(K))

for a certain 1≤ i ≤ length(ext(K)) and
for all 1≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS.
Suppose that a function inh satisfying I1 exists.
Then M = bindinh(ext(K)|i in decl(K)).

Proof. By the lemmas 12 and 13.

Lemma 26 If in a state S the algorithm signalled an error and
there exists a function inh satisfying the condition I1 (it implies
no permanent lack of a class to be inherited due to Lemma 22)

then for any natural number n one can find a sequence K1
dep→

K2
dep→ ...

dep→ Kn , such that all classes Ki ∈ CandidatesS, the

relation
dep→ is determined by the solution inh, according to the

definition.

Proof. (by induction) Let n = 1. The set (Classes \ V isited
is non-empty. Consider a class M ∈ Classes \ V isitedS. Let
i be the least natural number such that decli(M) ∈ V isitedS.
Since Root ∈ {declj(M) : j > 0 and declj(M) is defined} and
Root ∈ V isitedS, we know that i exists. Since M /∈ V isitedS, i
≥ 1. Let K1 = decli−1(M). K1 ∈ CandidatesS.

(inductive step) Suppose that there exists a sequence K1
dep→

K2
dep→ ...

dep→ Kn which satisfies the thesis of the lemma, i.e.
Kn ∈ CandidatesS. By Lemma 24 and Corollary 25 there exists
a class M = bindinh(ext(Kn)|i in decl(Kn)), M ∈ CandidatesS
for a certain 1 ≤ i ≤ lengt(ext(K)). We define Kn+1 = M and

have Kn
dep→ M which ends the proof.
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From the above considerations one obtains:

Theorem 27 ( on completeness) If the algorithm signals Error
then the structure of classes is erroneous and no function inh
satisfying conditions I1 and I2 exists.

Proof. Suppose that a solution inh exists. Since an error is
signalled then either there is permanent lack of a class to be
inherited (c.f. Lemma 22) and consequently inh does not en-
joy the property I1 or (by Lemma 26) there exists a sequence

K1
dep→ K2

dep→ ...
dep→ Kn of length greater than the cardinality

of set Classes. It means that there is a cycle of dep arrows, it is
impossible to extend the function inh computed so far in a way
satisfying conditions I1, I2 and A1, A2, B of Definition 5.

4.2 Fixed point theory view at algorithm LSWA

Sections 3 and 4.1 offer a constructive approach to JLS’s defini-
tion of a well-formed or static semantically correct Java-program
with its implicitly specified superclassing function inh. Every
computation of LSWA is one of modularly confluent successor
states approximating the uniquely determined maximal succes-
sor of the starting state, let LSWA’s termination be successful
(regular) or let it be erroneous. Modular confluence is a strong
and far-reaching lattice theoretic property. On the other hand,
LSWA’s syntactical shape is that of a least fixed point approxi-
mation algorithm. So the question arises: Is there an associated
cpo with a continuous functional?

Let a structure S of classes be given. Condition I1 says that a
function inh we are looking for is a fixed point of a functional on
the set of all superclassing functions inh where each one is defined
on a subset of C = Classes with values in CO = C ∪ {Object}.
The so called natural functional Bdfl is defined by

Bdfl(inh)(A)
df
= bindinh(ext(A) in decl(A))
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which is a mapping in

(C part−→ CO)
tot−→ (C part−→ CO) .

C part−→ CO is a complete partial order cpo w.r.t. set theoretical
inclusion ⊆ of partially defined functions.

If functional Bdfl were monotonous (and consequently contin-

uous due to finiteness of C part−→ CO ) then Scott’s fixed point
theorem [18] would yield the least fixed point

µBdfl =
⋃

i∈Nat0
Bdfli(inh⊥)

where bottom inh⊥ is the totally undefined function. In case of
monotony we had here a way towards an algorithm like LSWA
in Section 3. But, unfortunately, Bdfl is not always monotonous
as the following Example 28 demonstrates.

Example 28 Showing non-monotony of the functional Bdfl.

class A { }
class B {

class E {
class A { }

}
class C extends E {

class D extends A { }
}

}

We have

∅ = inh⊥ ⊂ Bdfl(inh⊥) 6⊆ Bdfl2(inh⊥)

because

Bdfl(inh⊥)(B $ C) = B $ E and Bdfl(inh⊥)(B $ C $ D) = A
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and
Bdfl2(inh⊥)(B $ C) = B $ E

and
Bdfl2(inh⊥)(B $ C $ D) = B $ E $ A 6= A.

�

So we shall modify Bdfl. We orient at our abstract algorithm
LSWA.
We begin with the following modification (a generalization) of
the notion state. Definition 9 considers states of algorithm LSWA
which are states in the generalized sense too.

Definition 29 Let inh ∈ C part−→ CO. A state is a pair 〈domRO
inh, inh〉

with domRO
inh = dominh ∪ {Root, Object} iff for all classes K ∈

dominh the relations
inh(K) ∈ domO

inh = dominh ∪ {Object},
decl(K) ∈ domR

inh = dominh ∪ {Root}
and the equation

inh(K) = bindinh(ext(K) in decl(K))
hold.

A state is uniquely represented by its associated partially defined
function inh. Definition 29 is saying that domRO

inh is an initial tree
of the whole decl-tree CRO = CO ∪ {Root} , that K’s inheritance
chain {inhi(K) : i = 0, 1, · · · } is remaining inside domRO

inh (i.e.
either has a cycle or ends up in Object or Root) and that condi-
tion I1 is satisfied, restricted to dominh as a subset of C. inh and
its dependency relation depinh may have cycles. In this described
sense it is well allowed to call a state representing function inh
also a state. So we shall consider the following sub-cpo

C state−→ CO of C part−→ CO
of superclassing functions which represent states. Most exciting
in our deliberations on Java’s superclasses are the two different
states inh1 and inh2 in Example 3; I1 is satisfied for both of them,
they have no cycle, but their dependency relations have a cycle.

Now let us consider the activity of the body of LSWA’s while
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loop restricted to one iteration. In case the condition of the if-
statement holds (i.e. inh is not a maximal state) inh is enlarged
by exactly one element, one pair 〈K,M〉. Question: Can we nom-
inate a monotonous (and continuous) functional which is doing
this enlargement? Yes, every class A ∈ C induces a so called di-
rect successor functional

dsflA(inh)
df
= inh ∪

{〈A,M〉 : αinh(A) ∧M = bindinh(ext(A) in decl(A))}
where αinh(A) is abbreviating the formula

αinh(A) : decl(A) ∈ domR
inh ∧ A 6= Root ∧ A 6= Object

∧ bindinh(ext(A) in decl(A)) ∈ domO
inh

If inh is a state then dsflA(inh) is well-defined, i.e. is a single-
valued partial function. Namely let A ∈ dominh; then 〈A,M〉 is
∈ inh because inh is a state. Let A in C \ dominh; then in case
αinh(A) holds M ∈ domO

inh is uniquely determined, otherwise
〈A,M〉 is not existent and, as for A ∈ dominh, dsfl

A(inh) = inh.

So line 9
M := bindinh(ext(K) in decl(K));

in LSWA in Section 3 may be replaced by

M := dsflK(inh)(K);

what is preserving the semantics.

Lemma 30 Let A ∈ C and inh be a state. Then
I) inh′ = dsflA(inh) is an extension of inh by at most one pair
〈A,M〉. The latter case occurs if and only if A ∈ C \ dominh and
αinh(A) holds, i.e. A is a candidate of inh – A ∈ C \ dominh ,
decl(A) ∈ dominh – which beyond this is said to generate 〈A,M〉.
II) inh′ is a state.
III) dsflA is a monotonous (and continuous) functional.

Proof. I) clear because inh is a state.
II) Let K ∈ dominh′. We have to show that inh′(K) ∈ domO

inh′ and
decl(K) ∈ domR

inh′ and inh′(K) = bindinh′(ext(K) in decl(K))
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hold. We have two subcases
A) K ∈ dominh and
B) K = A ∈ dominh′ \ dominh.
Subcase A) is straightforword by help of I) and Lemmas 11, 12.
Proof of the subcase B): Because inh′(A) is defined, αinh(A) is
holding and inh′(A) = bindinh(ext(A) in decl(A)). Since inh′(A) ∈
domO

inh and inh′ is an extension of inh we have inh′(A) ∈ domO
inh′.

Since decl(A) ∈ domR
inh we have decl(A) ∈ domR

inh′. The last fact
to prove for subcase B) is: inh′(A) = bindinh′(ext(A) in decl(A)).
As decl(A) ∈ domR

inh, as inh′ is an extension of inh and as
bindinh(ext(A) in decl(A)) ∈ domO

inh we have due to Lemma 11
and Lemma 12 B)

bindinh(ext(A) in decl(A)) = bindinh′(ext(A) in decl(A)) .
The left side is exactly inh′(A) by definition of dsflA. Compare
the proof of Lemma 15.
III) Let inh1 ⊆ inh2 be two states and dsflK(inh1)(K) = inh′1(K)
= M be defined. We claim dsflK(inh2)(K) = inh′2(K) = M .
Case 1: K ∈ dominh1

. Then K ∈ dominh2
and M = inh′1(K) =

inh1(K) = inh2(K) = inh′2(K).
Case 2: K = A ∈ dominh′

1
\ dominh1

. Then αinh1
(A) and M =

bindinh1
(ext(A) in decl(A)) ∈ domO

inh1
. Lemma 11 and Lemma 12

B) are ensuring
bindinh1

(ext(A) in decl(A)) = bindinh2
(ext(A) in decl(A)).

So M ∈ domO
inh2

. Furtheron, due to αinh1
(A): A 6= Root, A 6=

Object, decl(A) ∈ domR
inh1
⊆ domR

inh2
. So αinh2

(A) is holding and
M = inh′2(A).

Remark on the proofs of II) and III): The Lemmas 11 and 12
from Section 4.1 play a crucial role. The proofs of Lemmas 11 and
12 have been done for LSWA-states. But the proofs work for gen-
eralized states as well, word for word, where only LSWA-states
are to be replaced by generalized states.

We are not yet fully satisfied with our first replacement of LSWA’s
line 9 because a whole family of monotonous functionals dsflA,
A ∈ C, is involved. We want to see one single monotonous func-
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tional. Such a functional is

Bdfl′
df
=

⋃
A∈C

dsflA

where a union of functionals is defined in standard manner by

(
⋃
A∈C

dsflA)(inh)
Df
=

⋃
A∈C

(dsflA(inh)).

We easily calculate
Bdfl′(inh) = inh ∪ {〈A,M〉 : A ∈ C ∧M = dsflA(inh)(A)}

= inh ∪ {〈A,M〉 : A ∈ C ∧ αinh(A) ∧
A ∈ C \dominh∧M = bindinh(ext(A) in decl(A))}.

This calculation ensures single-valuedness (well-definedness) of
Bdfl′(inh). Furtheron, line 9 in LSWA may be replaced a second
time by

M := Bdfl′(inh)(K);

in a semantics preserving manner.

Lemma 31 : Let inh be a state. Then
I) inh′ = Bdfl′(inh) is an extention of inh.
II) inh′ is a state.
III) Bdfl′ is a monotonous (and continuous) functional.

Proof. I) Obvious.
II) Is ensured by Lemma 30 II) plus either by Lemmas 11 and 12
or by modular confluence of successor states.
III) Transfers from Lemma 30 III).

Now we are ready to apply the fixed point theorem:

Bdfl′ : (C state−→ CO)
tot,cont−→ (C state−→ CO)

has exactly one least fixed point

µBdfl′ =
⋃

i∈Nat0
Bdfl′ i(inh⊥) .

A computation of LSWA which terminates either successfully
(regularly) or erroneously is a sequence of direct successor states
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inh⊥ = ĩnh0 ≺ds ĩnh1 ≺ds · · · ≺ds ĩnhm = inhfin
where inhfin is maximal successor state of inh⊥ with m ≤ κ =
card(C). In case m = κ we have regular termination, in case
m < κ an error is reported.

Question: Is inhfin the least fixed point µBdfl′ so that LSWA can
be called a least fixed point approximation algorithm? As inhfin
has no generating candidates inhfin is a fixed point and thus

µBdfl′ ⊆ inhfin .

On the other hand

ĩnhi ⊆ Bdfl′i(inh⊥)

holds for all 0 ≤ i ≤ m and therefore
inhfin ⊆ Bdfl′m(inh⊥) ⊆ Bdfl′κ(inh⊥) = µBdfl′.

So we have proved

Theorem 32 LSWA is a least fixed point µBdfl′ approximating
algorithm, let the termination be successful such that the inher-
itance condition I1 is satisfied, let the termination be erroneous
such that dominhfin

is a proper subset of C.

So both lattice theory view and fixed point view lead to the same
computations realized in algorithm LSWA. We can subsume the
Theorems 17 , 27 of Section 4.1 and 32 of this Section 4.2 by

Remark 33 Let inh0 be a partial function
inh0 : C −→ CO.

The following conditions are equivalent

(i) inh0 is result of a successful run of the abstract algorithm
LSWA,

(ii) inh0 is satisfying the properties I1, I2,
(iii) inh0 is the least fixed point of functional Bdfl′ and inh0 satis-

fies I1.

Formulation (iii) is especially valuable because we have got rid
of the condition I2 and of mentioning any algorithm.
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The non-cycling condition I2 of the Java Language Specification
JLS [11] sounds curious. But its appearing is not that astonish-
ing because we have been able to associate inheritance with fixed
point theory to solve recursive function equations. Total defined-
ness of functions defined by such equations is proved in practice
by the help of mappings into a Noetherian order. And vice versa:
Total definedness implies existence of a “natural” Noetherian or-
der. But such natural Noetherian orders are hard to describe
and to apply in a conventional way. I2 seems to present a nat-
ural Noetherian order ? . What is interesting: Theorem 27 is a
non-conventional proof of total definedness by the help of this
Noetherian order.

5 Analysis of problem

5.1 Consistency and completeness of the specification

Specification of a problem is said to be consistent if there exists
a solution of it. Considerations of the preceding section lead to
the conclusion that the Problem 7 is consistent. For every well-
formed structure S of classes there exists a solution inh and a
signal is raised if S is erroneous.
Next question we would like to address is: how many correct
solutions may Problem 7 possess?

Theorem 34 (on determinacy of algorithm and the uniqueness
of solution)
If there exist two functions inh1 and inh2 such that both satisfy
conditions I then they are equal: inh1 = inh2.

Proof. By the completeness property (Theorem 27) and termina-
tion property (Lemma 8) if a solution exists then a computation
of the algorithm stops successfully with a result inh . Any cor-

? Sometimes it is named: well-founded order
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rect final result inh of the algorithm is contained in any solution
(c.f. Lemma 13). Hence inh ⊆ inh1 and inh ⊆ inh2. Functions
inh1 and inh are defined on the same set Classes. Hence they
are equal. The same holds for inh2 and inh.

In this way we show: if Problem 7 has a solution then it is a
unique one. Hence we proved that the specification of the problem
is complete. We have proved Theorem 34 without fixed point
theory. Note that uniqueness of the solution can also be achieved
as a result of fixed point considerations, namely of statement (iii)
of Remark 33 at the end of Section 4.2.

5.2 Estimation of complexity of the problem

Let the number of classes in a given Java program be n. This
is less than the length of the program. It is relatively easy to
give the lower bound of the problem. It is not less than Ω(n).
Our non-deterministic algorithm is determinate and therefore it
can be viewed as a an abstraction of a family C of deterministic
algorithms. Consider a deterministic version of the presented al-
gorithm. Observe that the quantifiers appearing in the algorithm
can be replaced by finite disjunctions and conjunctions. They
in turn can be calculated by iterative instructions. It suffices to
insert a loop

GoodCandidates := ∅;
for K ∈ Candidates
do

if bind(ext(K) in decl(K)) ∈ Visited
then

GoodCandidates := GoodCandidates ∪ K;
endif

endfor
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and to use any algorithm to choose one element of the set Good-
Candidates.
It turns out that, analyzing the non-deterministic algorithm, we
have proved properties of the family C of deterministic algo-
rithms.

Corollary 35 Any deterministic algorithm A of the family C is
correct, complete and all of them bring the same solution.

Now we can estimate the cost of such algorithm. The main loop
is repeated n times. Choosing a candidate needs n steps. Cal-
culating the bind function may be estimated as O(n2 + n ∗ l)
where l is the maximal length of type ext(K). Hence the upper
bound of complexity of the problem is O(n3 ∗ max(n, l)). This
is a pessimistic estimation. We must add the following remark,
a qualified type i.e its path expression may be of any positive
length. Look at the following example.

Example 36 It shows that, at present, a path expression ap-
pearing after extends may have an arbitrary length and remains
sound.

class A {
class C extends B { class F { } }

}
class B {

class D extends A { }
}
class E extends B.D.C.D.C.D.C.F { } �

There is a substantial gap between lower and upper bounds of
complexity of the problem. We believe that better algorithms of
lower cost exist.
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6 Final remarks and the conclusion

6.1 On related work, especially of Igarashi and Pierce

We begin this Section with the comments on SIMULA67 and
LOGLAN’82 programming languages.

simula67
In this language the type of direct superclass is designated by a
single identifier. The direct superclass (or the prefixing class, in
the jargon of SIMULA) has to fulfill much simpler condition

ISIMULA) for every class X, decl(inh(X)) = inhi(decl(X))

where i is the least non-negative integer such that above equality
is holding.
It can be proved that if inh(X) is defined then ∃k declk(inh(X)) =
declk(X), it means that the direct superclass of a given class is
either a sibling of the extended class or more generally, must be
found on the same level of decl-tree as the class itself. We say
that SIMULA67 admits the horizontal inheritance.
Due to this simpler requirement, the task of determining the di-
rect superclass is easy. For example, the algorithm bind may be
much shorter and simpler. The same applies as well to the algo-
rithm of determining the direct superclass.
On the other hand the requirement that the inherited class and
the inheriting class are on the same level of the structure of inner
classes (also called the tree of nesting modules) makes extensions
of library of classes impossible. Simula67 has only two classes in
its library: SIMSET and SIMULATION. On the other hand, due
to the above mentioned restriction, Simula67 can use the Display
Vector mechanism [4] of Algol60 without problems.

loglan’82

As in Simula the type denoting the direct superclass is desig-
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nated by a single identifier. No restriction on the level of direct
superclass is imposed. It means that the class named B must be
visible from the place where the class A is declared

inh(A) = bind(B in decl(A)).

This kind of inheritance can be described as upward skew inher-
itance, for the direct superclass is on not lower level of decl-tree
than the class itself. The algorithm determining the direct super-
classes for LOGLAN’82 is much simpler than the LSWA algo-
rithm presented above. It can be compared to topological sort.
The library of classes may be extended at will. It is worthwhile
to mention that LOGLAN’82 admits inheritance in all modules:
procedures, functions, blocks, classes, coroutines and processes.
In the papers [5,6,7] the problem of maintaning the Display Vec-
tor was addressed and solved.

beta
The situation in BETA[3] is different, but no less complex than
the one in Java. Inheritance in BETA is dynamic, it involves ob-
jects, not only names of classes. Note, BETA as LOGLAN’82
admits inheritance of patterns in procedures, functions, classes.

java

The problems of Java inheritance have been studied among oth-
ers by Igarashi and Pierce [16]. The scope of their paper is much
broader, they present a formal semantics for (essentially) a sub-
set FJI of new Java [11], Featherweight Java with Inner classes.
Usual Java-programs are assigned their semantics via semantics
of corresponding FJI-programs. It is characteristics of FJI that
every extension clause is the complete names path of the direct
superclass plus of all enclosing classes where there are not allowed
identifier repetitions in a path. Due to the local distinctness prop-
erty and the required visibility of top level class names there is
exactly one inheritance function inh per program which satisfies
condition I1 of Section 2.
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But not every syntactically correct FJI-program is a well-formed
FJI-program, i.e. one which can be assigned an appropriate dy-
namic semantics. Igarashi and Pierce require so called sanity con-
ditions to be fulfilled. Condition 6) says: inh has no cycles. Con-
dition 7) says: There is no class which has any direct or indi-
rect inner class as its direct or indirect superclass. These sanity
conditions should correspond to condition I2 in Section 2 which
expresses that the dependency relation is free of cycles, see Java
Language Specification [11], (Section 8.1.4, Superclasses and Subclasses).

However, the sanity conditions and the conditions I1, I2, re-
stricted to FJI, are not equivalent. FJI is more liberal. Example
program 20 in Section 4.1 is a drastic counter example of equiv-
alence. Example 20 is a well-formed FJI-program, but algorithm
LSWA reports an error as we have seen in Section 4.1: Condition
I2 is violated, the dependency relation has a cycle.

Igarashi and Pierce propose an Elaboration of Types calculus – let
us call it IPET – which allows to infer binding. Inheriting is a spe-
cial case of binding. P ` X ⇒ T , read “type X is elaborated to
class T in class P”, is what we would express bind0(X in P ) = T
or bindinh0

(X in P ) = T . Inferring in a general top-down man-
ner does not work because there is one inference rule, namely
ET-SimpEncl, with a metatheoretic premise P ` X. D ⇑ which
means: “There is no derivation of P ` X. D ⇒ T for any class
T ”.

In our opinion it is a serious methodological error to mix a theory
and its metatheory. Such mixing leads to paradoxes frequently.
The authors of [16] give no evidence that such a paradox will not
appear.

They recommend to read the rules in a bottom-up manner and
so to interpret them as a generalized program procedure, imple-
mented and executed by help of consecutive run-time stacks of
procedure activation records [4]. Generalized means: We have not
only pushing-down and popping-up of activation records, but we
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have also backing-up in case there is some evidence that all ac-
tions whatsoever after an activation P.C ` D are never resulting
in any class T (see rule ET-SimpEncl). Even if such evidence is
showing up, e.g. by cycling or other infinitely expanding run-time
stacks, we are to know which are correct back-up states in order
to guarantee determinate, non-multivalued results.

Program examples demonstrate that we need clearer correctness,
completeness and termination criteria for IPET. We would like
to consider calculus IPET rather a method than an algorithm.
It is possible to repair calculus IPET and to transform algo-
rithm LSWA and its binding function towards a calculus without
metatheoretic premises where all inferences can be done in a top-
down manner, see a forthcoming article.

6.2 Conclusion

We formulated a specification of the problem of identifying direct
superclasses and proved that the problem either has no solution
or if a solution exists then it is the unique one. The formulation
follows the pattern of static binding [6,9,15] of applied occur-
rences of identifiers with the proper declarations of identifiers. In
our article we have extended this principle towards types, whether
they are simple identifiers or qualified types. Next, we proposed
an algorithm which finds a solution for a given class structure or
answers that no solution exists. In fact we deal with a class of
deterministic algorithms of O(n4) pessimistic cost.

The structure S of classes is a part of the SymbolTable data struc-
ture. The algorithm we proposed can be made more efficient if
more information is used which is contained in the SymbolTable.
This or a similar algorithm must be executed before further static
semantic analysis can be executed by a compiler. We believe that
admitting local classes (classes declared in methods) and anony-
mous classes (they correspond to blocks inheriting from classes
in SIMULA67 and LOGLAN’82) will introduce only minor mod-
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ifications to our algorithm.

The authors of new Java Language Specification JLS[11] have
had a very intriguing idea how to characterize in an implicit style
binding of identifiers and inheritance (superclassing) of classes in
Java-programs with inner classes. The total definedness condition
I1 and especially the no cycling condition I2 as we have formal-
ized JLS[11]’s idea are looking, at a first glance, curious, ad hoc
and hard to accomplish both by Java-compilers and by Java-
programmers. This article is presenting an algorithmic access to
find appropriate solutions, an access which has been fully justified
by rigorous proofs of correctness, completeness and uniqueness.
What is most interesting: The fixed point theoretic roots of the
problem and of the algorithm have been uncovered. Strong the-
oretical connections assure that ideas of programming language
designers and practitioners will achieve lasting importance [1].
Other authors have different views on binding and inheritance
as we have found out. Their different views have been a strong
incentive to find out how far their and our views are lying apart
and whether a similar theory like ours might be created for other
views.

The results of this paper can be viewed as follow: we proved
that the definition of direct superclasses contained in JLS[11] is
consistent and complete (however clumsy). We offer a family, c.f.
p. 36, of algorithms, any algorithm of this family may be included
by a Java compiler as a first step in static semantic analysis of
Java programs.
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Appendix A. Example 4 ctd.

We saw in Example 4 that the program is differently understood
by different compilers and by different people. Now we apply a
refactoring transformation to the program of the example. We
extract class A that appears twice.

abstract class AF {
abstract int f();
class A{ int x = f(); }

}
class B1 extends AF{

int f(){ return 1;}
class B2 extends AF {

int f(){ return 2;}
class B extends B1.A{}

}
}
class Hidden{

public static void main( String[] argv){
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System.out.println(new B1().new B2().new B().x);
}

}

We believed that this transformation should lead to an equivalent
program. In our opinion this equivalence transformation is a basic
dynamic semantics property of inner classes with inheritance. We
were astonished when it turned out that the two programs are
not equivalent. We tested 5 Java compilers. It turned out that
one compiler signalled that the program contains an error. Four
compilers translated the program and printed ”2”. The previous
version of the program — the original Example 4 — prints ”1”
(3 compilers) and ”2” (1 compiler).

After decompilation one sees that compilers translate ”class B
extends B1.A{}” as ”class B extends AF.A{}”.
This example suggests that one should apply refactoring trans-
formations with care. Some IDE for Java, e.g. Eclipse, offer a
menu of refactoring transformations. We do not know whether
the transformations are accompanied by correctness proofs. Is it
possible at all?

Appendix B. On modular confluence

Lemma 37 The transitive and irreflexive partial order ≺ in the
set S of algorithm states is modularly confluent, i.e. if a state S0

has two different immediate successor states S1 and S2 then there
exists a state S3 which is the immediate successor of both states
S1 and S2 such that the following diagram commutes.
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S0
K1−−→ S1

K2

y yK2

S2 −−→
K1

S3

Proof. Let K1, K2 be two candidates which, if chosen in S0, lead
to S1, S2 respectively. Consequently, there exist classes M1, M2 ∈
V isitedS0

such that

M1 = bindinhS0
(ext(K1) in decl(K1))

and

M2 = bindinhS0
(ext(K2) in decl(K2)).

Observe that S1 = 〈V isitedS0
∪ {K1}, inhs0 ∪ {〈K1, M1〉}〉 and

S2 = 〈V isitedS0
∪ {K2}, inhs0 ∪ {〈K2, M2〉}〉. It is clear, that

in the state S1 the class K2 remains a candidate (in the state
S2 the class K1 remains a candidate). By Lemmas 12 and 11
and Remark 14 we obtain M1 = bindinhS2

(ext(K1) in decl(K1))
and M2 = bindinhS1

(ext(K2) in decl(K2)). Therefore the algo-

rithm has further states S
′

2 and S
′

1. We have S
′

2 = 〈V isitedS0
∪

{K1, K2}, inhs0 ∪ {〈K1, M1〉, 〈K2, M2〉}〉 = S
′

1. Hence state S
′

1
is the desired state S3.
From the Lemma follows:

Proposition 38 Any maximal state, w.r.t. relation ≺ is uniquely
defined.

The following theorem extends the observations of Theorem on
determinacy and uniqueness stating that the non-deterministic
algorithm is determinate, not only for successful but also for er-
roneous termination.

Theorem 39 The algorithm terminates with a unique final state.

Proof. Due to the previous Propositon it is enough to show that
every final state of the algorithm is also the maximal one, i.e. has
no direct successor. It is obviously true for a successful termina-
tion. When an error is signalled the algorithm guarantees that
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no normal alternative continuation is possible. So, an erroneous
final state is also a maximal one.

Appendix C. An algorithm bind

Data structure: structure of classes S and partial, cyclefree
function inh,
Arguments: type T and class K. Type T may be empty or a
class identifier C1 or a qualified type of the form C1.C2....Cn. In
the latter cases head(T ) = C1, tail(T ) = C2....Cn
Result: the class named Cn which is denoted by type T , visible
from class K, respectively class N named Object.
Specification: see Definition 5
Algorithm:

found := false;
if T is empty sequence
then

found := true;
N := Object

else
M := K; // j := 0

C := head(T );
while ¬ found ∧ M 6= none
do

M ′ := M ; // i := 0

while ¬ found ∧ M ′ 6= none do
N := M ′.C;
// check if class N named C is son of class M ′;

if N 6= none
then

found := true;
// return this class N

else
M ′ := inh(M ′); // i := i+ 1
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endif
endwhile; // either found or M ′ = none

if ¬ found then M := decl(M); /* j := j + 1 */ endif
endwhile; // found or M = none

if ¬ found
then

throw new SignalClassNotDeclared()
else // we have found class N named head(T ) = C1,

// pair〈j, i〉 is the least in the lexicographic order s.t. N = inhi(declj(K)).C

while not empty tail(T )
do

T := tail(T ); C := head(T ); M ′ := N ;//k := 1; Ck := N

found := false; // i := 0 ,
while ¬ found ∧ M ′ 6= none

do
N := M ′.C;
// check if class N named C is son of class M ′;

if N 6= none

then
found := true; // k := k + 1;Ck := N

else
M ′ := inh(M ′); // i := i+ 1

endif
endwhile; // either found or M ′ = none

if ¬ found then throw new Error() endif ;
endwhile; // tail(T ) is empty

endif ;
result := N

endif ;
// result = the class N = the meaning of type T in the class K

Lemma 40 If the algorithm terminates successfully the final
value of variable result is equal to bind(T in K).
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One may ask whether testing against cycles in inh should be
added into this algorithm? Our answer is as follows: this algo-
rithm bind is used by a compiler twice. First usage is after pars-
ing and before static semantic analysis is done. In this phase the
bind algorithm cooperates with the algorithm LSWA of the Sec-
tion 3. And it is the latter algorithm which detects cycles in the
dependency relation. Second usage of algorithm bind takes place
in static semantic analysis. Then no error of cycling in inh can
happen since all these errors were detected earlier.
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