
Andrzej Biela

Algorithmic structural
completeness

and a retrieval system
for proving theorems

in algorithmic theories

W ydaw nictw o U niw ersytetu Śląskiego

K atow ice 2000

Redaktor serii: Matematyka
Tomasz Dłotko

Recenzenci
Andrzej Salwicki
Andrzej Skowron

Contents

Chapter 1 Introduction

PART I
Chapter 2 Basic definitions

2.1 The language of A L .. 23
2.2 Realization of an algorithmic language.. 25
2.3 A deductive system of A L ... 29

Chapter 3 The substitution rule
3.1 The notion of (e, ^-function and K* program 32
3.2 Program-substitution ... 37
3.3 Basic properties of p ro g ram -su b stitu tio n ... 42
3.4 Program-substitution in AL with generalized te rm s 45
3.5 Program-substitution in the language i f " and 49

Chapter 4 Algorithmic structural com pleteness
4.1 The problem of completeness of CK ... 55
4.2 The algorithmic structural completeness of CR 61

PART II
Chapter 5 Automated theorem proving

5.1 Axioms and Gentzen’s rules of inference.. 67
5.2 Functions and procedures defined by p rogram s................................... 70
5.3 Diagram of a fo rm u la ... 72
5.4 Retrieval algorithm for functional equations and relations 76

5

5.5 The data structures and implementation of a retrieval system 86
5.6 Results of ex p e rim en ts .. 88

Chapter 6 Theorem proving by decomposition
6.1 Axiomatization and d ec o m p o s itio n ... 92
6.2 Decomposing proving s y s t e m ... 96
6.3 ^ - d i a g r a m ... 99
6.4 Algorithm for proving theorem s... 100
6.5 E x a m p le s ... 103'

Chapter 7 Summary and concluding remarks
7.1 Conclusion .. 108

References ..113

S tre szczen ie ... 119

Pe3K>Me...121

Chapter 1

Introduction

The paper presents the proofs of algorithmic formulas. These formulas, as
a part of the language of algorithmic logic, make it possible to express:

e the properties of programs e.g. correctness,
• the definitions of semantics of language of programming,
• the data structures e.g. the structures of trees, stacks, etc.

Only the proof of formula expressing the correctness of the program in
relation to the proper specification can assure the user of error-free application
of the program.

However, some advanced tools and programming languages the correctness
of programs is not always easy to verify. Therefore, in this paper we use the
method of proving called abduction. In consequence it is possible to obtain the
value of function by means of the proof. This technique was first mentioned by
Herbrand in his definition of recursive function.

This paper consists of two parts:

• research on algorithmic structural completeness of algorithmic logic,
• description of the retrieval system RS providing comprehensive tools in

automated theorem proving theorems of algorithmic theories i.e. theories
based on algorithmic logic,
description of the RETRPROV system which enables us to prove theorems
of algorithmic theories by using the decomposition rules.

In the first part of our paper (cf. Chapter 3) we present a possibility of
introducing the notion of program-substitution as a special mapping from the
set of all formulas of AL into the same set.

7

Let J f be the set of non-negative integers. In AL we have some kind of
substitution i.e. an assignment instruction s of the form:

IXAi»-» a i/ai> aJ x J

for n, m e / , where x v ...,xn (respectively au ...,aw denote pairwise different
individual (respectively propositional) variables, are classical terms,

are classical open formulas and for example x j x l means the standard
assignment instruction x 1 zl .

Unfortunately this form of substitution s in the formula sp(xLl...,x j
transforms the formula only into the formula p(rl5 t„) but
not for example into the formula of the form a a /? where a denotes the
conjunction.

Our substitution called program-substitution has not this restriction so it is
more general.

Various attempts have been done to introduce the substitution rule in
any logical systems by A. Church [18], H. Hermes [42], D. Hilbert [43]
and W. A. Pogorzelski and T. Prucnal [71] but our key idea slightly differs
from the methods developed up to now because contrary to the previous
substitution rules it does preserve the properties of programs.

In Chapters 2, 3, 4 we define the notions of the consequence operation,
the admissible, finitary and derivable rules which enable us to introduce the
notion of algorithmic structural completeness and to prove that the consequen­
ce operation of algorithmic logic strengthened by the substitution rule is
algorithmically structurally complete i.e. that every structural finitary and
admissible rule is derivable in this consequence operation. This result gives us
the useful class of rules.

The notion of structural completeness of a logical system was intro­
duced by W. A. Pogorzelski [70] and thoroughly studied in propositional
logics as well as in the systems with quantifiers by A. Biela [4], A. Biela
and W. Dziobiak [6], M. Dummet [25], G. Mine [57], W. A. Pogorzelski
and T. Prucnal [71], J. Porte [72], T. Prucnal [76], A. I. Tsitkin [98] and
P. Wojtylak [104].

In the first part of this paper we shall prove that the consequence operation
CR of algorithmic logic strengthened by the substitution rule is algorithmically
structurally complete though it is not complete.

Here we explain the notion of algorithmic structural completeness of a logic
of programs which plays an important role in this paper.

In our paper the definition of the consequence operation CR̂ of algorith­
mic logic strengthened by the substitution rule will be based on the set of
axioms Ax and on the set of rules R of algorithmic logic. Thus Rt = Pu{r,}.

8

The purpose of this work is to show a point of view upon the notions of
program-substitution and admissibility of rules which are the tools for proving
properties of programs in algorithmic logic and in the so-called extended
algorithmic logic with quantifiers and with non-deterministic programs, We
shall prove that these logics are closed under each program-substitution i.e.
P(Cr,(0)) c Cr (0) for every program-substitution p.

As we mentioned above the consequence operation CR of algorithmic
logic is not complete, so it is not true that each admissible rule of C* is
derivable in Therefore we looked for a weaker kind of the notion* of
completeness. We tried strengthening the notion of the substitution rule r. to
get the following property: each structural, Unitary and admissible rule in CR
is derivable in it.

This property called algorithmical structural completeness means that
every consequence operation which has this property is intuitively quasi-
complete i.e. it is complete because of structural, finitary and admissible rules.
Since AL is algorithmically structurally complete thus we can use every
structural and admissible rule in CR while proving theorems of AL which
simplifies the proof.

Chapter 2 begins with the definition of the language of AL. There we
develop a formal model theory of AL. This Chapter contains a formal
system for AL and the consequence operation of this system. In Chapter 3 we
define the set of the program-substitutions and we proof that AL is dosed
under program-substitution. Moreover Chapter 3 contains a proof that any
program-substitution preserves the logical connectives. In Chapter 4 we proved
the algorithmic structural completeness of the consequence operation of
algorithmic logic strengthened by the substitution rule as well as its incom­
pleteness. This chapter contains some remarks about program-substitution in
AL with generalized terms and with quantifiers and with non-deterministic
programs.

The second part of this paper Le. Chapter 5 and Chapter 6 presents
a retrieval system (RS-algorithm) investigated by A. Biela [5] and a decom­
position system described by A. Biela and J. Borowczyk [7] in which the
properties of programs are expressed.

Further in this paper we shall describe a formal system which enables us to
prove theorems from the following theories: propositional calculus, logic of
quantifiers and the first-order theories. However, the theories of algorithmic
logic including theorems containing programs are the most important ones.
Its main feature relies on generating an additional set of assumptions needed to
prove a considered formula. Thus we are able to consider expressions which
can become theorems by adding the special set of assumptions (axioms) to the
standard set of axioms. RS-algorithm is looking for a special set of axioms to
prove the considered formula.

9

We shall try to show some methods and procedures investigated by A. Biela
[5] for constructing formal proofs of theorems of algorithmic logic containing
programs.

Our methods concern proving by means of programming. They are an
essential extension of methods used by P. Gburzynski [28], [29]. The
considered retrieval system is able to solve or to prove:

1. the properties of programs and terms formulated in the language of
arithmetic,

2. the correctness of some programs with STOP property,
3. the functional equations with the recursive functions defined by pro­

grams. This system solves them in a dynamic way by looking for
a special set of axioms during the execution of algorithm,

4. the relations defined by programs and recursive functions,
5. the equivalence of programs.
Therefore we can answer whether some relations hold and we are able to

compare programs and get an answer, whether the execution of different
programs gives the same result. At the end of this section we present some
experimental results.

Though the solution to considered problems are very ineffective, the
options and methods used by us are satisfactory in practice (see Table 1 of
experimental results).

Our proposal has in view:
1. to provide the tools for didactics, which enable us to demonstrate on the

monitor the proofs of theorems of the caicuius of quantifiers, algorithmic
logic, algorithmic theories, propositional calculus, geometry, set theory,
theory of lattice, boolean algebra...,

2. to enable us to undertake a trial of proving hypotheses,
3. to secure the specific results for example the independence of axioms,
4. to verify the correctness of definitions,
5. to verify some hypothesis.
The retrieval system can be used for giving an expert appraisement becau­

se it works in a broad area and can solve different problems, so it is an expert
system.

We believe, that it is reasonable to use in our considerations some
formalism of the language of algorithmic logic described by L. Banachowski
[1], G. Mirkowska [58], [59], G. Mirkowska and A. Saiwicki [64], A. Salwicki
[87] and H. Rasiowa [82]. The language of algorithmic logic contains all
classical formulas and generalized formulas describing properties of algorithms
which can be interpreted in our considerations in a model of arithmetic or in
a model of integers.

10

The properties of algorithms from the point of view of recursion theory and
degree of undecidability of algorithmic properties were settled by W. Danko
[20], [21] and A. Kreczmar [48].

The main idea depends on handling the expressions of the forms Kr-
generalized term and iCa-generalized formula where K is a program, t is
a generalized term or a classical term and a is a classical or a generalized
formula. These expressions enable us to describe functions or relations
defined by programs and recursive functions. For example the factorial n!
can be defined in algorithmic logic by a generalized term of the form K{z
where:

K i : if n = 0 then z \— 1 else z: = n*f(n — 1);,

for /(n) = K^z, while the order relation between natural numbers can be
expressed in algorithmic logic by generalized formula of the form K za, where

K 2: if x = y then a: = FALSE else
begin u:= 0;

while 1 ((u = y) v (u = x))
do u : = u + 1;

if u = x then a :— TRUE else a F A L S E ;
end;

Readers accustomed to formalism of Hoare should observe certain differen­
ce in semantics. We can show this difference by giving a typicai example. For
example the expression Kx — u can be sensibly considered even when u does
not occur in z.

Now we explain a technique which by means of a proof enables us to get
information about the value of function. The considered function will be
defined by a program. The pioneer of this method (called ABDUCTION)
mentioned in the definition of recursive functions was J. J. Herbrand.

Let us consider the definition of factorial f(n) = K Lz. If we consider the
expression /(3) = u availing itself of the definition of function f given by the
program K v then the equality u = 6 is the result of our system. This obtained
equality may be interpreted as a question whether/(3) = u is a theorem under
the assumption u = 6. Our system will find the equality u — 6 and it will use
it to prove the equality/{3) = u. On the one hand the number 6 in the equality
u = 6, may be interpreted as a result of calculation of K yz, on the other hand
the equality u = 6 may be interpreted as a special axiom in the proof of the
equality /(3) = u.

In our considerations only the second interpretation is suitable. To show
the difference between the proof of u — /(3) and the calculation of K zz, which

11

t

is used for changing /(3) by the result of this calculation, we consider the
program defining the addition:

K 2: if y = 0 then z: — x else z : = k(x,y — 1) + 1; where
k(x,y) - K 2z.

If we want to prove the equality k(x, 1) = u, the retrieval system needs the
equality u — x + 1 during the proof. Obviously, the calculation of every
program realizing the addition function in the set of integers gives us as the
result the number and not the expression of the form x + I.

In the same way our system gives us the answer whether some relation
holds or not. Let us consider the relation p(x,y) = K 2a. If we want to get the
answer whether p(l,2) holds or not, our system will attempt to prove the
expression of the form p(x, y) = b. During the proof it gets the answer that
b = TRUE.

We shall give the main idea of this algorithm. If we want to prove a classical
formula without functions and relations defined by programs then our
algorithm gives us the proof in a standard way. It uses the rules to decompose
sequents i.e. the expressions of the form X jj- Y, where X and Tare two sequents
of generalized formulas. If the constructed diagram of the considered classical
formula is finite and all leaves are axioms then we get the proof of this formula.
But when we want to prove an expression containing a function or relation
defined by program then to explain this algorithm we take for example the
formula (p(tl ,...,tn) = Mt. Thus M i can be treated as the definition of the
function (pity,...,tn). Our algorithm starts with the sequent of the form:

— u- Next we change the function by its definition Mi, so we get
the sequent of the form |(- M t = u. After that we move the program M outside
the equality and we get jj- M{t = u). Next we use the rules to decompose the
program M and we do it up to the moment, when we get the sequent composed
only of the classical formulas from At. If such obtained sequent has on the right
side of the symbol |j- only one classical formula of the form r — u (where,
intuitively saying z is the result of the execution of the program M on the
term t) then we extend the set of axioms by adding the set of special axioms Le.
sequents containing u — x on the right side of the symbol jj—. Such an
operation enables us to get the proof of the classical formula ||— tn) = u
by our system.

We explained the idea of the execution of the considered system and
we showed how during the proof we ought to choose the special set of
axioms.

Now we explain the activity and the usage of the retrieval system. The idea
of working of this system avails itself of conception of resolution and Gentzen’s

1 2

method. To realize our conception of looking for the axioms we introduce
many options. Moreover the decomposition of the program while a do K
requires a special treatment.
Let us consider the following definitions:

/(n) = K yz
p(x,y) = K za,
k(x,y) = K zz,
g(x) — K xz, where is of the form begin i: = i + 3; z: = x end,
h(x,y) = K 5z, where K 5 is of the form if x — 0 then z:= 2 else

z:= h (x~ 1, /z(x, y)).

By the above definitions our system will try to prove the following
properties:

/(1) = u, p(l,2) = b, k(x, 1) - ul5 g{rf) = u2, h(l,2) =

The environment of our system consists of two sets DEF and DAT. In DEF
we write the definitions which are needed during the proof of considered
expression. In DAT we put the formula which our system will try to prove.
Using the above mentioned classical formulas we shail give the graphic
illustration of execution of our system:

ENVIRONMENT

DEF DAT

y) = K3z k (x ,l) = ui

ENVIRONMENT

DEF DAT

p(x,y) s K ,a p(l, 2) ss b

ENVIRONMENT

DEF DAT

II”5' f[i) = u

After using the definition the retrieval system will try to prove the following expressions:

I I I
n := l(fC)2 - u) x := l(y := 2 (iC 2a s h)) y : = l(JC3z - Uj)

I I I
Further execution of the retrieval system:

I 1 I
Paragraph 5.3 Paragraph 5.4 Paragraph 5.4

Example 7 Example 10(/u) Example 10(«i)

I i I
Our system finds the additional premises which enable us to prove the above properties:

u = l b - TRUE u, = x + 1

Fig. 1

13

ENVIRONMENT

DEF DAT

g{x) = K xz g{nA) = u2

ENVIRONMENT

DEF DAT

h(x,y) = K sz *(1,2) = «3

After using the definition the retrieval system will try to prove the following expressions:

I I
x: — n‘i{Kdz = u 2) x \ — l(y: = 2(Ksz — u3))

Further execution of the retrieval system:

I I
Paragraph 5.4 Paragraph 5.4

Example 10(i) Example 10(ii)

I I
Our system finds the additional premises which enable us to prove the above properties:

Fig. 2
u3 = 2

We have to mention that by the retrieval system we can verify the
correctness of programs. To explain it let us consider the program defining the
factorial i.e. f{n) = K xz (instead of we can consider another program
defining the factorial). If we want to get the answer whether K t is well written
i.e. whether the program K y really defines the factorial (for every natural
number n), we need to prove the expression of the form:

/(O) = 1 a V* (—<x = 0) -*•/(*) = x *f(x - 1))

because only the factorial fulfils this recursive condition. So a program defining
a recursive function can be verified in such a manner.

The graphic illustration of the proof of correctness of program defining the
factorial is as follows:

ENVIRONMENT

DEF DAT

m = k , z y(0) = 1 A Vx(—>(x = 0) -+J[x) = x * J[x~ 1))

After using the definition the retrieval system will try to prove the following expression:

n:— 0 (ATxz) = 1 AVr(->(x = 0)->(n:= x{Ktz) = x*{n: = (x - l)tKjZ))))

The retrieval system will prove the above generalized formula.

Fig. 3

14

The above considered example as well as the others were tested and we
present the time of execution (see paragraph 5.6, Table 1).

The above presented examples show that the constructed algorithm
computes even such generalized formulas for which the standard computation
is helpless since it cannot compile the program defining the function h(x,y).
However the retrieval system will be able to get the result.

In this paper we shall provide the major structures of the implementation.
The generalized terms, formulas and programs are represented by the object
TNODE consisting of four fields. Two fields are for the name of individual
or propositional variable, logical constant, generalized quantifier, iteration
quantifier, logical connectives and program connectives. The next two fields are
the pointers of the same type as the considered object. The sequent is
represented by the object consisting of two fields of the type TNODE and one
field being a pointer to the object of the type of SEQUENT. These objects
enable us to program the algorithm of retrieval system (RS-algorithm).

When we consider the correctness of the program defining the factorial we
can see that our system is able not only to prove the equalities of the form
(p(tu ..., i„) = u or to verify the relations, but also it can prove the generalized
formula from algorithmic logic. As an example we can prove the expression of
the form:

x > 2 -> if{x) = {x*(x - 1)*/(x - 2))).

All these possibilities are expressed in the language of algorithmic logic
where the expressions <p(ix, (i.e. recursive functions) can be defined by
generalized terms of the form Kz. Moreover we can prove or verify by
RS-aigorithm the expressions from many theories. For example we shall
formulate some of them:

1. If x is a finite set and y c x then the power of the set y is less than the
power of the set x, for every set x and y (it is a theorem of set theory),

2. If T(x,y,z,v) is a trapezium then the angles zyv and zvy are equal (it is
a theorem of geometry),

3. (P(x) -» VxQ(x)) = Vy(P(x) -» Q{y)) (it is a theorem of the calculus of
quantifiers),

4. - ‘(3xP(x) v 3 y<2(y)) v3.(P{z) vg(r)) (it is not a theorem of the calculus
of quantifiers),

5. (p -*• (q -> s)) -* {{p -» q) -» (p -* s)) (it is a theorem of propositional
logic),

6. { X u Y) \Z = (X \Z) u (T \Z) (it is a theorem of boolean algebra),
7. Vr((Vyx u] / =)f-»x = 0) a (Vyx n y = y -* x = 1)) (it is a theorem of

lattice).

15

We shall construct an expert system which will be able to solve problems in
a similar way to the human brain. The procedures and functions may occur in
the considered theorems while the program is being executed.

In the last section we shall study the decomposition of programs by using
the model and we shall describe two rules which play an essential role in our
considerations. In this section we shall formulate the RETRPROV-algorithm
which enable us to prove theorems as well as to find a special set of axioms for
expressions containing procedures and functions defined by programs. Some
Gentzen method was considered by G. Mirkowska [61] and by A. Kolany in
his manuscript. We shall not use the Gentzen’s method but by a special kind of
decomposition we shall get the result in an evidently shorter and speedier way
than by using RS-algorithm. We shall present a few examples of using
RETRPROV-algorithm for proving properties of programs. RETRPROV-
-algorithm enables us to determine whether a relation defined by program
holds. Moreover it can be applied to Hoare’s method for proving partial
correctness of programs. If M is a program, a is a generalized formula,
and /? is an output generalized formula then the problem of partial correctness
of program M can be reduced to the question of whether the formula
(oc a M TRUE) -* Mp) is true.

Chapter 7 contains the concluding remarks and the summary of the
author’s contribution to automatic proving system.

Historical remarks

The starting-point of our considerations was an idea connected with functions
defined by programs which was mentioned by A. Salwicki [89].

Today there exist many systems formalizing the mathematical semantics of
programming languages. In the presented paper we consider a logical system in
which the properties of programs are expressed. This logical system called
algorithmic logic AL was initiated by A. Salwicki [88] in 1970. It includes
expressions called programs and generalized formulas describing properties of
programs. Programs are expressions built by means of substitutions as primitive
programs being interpreted as assignment statements' and by means of
operations of composition, branching and iteration. These correspond to basic
operations in programs written in high level languages such as FORTRAN,
ALGOL or PASCAL. In that way an algebra of programs was obtained.
This was not the aim in itself but an auxiliary step in the development of
theory.

At first the axiomatizability of algorithmic logic was established by
L. Banachowski [1], W. Danko [21] and G. Mirkowska [58], [59], [60], [62],
next the questions of effectivity problems of AL were studied by B. Chlebus

16

[17] and A. Kreczmar [48], [49]. Moreover many-valued algorithmic logic
were considered by E. Perkowska [68] and H. Rasiowa [80]. Applications of
algorithmic logic to procedures have been discussed by S. Radziszewski [77],
H. Rasiowa [82] and others. Some logical systems enable us to examine
non-deterministic algorithms. They are related to the dynamic logic formulated
by V. Pratt [73] and investigated in several papers by D. Harel and V. Pratt
[39] and K. Segerberg [90] as well as by G. Mirkowska [60], [61] in
algorithmic logic with non-deterministic programs.

H. Thiele [96] and E. Engeler [27] were that first who were looking for
formalized logical systems dealing with programs and their properties.

The history of automated deduction described in the literature is very
extensive. Nowadays there are two methods often applied in automated
theorem proving i.e. resolution which was studied by J. Robinson [83] and
C. Green [33] and G. Gentzen’s method [30].

Robinson used resolution for the first-order logic and showed its practical
use. In fact, it is correct to say that all details connected with resolution were
known before J. Robinson [83]. Resolution as a propositional rule was defined
as a function and studied by A. Blake [9],

Next it became weii-known as Quine’s consensus rule [79] of the form:

IKk p H
IN

which in turn is just a variant of Gentzen’s cut rule [30]

x \ \ -Y ,r iPtz \ \ - w
x , z \ \ - x w

and is the generalized version of the modus ponens. Gentzen’s method is
competitive to all methods using resolution as a main rule (see M. Davis [23]).

B. Dunham and J. North [26] used the consensus rule in a version of
W. V. Quine as a recognition-type rule for theorem proving. Unification,
however, was first discovered by J. J. Her brand [41] and used by D. Prawitz
[74].

Robinson’s achievements consisted in putting all these results together into
a uniform and elegant calculus [84].

The linear refinement of resolution was introduced independently by
D. W. Loveland ([52], [51]) and by D. Luckham [54].

Detailed comparisons of different proof procedures in the linear strategy
were carried out by G. V. Davydov [24], D. W. Loveland [53], W. Bibel [3],
W. ChaQg and L. Lee [16] and by D. W. Loveland [50].

2 Algorithmic.. 17

The first implementation of a proof procedure for the first-order logic was
done by D. Prawitz, H. Prawitz and N. Voghera in 1958/59 [75] and the first
implementations of mathematical theorem proofs were done in the midfifties.
For instance, in 1954 M. Davis [23] implemented Presburger’s decision
procedure for the arithmetic addition.

In 1956 A. Newell, J. Show and H. Simon [65] constructed a program
called the logic theorist for proving theorems in propositional logic in a way
which simulated the human problem solver.

In the world literature we can fmd a review of various proving systems e.g.
R. S. Boyer and J. S. Moore [12] present one of them, which verifies the
properties of recursive functions. This system employs the reduction and
induction. Some lemmas in Boyer and Moore’s interactive proving system are
specified to be proved before their using in the main theorem.

Several heuristics make the proving theorems more general. This is an
incomplete system. The heuristics enhance its effectiveness. This system verifies
programs and theorems of mathematics and metamathematics (A. Bundy [14]),
as well as Wilson’s theorem (D. Rusmoff [86]).

JL. M. Hines’s system of proving theorems [45], [44] transforms several
simple conclusions into more general ones which simplifies concluding due to
elimination of auxiliary results.

In consequence the usage of these rules is bounded which, however, does
not detract from the value of the results or accelerates the proving process.

The next proving system constructed by S. A. Miller and L. K. Schubert
[56] recognizes natural language. It is a hybrid system namely a resolution
proving system equipped with the specialized concluding modules concent­
rating on the fixed data structure which accelerates concluding. In this system
there are modules calculating in the arithmetic theory and the set theory. This
module was described by J. Haan and L. K. Schubert [38], The theorems
which are proved by this system are formulated in the language of the
first-order predicate calculus.

H. S. Jonsohn, R. Landwehr, G. Writson [46], [47] present an interactive
proving system based on J. A. Robinson’s solution [85]. This system accepts
expressions of lambda calculus. This system applies semantic approach in
generating proofs by contradiction.

The next system constructed by S. Greenbaum [34], [35] uses various
variants of the resolution method. Complex data structures make it possible to
avoid redundancy which results from storing a lot of copies of the same objects
and to accelerate the search of required information from a data base.

M. E. Shekel’s system [94], [93], [92], [91] is based on the resolution
method represented by graph. The formulas including the equality symbol are
simplified by means of a reduction system. One element of this system is
a prologlike proving system.

1 8

M. Gordon, A. Milner and C. Wadsworth [32] and M. J. C. Gordon [31]
tested LCF program which verifies the properties of calculable functions
defined in the language of the first-order predicate calculus and lambda
calculus. The strategies of theorem proving were formulated by L. Cardeili in
user-friendly programming language ML [15]. This system was applied in
testing several standard mathematical theorems. It was also tested by
L. Paulson [67],

E. L. Lusk, W. W. McCune and R. A. Overbeek [55] constructed programs
which enable the user to apply many functions from different proving systems.
These programs are convenient to use. The elements of this system are grouped
into five levels.
• In the first level there are several implementations of primitive types

nonexistent in Pascal.
• In the second level the type “object” was implemented. On the elements of

the type “object” we can use the unification and the substitution rule. In this
level there are mechanisms allowing to represent and to use logical formulas
and then substitution. Moreover each object can have some attributes.

• On the third level we can use functions allowing to conclude by resolution
and to absorb clausules.

• On the fourth level it is possible to do a configuration of the whole proving
systems. The systems on this level are represented by independent processes.

• On the fifth level the modules are able to manage the processes from the
fourth level. The tools in this system are general enough to construct the
proving theorem system in lambda calculus, the system of natural deduction,
Gentzen's system and the system based on the resolution rule.
K. M. G. Raph [78], K. Blasius, N. Eisinger, J. Siekmann, G. Smolka,

A. Herold, C. Walter [10], A. Bundy [14] and H. J. Olbach [66] constructed
the system in Kaiserslautern and Karlsruhe which belongs to the greatest
projects of this type. This system assumes that proving theorems requires
extensive, specific knowledge which is used to formulate theorems. It consists
of two levels:
• The aim of the first level is to gather information (axioms, definitions etc.)

which is specific for the considered problem and to decide about the way of
proving. Moreover this level chooses the proper strategy and makes the
suitable modules active.

• The second level is based on the structure of graph in which each edge is
a potential step in concluding in the set of clausules e.g. the edge of the graph
means using resolution or factorization. Concluding is possible because of
special modules. One of them transforms formulas into clausules. Later they
are grouped to form the edges of the graph. Then the graph is reduced by
absorption of clausules. Next module includes the unification algorithm for
the formulas with identity. Another module chooses various strategies of

r 19

proving theorems. Next module contains adopting procedures of division
and simplification of the diagram of the graph. By means of this module it is
possible to discover the loops caused by frequent usage of the same lemma.
The clausules derived from the considered theorem have priority. Useless
edges of the graph resulted from tautologies are reduced. Using this module
we often lose completeness of this strategy of proving. All these modules
improve effectiveness of this system.
Next system constructed by T. C. Wang [99] is based on resolution.

Additionally in each constructed clausule there is.information about “history”
of clausules. It makes possible to limit the form of the generated proofs. This
method finds some special cases of absorption.

In this system there exists a semantical approach to proving theorems. The
system will consider only these clausules which are accepted in the model. In
[99] we can find examples of proved theorems.

The proving theorem system constructed by S. Wolfram and Ch. Cole and
described by A. Bundy in [14] is an interactive system which facilitates
manipulation of mathematical expressions. This system can perform the
following operations:

1. Decomposition of mathematical expressions,
2. Operations on polynomials,
3. Solution of linear and not linear equations of several variables,
4. Differentation and integration of the wide class of expressions,
5. Operations on matrices,
6. Operations on finite and infinite series (limitation, addition, multipli­

cation).
This system enables the user access to various mathematical environment:

• numerical calculations,
• graphic representation of mathematical expressions,
• advanced programming language,
• interactive communication.

W. Bledsone and M. Tyson [11] constructed Gentzen’s interactive system
for proving theorems of the first-order predicate calculus. The key idea of the
system is based on dividing the problem into many subproblems. It is possible
to use mathematical induction. The user can influence the process of searching
the proof and indicate the optional rule of conclusion. This system was
described by A. Bundy in [14].

Some aspects on automatic theorem proving were described by A.' Biela
and M. Wojtylak in [8].

A. Trybulec [97] developed the well-known MIZAR proof-checking system
based on the resolution method.

11th International Conference, TPHOLs’98, Canberra, Australia, Septem­
ber 27—October 1 was dedicated to current aspects of theorem proving in

20

higher order logics and formal verification and program analysis. Besides the
HOL system, the theorem provers Coq, Isabelle, Lambda, Lego, Nuprl and
PVS were discussed and published in Proceedings [36],

J. Harrison in [40] combines traditional lines of research in theorem
proving and shows the usefulness of real numbers in verification.

This analysis of literature on automatic theorem proving points out that
there are many interesting systems.

Our considerations strongly vary from the above-mentioned studies, since
our logic contains a built-in notion of program and because these con­
siderations enable us to prove theorems which include programs. Our
constructed system enables us to find assumptions which are necessary for the
proof of expressions which are not theorems. Then this system looks for the
special assumptions during the execution of program and tries to finish the
proof. After finishing the proof this system shows us all the adopted
assumptions. Using this system the partial correctness and equivalence of
programs can be determined.

PART I

Chapter 2

Basic definitions

2.1 The language of AL

To construct a language of algorithmic logic we have to distinguish a set of
signs called the alphabet and to give some syntax rules of creating syntactically
admissible expressions in the language.

The alphabet L of algorithmic logic AL consists of the union of disjoint and
at most denumerable sets:

1. V the infinite set of individual variables,
2. V0 the infinite set of propositional variables, we assume that the set

V0 u V is linearly ordered by a certain ordering relation,
3. J f the set of non-negative integers and N = jV \ { 0},
4. [JmeN Pm, where Pm is the set of m-argument predicates,
5. where denotes the set of m-argument function symbols,
6. {TRUE, FALSE} the set of logical constants,
7. { —>, a , v , —>} the set of logical connectives: -> (negation), a (conjunc­

tion), v (disjunction) and -» (implication),
8. {V } the set of general quantifier /3 means --V ->/,
9. {(J, P|} the set of existential iteration quantifier and the universal

iteration quantifier respectively,
10. {begin - ; - end, if - then - else - , while - do -} the set of program

connectives called composition, branching and iteration respectively,
11. {(,),/,[,]} the set of auxiliary signs. □

The standard definitions of the sets T0, F0, S0, S F of classical terms,
classical open formulas, substitutions as assignment Instructions, programs,
and generalized formulas sometimes called formulas may be found in L. Bana-

23

chowski [1], G. Mirkowska and A. Salwicki [64] and A. Biela [5]. We recall
these definitions.

By the set T0 all classical terms we shall understand the least set of
expressions closed under the following two formation rules:

tl. If x eV then x e T ot
t2. If for some m e l" and T1,...,rme r o are classical terms then

(p{rl t ...,xm)eT0.Q

By the set F0 of all classical open formulas we shall understand the least set
of expressions closed under the formation rules:

fl. V0u{TRUE, FALSE} c F0,
f2. li p e P m for some m e N and r l ,...,rmeT0 then p (t15.-.,tJ gF0,
f3. If a, f isF 0 then ->(a), (a a /?), (avj5), (a -*/J)eF0. □

The set (denote it by At and call atomic formulas) is created by usage of fl, f2
formation rules only. By an elementary formula we shall understand any
classical open formula of the form p(r-x, Let E be the set of all elementary
formulas.

The set Sa of assignment instructions is the set of all expressions of
the form:

(a) [XiAi x j r n>a ja J for n, m e N,
where x u ...7x„ (respectively av ...,a j are pairwise different individual
(respectively propositional) variables, xls ...,zn are classical terms and
av are classical open formulas. □

The set S of programs is the least set containing all elements of S0 closed
under the formation rule:

si. If a g F0 and K, M e S then begin K ; M end, if a then K else M, while a do K
eS. □

Sometimes the programs begin K; M end, if a then K else M, while a do K
will be denoted by [K M], jvi[a K M], *[aK] respectively. Let us denote

...]]] by for m > 2

The set Tof all generalized terms is the least set containing T0 closed under
the following formation rules of construction:

1. If T i a r e generalized terms then (p{r1,...fT:n)eT t
2. If K e S and re T then K reT . □

24

The set F of generalized formulas is the least set satisfying the following
conditions:

1. F0 c F,
2. If a ,fieF then -» (a), (a a fi), (a v /?), (a -> F,
3. If K g S and cteF then Kcc, {JKa, f^K aeF , where (J and p] denote the

existential and universal iterational quantifiers respectively. □

The set F v of generalized formulas with quantifiers is the least set satisfying
the following conditions:

ql. F0 c Fv>
q2. If a, f e Fv then - (a), (a a f), (a v £), (a -> ¡1) e Fv,
q3. If K e S and a e f ¥ then Ktx, [JKoc, p iC a e F v, where (J and p| denote the

existential and universal iterational quantifiers respectively,
q4. If a gFv and x eV then 3xa, Vxa e F v. □

By the language of AL we shall mean the system SF = <L, T0, F0, S0,
S, F > and by the language with generalized terms we shall mean the system
.Sf'' = <L, TOJ F0> Sa> S, T, F '> , where F' additionally is dosed under the
following formation rule:

(i) If are generalized terms then p(Tj,,...,i:n)eF ', where p is an
n-argument predicate symbol. □

By the language of the extended algorithmic logic of the first order, with
classical quantifiers introduced by L. Banachowski [1] we shall mean the
system SF" = <L, T0, FD, Sa, S ,F V>. □

We shall denote by &(£) the set of all individual and propositional variables
of the expression (. Let 0 denotes the empty set and P(X) denotes the set of ail
subset of the set X.

If se S is of the form (a) then the expression obtained from the expression C
by simultaneously replacing all occurrences of the variables x if a^e (xl 5 x n,
a a m] by the expressions a.j for 1 < i < n, I < j < m will be denoted by s(.

2.2 Realization of an algorithmic language

Let U be a non-empty set and let S80 = <5,,, u , o , j—►, — , / \ , \J 0> be a two-
element boolean algebra with the unit element \ / and the zero-element f \ and
B0 — { / \ , \ / }, where — is a complementation and u , n , i-+ are binary
operations on Ba such that x n y is the infimum, x u y is the supremum and
x i—> y = — x u y. Let Un — JJ x . x XJ be a Cartesian product of the set U.

n— times

25

By a valuation v in the set U and the algebra &0 we shall understand any
mapping of the set of individual variables and propositional variables into U or
¿^respectively. The set of all valuations will be denoted by W. □

By a realization (see L. Banachowski [1], G. Mirkowska and A. Saiwicki
[64], A. Biela [5]) of the language L£' in a non-empty set U and in the boolean
algebra ¿$0 we shall understand any mapping 02 assigning to each functor <p,
a function (p#‘.U n ->U and to each predicate p, a function pgt:Un — B0. Any
realization 02 induces mappings : Wu {LOOP} U u {LOOP} for t g T̂
s* : W u {LOOP} -> W u {LOOP} for se S ot am:Wv{LOOP} B0 for a e F ’ and
mappings K# c= W u {LOOP} x W u {LOOP} for KeS. LOOP differs from any
other element of AL and intuitively means that the value of a program in
a realization and a valuation is not defined. We give the precise definitions of
these functions.

Let v e W then

(i) iva (u) = y(w), x^LO O P) = LOOP and p^LOOP) — f \ for every in­
dividual and propositional variable w and for every individual variable x
and for every propositional variable p,

f (P#(xL3l(V)> ■■->zn3t(v)) if xi3t(v) are defined
(¡i) <P(T = < for every 1 < i < n

lLO O P in the opposite case

f Pa(Ti»(ü))- ,TnSi(y)) if xux(v) are defined
(iü) p(rl5...,Tn)^(ü) = i for every 1 < i < n

O
<

__

j in the opposite case

(iv) ^(u) = v' and s^LOOP) = LOOP for every assignment instruction s of
the form (a), where

f v{z) for z $ {xi f xn, aL, a j
v'(z) = < xiSt(v) if z = for some 1 < i < n

[_ ocjgi(v) if z = aj for some 1 < j < m

Obviously [] a (u) = v,

(v) TRU Ea{v) = F A L S E R) = A 0>
(vi) (-a ^)(u) = -a*(w),

(a a flgiv) - cta{v) n pm{v),
(a v 0)*(o) = a* (w) u fia{v\
(a -> P)jv) = aa (y) »-► /!*(»), for every classical open formulas a, e F0,

(vii) If a e F 0 and K, M eS then

26

IK M lsiv) =

y .[aiCAi] gf(v)

M&iKgiv)) if Kg(v) and M ^K ^v)) are defined
LOOP in the opposite case

= i M a(v)
LOOP

if aa (y) = \J o and K a(v) is defined
if ct^v) — / \ o and M a(v) is defined
in the opposite case

where i is the natural number such that
; (^ ‘a)3f(y) = f \ 0, K.gf(v) is defined and

(Ktyaiv) - \ / o for every j < i
LOOP if such i does not exist

(viii) ff Ke S and z e T then

(Kz)M(v) -

(ix) If a s ? ' and Ke S then

(zgiKgiiv)) if is defined
[LOOP otherwise

{a^K^iv)) if Kgf{v) is defined
/ \ o otherwise

((J.Ka)a (z>) = sup{(Kia)ijf(y):ie./f'',‘}>

(fi *«)*(*) =

where K°ct = a and K l+la — K (K la) for every a, p s F .
(x) The equalities from (vi) for every a, {1 e F'.

If we consider the language F£" then we omit the point (viii) and we
change F' into Fv and we add a new point:

(xi) If oce Fv and x eV then (3xa)*(u) = sup { a a n d (Vxa)^(y) = inf
{agf(vj):jeU}, where Uj(x) = j and Vj{z) = v(z) for any v e W and □

To illustrate the meaning of the generalized formula of the form Ka for
a e V0 let us consider the language of arithmetic system in the set of nonnegative
integers using s as successor function, 0 as the number zero and = as the
identity relation. For the sequel considerations we shall use alpha a = ft
instead of (a -»/?) a (/? -> a). It is easy to see that for K of the form:

-v-[(x = y)[a/FALSE][[u/0]; [*H (u - y) v (u - x))[u/s(u)]];
j^ [(u = x)[fl/r RU £] [a /F ALSjE]]]]]

27

the relation < less than is definable by using the generalized formula Ka in the
following way: x < y = Ka. In other words we can say that in the language
with the separate symbol < the above mentioned formula may be an axiom
for the relation less than in the arithmetic system. We illustrate the generalized
formulas of the form (JX a and f)Kct:

[x/0] U O /x + 1] (x = y), [x /I] f t [xfx + 1] - (jc = 0).

We shall say that a generalized formula a eF ' is valid in the model
J (~ <U, @0,& > ¡J{\= <xl iff a^(u) = \ J o for every v e W. □

We shall say that v is the valuation in a model if it is the valuation in the
set U and the algebra 3S0 of this model. □

A mapping C defined on the set of all subsets of formulas is a consequence
operation if for every sets X, Y of formulas the following conditions hold:

1. X a C(X),
2. C(C(X)) c C(X),
3. C(X) c C{Y) whenever X e Y n

We define the semantic consequence operation in the language S£'.

A generalized formula a e f is said to be a semantic consequence operation of
the set X c F' (in symbols aeC ^C I)) iff for every model < U, &0, 0t~> the
following condition holds: if every generalized formula f ie X is valid in the
model <U, &„,&>, then a is valid in the same model. □

A generalized formula a e F is called a tautology iff aeC^(0). □

Obviously for the other languages the definitions are analogous. G. Mir-
kowska [58] proved that the semantic consequence operation is not finitistic
so there exist a generalized formula a e F and X c= F' such a e (X) but
a ̂ (XJ for any finite subset X 0 cz X . Therefore any axiomatization of (0)
needs at least one rule with an infinite set of premises.

By a rule we mean the set of sequents of the form <X, a> , where X is a set
of formulas called premises and a is a formula called conclusion. □

For any subset D of the set of programs we say that the rule r is
D-admissible rule of the consequence operation C iff for every sequent
< X ,a > er and for every K<=D:

if K X cz C(0) then KaeC{%

28

If D is the set of all primitive programs (i.e. assignment instructions) then
instead of saying that the rule r is D-admissible we say that the rule r is an
admissible rule. □

A rule r is said to be a derivable rule of the consequence operation C iff for
every sequent < X ,a > e r we get a eC{X). □

We shall say that a generalized formula a. is an element of the set $ iff there
exists a classical formula /? (i.e. the formula without programs) such that
a and ft are eqivalent.

A rule r is finitary iff for every sequent <X,cc> e r the set X is finite and

V/e say that a conseauence operation C is complete iff C(a) — F for every
a $ c m . n

2 3 A deductive system for AL

For a, fi, A e F, 3 e FOJ se S0 and K, M e S we define the notion of an axiom o f
algorithmic logic which will be understood as any generalized formula of one
of the following forms:

A1 (a ^ / ?) - » ((^ A) - (a ^ A))
A2 a -» (a v /?)
A3 /? -» (a v P)
A4 (« - X) - ((j5 - X) - ((a v -> X))
A5 (a a ft) -» ft
A6 (a a ft) -* a
A7 (a —> /?) —>■ ((a —► A) —> (a —>• (j5 a 2)))
A8 (a —* {ft —* A)) —*• ((i% a ¿6) —*■ A)
A9 ((a a ft) —► A) —* (a —)► {ft ~* 'O)

A10 (a a ->a) ft
A ll (a —»(a a - ia)) -«a
A12 a v ->a
A13 7Rl/£ a^FALSjE
A14 s<5 = i<5”
A15 X (av ffl = (JCa v ICjS)
A16 K {a a $ = (Ka a 2C0)
A17 X - a - ->Ka
A18 K TRUE -> (~>Ka -* K -a)
A19 K (a -> P)^ (Kec ft)

29

A20 K TRU E ((Ka - Kp) -> K(a -» p))
A21 M U Ka = [Ma v M 0 K{Ka))
A22 M p| Ka = (Ma a M f] K(K<x))
A23 [K M]a = K(Ma)
A24 ^ [¿ K M jo i = ((<5 a Xa) v (-■<5 a Ma))
A25 *[<5iT|a = (J _̂ [<5 K []] (- m5 a a)
A26 []a = a

Let /4jc denotes the set of all axioms and let R be the set of rules of in­
ference:

a, a —>• /? a,K TRU E
r° ’ P ri : " Ka

{ X ^ M K V - .ie jV } {M fra -* X:iexT}
T z' X - ^ M f ^ K a Tz '' M \J Kct X

Since two rules have infinite sets of premises, so we define the consequence
operation by using ordinal numbers.

Definition 1. Let y, p be any ordinal numbers less than the smallest
uncountable ordinal number Q. The consequence operation of algorithmic logic is
defined for X c F as follows:

(1) C°R(X) = Ax u X,
(2) Ck+1(*) = CJi(X) w [<xeF:<Z,a> er for some r e R and Z <= Cj^(X)},
(3) C^(.Y) — M {Cr(X) : p. < y}, when is a limit ordinal.
(4) CR(X) = U [C'R(X) : y < Q) . □

The following theorem was proved by G. Mirkowska [58].

Theorem 1. (X) = CR{X) for every X c F. □

We shall write X [- a instead of a e CR(X) and |- a when X is empty. Any
two generalized formulas a and p are equivalent iff |~ a s p.

Let and 89 = < B ,gi t ...,gn> be two similar algebras,
i.e. algebras of the same type. A mapping h : A -> B such that
h[ffiav ..., a*)) = Hak))> f°r all i < n and aA, ..., a* e A is called a homo­
morphism.

A homomorphism h is an endomorphism if 89 — sd. Any propositional
language can be treated as a special algebra # = < C ,F lJ...iFn>, where
Fj (1 < i < n) denotes the operator of forming ^-propositions. Such alge­
braic treatment of propositional connectives appeared to be very useful.

The rule r 1(as it can be easily seen, reminds of the substitution rule,
but really it is not the substitution rule, since a substitution rule ought
to be defined as a function i.e. an endomorphism defined on set of atomic
formulas with values in the set of all formulas. Unfortunately we can see that
this rule transforms any formula p(zl,...,xn) only into the formula of the form
p (r \ , t'„) but not for example into the conjunction of two formulas. Our aim,
however, is to get, maybe under certain restrictions, a standard definition of the
rule of substitution.

Chapter 3

The substitution rule

3.1 The notion of (e, ^-function and K g program

In this chapter we shall introduce the notion of program-substitution in AL
and we shall prove that it is in accordance with the basic intuitional notion of
the standard substitution.

In this paragraph we shall try to separate from all endomorphisms such of
them that preserve the main properties of programs.

Let e : A t -> F0 be a mapping such that e(7RUE) = TRUE and
e(FAI^S E) ~ FALS E. Let he : F0-*F o be an extension of e fulfilling the
following conditions:

1. he(a) = e(a) for a e At,
2. Ae(- 0) = - A m
3. he(fi • A) = he{fi) • Ae(A) for A e F0 and • e { a , v , -*}.

It is easily seen that he : Fa -* F0 is an endomorphism and that it is the only
extension of e : A t -*■ Fa fulfilling (1), (2), and (3).

From all endomorphisms he defined on F0 we shall try separating the ones,
whose special extensions p to the set F, which will be called the program-
substitution, satisfy the following meta-condition:

(b) p(CRm <= C M

The condition (b) guarantees that the set of all algorithmic theses of AL will
be closed under these functions. Now we present two examples showing the
difficulties which we will have to overcome.

32

Example 1. Observe that it is impossible to define p : F —» F for the generalized formula of the
form Ka by the equality p(Ka) = JT(/j(a)), simultaneously maintaining the properties of homomor­
phism. To visualize this, assume that e{p(x)) = p(x) a p{y) and let x, y, z denote different individual
variables. As an immediate consequence we get

p([y/z] PM) = [y/z](p(x) A p(y)) and pifylz] P(xj) = p(x) a p(y)

since p[p(x)) - h({p{x)) = e{p{x)). According to the axiom A14 and (b) we get
|-(p(x) a p{y)) = (p(x) a p{z)) which is impossible. ■

Example 2. It can be easily seen that an endomorphism hc on F0 cannot be extended to the function
p : F -*■ F if p satisfies the condition p(Ka) — K'p(oc) where Ka. is the generalized formula and K ' is
a program.

For this purpose let

e(a) — a a FALSE for a e V0.

Then

p([a/(a -> a)] a) = [a/« -*■ a]'(a a FALSE)

and

p([a/(a -> a)] a) = p(a) -> p{a).

Hence, by (b) and A14 it follows that |- FALSE = TRUE, which is false. M

At first we shall introduce a few definitions to illustrate the aim we set at the
beginning of the point (b).

D efinition 2. For the further considerations we shall use the symbol g,
sometimes witk indices, for any one-one mapping of the set F u F0 into F u F 0
such that g(V) c: V and g(V0) c V0. We denote by G the set of all o f these
mappings. Any such mappings can be extended to the function g' defined on
T0 u F0 by putting:

1. g’(z) = g(z) for every z e F u F , ,
2. g'(TRUE) = TRUE and g'(FALSE) = FALSE,
3. -,*„)) = for any (p e \ , n e N and for any

T1> —j ^
4. g'((p) = <p f° r any <p e
5. for any p(xv t„)g E, neN,
6. g'{a • P) = g'{a) • g'(§) for • e { a , v , ->} and g'(->u) = ->g,(ct). □

If s is of the form (a) and / i s a mapping from T0 into T0 and from F0 into F0
such that f[V) c: V, J[V0) c V0 and if / is one-one on V kjV0 then by f(s) we
denote the assignment instruction obtained from s by exchanging all expres­

3 Algorithmic... 33

sions of the form x it a}, ctj for /(x f), /(t(), ¡(aj), f[<Xj), where 1 < i < n and
1 < j < m respectively. Obviously if s = [] , then f(s) = [].

We can notice that the function g' allows us to change the variables inside
any classical term and any classical formula. Now we consider an example to
explain the connection between the mapping g' defined on Ta u Fa and
a certain endomorphism.

Example 3. Let g eG be a mapping such that g{Vv V„) <z [V v V'J,)\S(a) for some a e F „ and let
e : Al -* F„ be defined in the following wayr

e(a) = g[a) a a,
e{TRUE) = TRUE and e[FALSE) = FALSE,
e{p [xy, r j) = p{g'{x 1). ...,g'(xn)) a a

for every a eV B, peP„, n e N and x1,...,x„eTQ.
Since g'(sx) = g'(s)g'(r) for every r e 7̂ , and every s e S a and moreover = a, we get

By A14 we get

Thus

e (s p { x r j) = e(p(W-u

= p(0'(3«D,-,0/(s^)) a a = p{g'{s)g'{xi } , a g'(sja

= aTsHo(o'(T,).....o 'f t j) a a) = g’(s) e { p (x t j) .

¡-ff'(s)eCp(-r1, ..,T j) = g'(s)e(p{x1, ...,xn)).

|-e (^ (T 1(- ,T j) = g’{s)e{p(xi ,...1xB)). ■

Examples 1 and 2 show that the definition of program-substitution on the
axiom AX4 ought to be very sophisticated. Example 3 shows a way how
to do it. Moreover Example 1 shows that if $(e(a))\$(a) ^ 0 then we have
difficulties with fulfilling the axiom A14 and we overcome them here by using
the function g\ which enables us to separate variables and which fulfills the
equality

e(sp(Ti7..., t„)) = gl(s)e(p(ri ,

For further considerations we assume that g e G and g' is the extension
of g from Definition 2.

Definition 3. Let geG.

e e £ g iff (1) e: A t ^ F0,
(2) g(TRUE) = TR UE and ejFALSE) = FALSE ,
(3) e(sp(x1 7 Tjf) = g'{s)e(p(q , ..., rn))

for any elementary formula p{xl ,...yxf). □

34

It is easy to observe that for such a mapping that e e g g, e : At -» F0 there
exists an endomorphism he :Fa ~* F0.

L em m a 1. For every g e G and for every e e £ g we get

(i) g(V0)r,9(e(E)) = <j>,
(ii) g(V\S(a)) n 9(he(«)) = 0 for every a e F 0, such that 9(a) n V0 - 0. □

Proof, (i) Assume to the contrary that there exist a e V0 and p(xv r j £ E such
that gf(fl)£S(e(p(T1,...,TH))). By virtue of Definition 3 we get

e([a/fc]p(Ti,...,T„jj = 9 '(W])e(p (x i>...,x„)) for beV a and a # b.

Hence

e(p(xL> TJ) = [?(a)/g(h)]c(p(tl5...5T j.

Since g(a) =£ <?(6) then

g(a)& ({_g(a)/g(b)]e(p(r1 > x„))).

Thus g(a) ^9(e(p(zu t„))) which is impossible.
(ii) Let yeV \S (a). If ae{TR U E , FALSE} then 5(e(a)) = 0.

If a is of the form p(xv ~,Trt) for p(rp x ^ e F then

l y f al pb i , - » 0 = p (T i , r j .

For from Definition 2 we get j(y) ^ 5 (2) and

g(y) 49 (fjg(y)/g(z)2 e(p(xl y tJ)).

Hence and from Definition 3 (3) we get ¿?(y) £9(e(p(xl t t n))).
Let us assume inductively that (ii) holds for every subformula of a. If a is

of the form or ->f$ for some # £ { a , v , -»} then by the inductive
hypothesis we get g(y) $9(he(fl)) u 9 (he(Xf) in the first case or g(y) £9(he(fi)) in
the second case. Since he is an endomorphism, g(y)f9(he(a)). ■

It is easy to see that for every g from Definition 2 there exists a function
e : At - +F0 such that e e ^ r Obviously if e(TRUE) — 'IRUE, e(FALSE) =
= FALSE and e(p(xly...yt„)) = p(g'(xA) , g ' (t j) then e e £ g for a given g from
Definition 2. However, it is not true that for every function e: A t -> F0 there
exists a function g from Definition 2 such that ee& g.

35

We would like to explain the underlying idea of the definition of
a program-substitution p : F -> F. Look at Example 2 and consider a generali­
zed formula a = [a/a -» a] a = [a/a —*■ a] a. From (b) and A14 the generalized
formula p(a) should be a theorem of AL, but Example 2 shows that it depends
on the value of p([a/a a] a).

The above considerations allow us to define the program-substitution
p : F -» F by putting the restriction p(F0 = he for some mapping g e G and
some Now we have to decide how to define p(a) for a e F \ F 0.

By using a mapping g eG and e e £ g we put

P{v) = ig(a)fe(a)] (lg(fl)/g(a) -*■ 9(a)] g(a) = [g{a) g(a))).

By (b) we should get \- p(cc). By A14 we get

h l9(a)/g(a) -> ^(a)] 0(a) = (g{a) -* 0(a))).

Since the rule r of the scheme — for any oceF and s e S n is a derivable
SOL

rule in the consequence operation of AL, we get

(“ lg(a)/e(a)] ([g(a)/g(a) -> 0 (a)] g{a) = (g(a) -> 0 (a))).

Thus f- p(a).
Look at p(a) once more. Wc introduce and explain some abbreviations

which will be defined later. Obviously 5(a) = {a}, so we put s* = [g(a)/e(a)]
and we changed K = [a/a -> a] for K eg = [g{a)fg{a) -> g(a)]. Later we shall see
that in general if an elementary formula occurs in a program K then K eg really
depends on a function e e £ g, and any propositional variable a e Va will be
changed by g(a). Therefore p{a) = ^ (K egg(a) = {g(a)-+ g(a))).

Now let us consider the generalized formula

ß = la/p'(x), y/z] p(x) = [a/p'(x\ y/z] p(x)

for different individual variables x, y, eV. Let g eG and e e g g. We put

Piß) = ig(a)fe(a)] (e(p(x)) = Lg{a)/e(p'(x)), g(y)/g(z)] e(p(x))\

By Lemma 1

_g{a)/e{p'{x)), g(y)!g(z)2 e(p(x)) = e(p(x)).

Hence and by r l3 A14 we get \- p(ß).

36

Look at p{ß) once more. Since S(ß) n V 0 = {a}, we put sp = [g(u)/e(a)] and
we change

K = la/p'{x\y/£] for K% = lg{a)le{p'{x)),g{y)lg{zf]

and

p{x) for e(p(x)).

Thus

Pifl) = sf (e[p(x)) =

These examples show us that for any generalized formula cceF \F a the
notion p{ß) needs the following expressions: the assignment instruction sß and
the program K.% for every K e F . But Kg may be defined by using the function
which transforms xeV , aeV 0, p{xi 7 tJ e E into g{x), g{a), e{p{xu ...,xrf)
respectively.

D efin ition 4. Let g eG and e e § q. The function u:A t-> F0 is (e, g)-function iff
u{a) = g{a) for a eV 0 and u(a) — e(a) for a e A t \ V0. □

If u is (e, ¿¿¡-function then there exists an endomorphism hu defined on F0.

D efin ition 5. For any program K e S and any function g eG and e e £ g i f u is
(e, g)-function then we define K eg as follows:

1- I f K = [] , then K eg = [] ,
2. I f K is of the form (a) i.e. K is an assignment instruction then

K t = lg(xl)/g'{Tl) ,- ,g (xn)/g,(‘t„)1 g(a1)/hu{cti),...,,g(aj/hu(am)'],
3. I f K is of the form [MW], _vl[^ M N] or *[<5 M], then Kg equals

x[hu{5) M gNeg] or M*] respectively. □

D efin ition 6. Let H be an endomorphism on F such that the restriction
H/F0 = h'1 for some geG , e e S g and (e, gyfunction u. Moreover we assume that
for every a e F and K e S the function H satisfies the following conditions:

H(Ka) = K egH{o), H(U Ka) = JJ K egH(a), H (f | Ka) - f) K'gH(x). □

3.2 Program-substitution

In this paragraph we shall introduce the notion of program-substitution. This
definition needs the above defined endomorphism H and a special assignment
instruction s“ for every aeF . Now we define the notion of s“.

37

For every generalized formula a eF such that 5(a) n V0 = {al3..., am] and
for a couple of functions f f such that f : T 0u F0 -> T0u F0, f restricted to V0
is a one-one mapping from Va into VQ, f : F0 -* F0, we introduce the following
abbreviation:

If 5(a) n V0 = 0 then we put = []. Further we shall say that i f is
designated by < / , / '> .

D efin ition 7. Let g e G ,e e £ g and p :F F. We shall say that a mapping p is
defined by using g and e iff for (e, g)-function u and an endomorphism H defined
on F such that H/F0 = hu the following properties hold:
(1) H fulfils all conditions from Definition 6,

p(a) =
he(a) for x e Fg
s“H(a) for x e F \ F 0

where if is designated by the couple <g, e>. U

D efinition 8 . Let p :F —► F. We shall say that a mapping p is a program-
substitution (p g Sb) ifffor some g e G and e e £ g,p is defined by using g and e. □

Let us observe that the last condition (3) in Definition 3 is essential in
such a meaning that if we define the notion of program-substitution changing
only the definition of the set g g for g e G by missing in Definition 3 the point (3)
then we can show that for some gGG, and e from S g without the point (3),
there exists a program-substitution for which the property (b) does not
hold. Let x, y, z, denote some different individual variables and g e G
such that g(y) ^ x. Then for e :A t-f-F 0 such that e(TRUE) = TRUE,
e(FALSE) — FALSE and e{p(x)) = p'(x, g(yj) we can show that for an axiom
a of the form

[y/z]p(x) = [y/z] p{x)

the following property holds:

e[(y/z]p(x)) 5* fl'([y/z])e(p(x))

and that the generalized formula p(a) is not a thesis. Hence (3) from Defi­
nition 3 and (b) are false.

3 8

L em m a 2 . I f geG , ee S g, s e S0 and u is (e, g)-function then for any a eF a and
f e F we get

(i) s‘ /iu(a) = h"(sa),

(ii) / /iu(a) = hc(a), for VB n 9(a) c= 9(/?), where sp is designated by the couple
<g, e>. □

Proof, (i) Let s e S 0 be of the form (a). If aeV0 and a e { a a m} then a —a;
for some i e { l , ..., m}. Thus segha{a) =

S (O M a J] ?(ai) = ^ (« j)= hu(sa).

Since g is a one-one function, we get g{a) <£ {ff(xj,..., g(aL),..., g(aJ} for
a^{al5 am). Hence s|/iu(a) = g(a) = hu(sa). Obviously if a is of the form
TRUE or FALSE then (i) holds.

Assume that a is of the form p(t v ..., t„) and p(T1,...JTn)eE . First we shall
prove that sgg = g'{s)g for every g e 9 (e(p(Tt, t„))).

Tr% f-Vip ca se *t t i I n (-r \ n (y- 1 n (n t n (n 'll \ut> or*1 — n — n '(i;\n T f

g — g(xj) for some ; e n} then = p '^) = p'fa)*?- Let us observe that
?j = p(a.) for some zefi,...,?«} does not hold for in the opposite case using
the assumption we get ge&(e(p(xl7..., t„))) n Va. Hence and by Lemma 1
g£g{V0) which is impossible.

Since s%g = g'{s)g for every g e 9-{e{p(T1, ...,zn))), we get

sege(p{xv t„)) = g'(s)e{p(zv tJ)

Note that ee<f , so by Definition 3 we conclude that

4 e(P(Ti.... tJ) = e(sp(xl f r j) = u(sp(tl 3 t„)).

Consequently sghu(a) = hu(sa).
If the theorem holds for fi,X eF 0 then from the property of endomorphism

it also holds for a e {/? a X, p v X, P -*■ X, ->/?}.
(ii) Obviously for a.£ {TRUE, FALSE} the theorem holds. If a eV 0 then

by assumption a e S(/?). As a result / / i “(a) = spg{a) =■ e(a). Now suppose
that a is of the form p (t13 t„) for some p{xi t ..., t j e £ . By Definition 4
we get

^ /iu(p(Ti,...,xJ) = s/Je(p(T1,...,xfl)).

39

Let

^ = \.9{bl)!e{bi),...,g{b^e{b,)].

By Lemma 1 (i) we conclude that {g(bL) ,g {b ,)} n ^{e{p{zv ...» t0))) = p.
Therefore s/ie(p(TJ[)...1Tj) = e{p{xu ..,,z^). Hence sph“(a) = he{a). Since
hu: Fa -> F0 is an endomorphism, by inductive hypothesis for X, 5 e Fa we
get the equality s^/i“(a) = he(a) for a e {A a <5, X v <5, X 5, --A} such that

Now we present an example to explain the effect of program-substitutions.

Example 4. Let a e V0, x, y e V and x ^ y. It can be easily seen that for the program-substitution
p eS b defined by using g e G and ee& } and for the generalized formula a = a a [x/y]p(x) we get

p(a) = s“/f(or) = [g(a)/e(a)]{H(a) a t f ([x/y] p(x)))

= f 9 {a)/e{a)~]{hu{a) a [x/y] °tf(p(x)))

= [?(«)/<«)] 0(«) a [g(x)/g(y)] e(p(x)).

By A14 we get

H fsW /s(y)] e[p(x)) = ig{x)/g{y)'] e(p(x)).

Since hu{p(x)) = e(p(x)), Lemma 2 (i) allows us to conclude that

[0(x)/s(y)] e(p{x)) = e{p(y)).

Hence

b CfiM/ilO)] eO(x)) = e(p(x)).

Therefore we conclude that

b 5(a) a [ff(x)/p(y)] e{p{x)) = [g{a) a e(p(y))).

X = 8
Since for any 8, X eF and K e S the rule r' of the scheme ------------ is a derivable rule

KX = K8
of the consequence operation of AL, we get

b [p(fl)/e(a)] 07(a) a tg{x)/g{y)] e{p{x))) = [fl(a)/e(fl)] (g{a) a e(p(y))).

By A14 we get

b _g{a)le{a)1 (g{a) a e(p(y))) = (e(c) a [g(a)/e(a)] e(p(y)).

Since h“(a) = g(a) and hu{p(x)) = e(p(x)), we get [p(a)/e(a)] e(p(y)) = e(p(y)) by Lemma 2 (ii).
By the above considerations we get b P(a) — (e(a) a e(p(y))). Moreover by A14 b « = (a a p(y)).
Therefore we can say intuitively that p transforms a, p[y) into e(a); e(p(y)) respectively. ■

40

We can find in Chapter 4 in Theorem 9 other examples of program-
substitution.

We shall prove that any program-substitution p e Sb is in accordance
with our intuition. Now we consider the condition (b).

T heorem 2. Algorithmic logic is closed under program-substitutions. □

Proof. Let geG , e e £ g and let the mapping p eSb be defined by using g and e.
Moreover let u be (e, ^-function and let H : F —>F be an endomorphism
such that the restriction H/F = hu and

It suffices to prove by induction on the iength of the formula a that the
following inclusion holds:

At first we assume that y — 0. If a e Ax n F0 then he(oc) e Ax. Since
pjF0 — he, [- p(u). In the case a e Ax \ Fa we get p(a) = saH(a). Since |- saTRUE,
it suffices to prove that f- H (a) using rv It can be easily seen that for a
being one of the axioms of the form A1-A13 or A15-A26 we get \- H(a)
because if is a homomorphism. Let a = sb = s5 for some classical open
formula 5 e F 0. By Lemma 2 (i) and by applying A14 we get

We assume inductively that p(C£(P)) cz CR(fl) for every ordinal number
fi such that p < y.

In the first case suppose that y — p0 -1- 1 for some ordinal number /ia and
let a. e p(C&(0)). Hence and by Definition 1 we get aep(Cfr(ß)) and then by
the inductive hypothesis (-p(tx), or there exist X cz Cfc(ß), ß e F and r e R such
that <X, ß> e r and a = p(ß). Since H(Ax) cz CR(ß) and H(X)> e / for
every r 'e R and for every <Y, X> e r , we get H(CR(fi)) cz CR($). Thus we get
H(X) cz C M

Moreover <H{X), H{ß)> er, so {- H(ß). Applying the rule rx we conclude
that \-sßH{ß) for sß designated by < g,e> . Therefore if ß $ F 0, then (- p(ß)
and simultaneously J- a, or if ß e F0, then a. = hc(ß) and by A14 \- s^H[ß), which
by Lemma 2 (ii) gives }- tx.

sFH{a) for a e F \ F 0.
he(a) for ueF ,Ct

p(C^(0)) c= CR(fi) for any ordinal number y < 0..

1-s*hu(<5)= fcu(s5), so h H(a).

41

In the second case for y being a limit ordinal number and by the inductive
hypothesis we get U {p (Q (P))^ < y} <= C M -

Hence p(CW)) c C M ■

3.3 Basic properties of program-substitution

The aim of this chapter is to prove that any program-substitution maintains
the properties of an endomorphism without being an endomorphism.

D efinition 9. Let us consider the set X of pairs < a 1, a2> , where a.v a 2 e F and
where a1 is equal to a 2 or < a 1, a 2> is one of the following forms:

(1) < ssJla, ss1a> for aeV 0,
(2) <sslp{xL,f.fzn), ssrfiTy,..., x„)> for p(r1,...,T„)e£,
(3) < sa ,s-'a > ,
(4) <sa, s(a v f> ,
(5) <sf, s(a v f)> ,
(6) <sa, s(a a /?)> ,
rn <sR sin a /?w
(8) < sa, s(a ->■ /J) > ,
(9) <sp,s(a - > $ > ,

(1 0) < s(fC(Ma)), s([iC M] a) > ,
(11) <s(a a Kji), s^L[a.KM']fi)>,
(1 2) <s(->a a Mfi), sjv i[alC M]^)>J
(13) <s^!_[ocli []] ‘(iS a - 1 a), s(*[a ICJ > for every i e J i ,
(14) <s{Kioc),s\JKa> for every i z J f ,
(15) < s(K‘a), s P| Ka > for every i e J f ,

where K, M e S are programs, a, f i e f and where s is either a sequence o f
assignment instructions st ... s# Ice N or an empty sequence. □

We introduce (cf. G. Mirkowska [59]) the binary relation < in F for any a,
0 e F :a < /? iff there exist ai y aneF such that at — a, an = /? and for every
ie (1, ...,n — 1} the pair < a f;,a i+i> is an element of X.

Let us notice that the binary relation < is an ordering on F such that any
non-empty subset Z c: F contains a minimal element.

Now we shall prove that the logical value of the formula a does not depend
on the propositional variables which do not belong to the set of propositional
variables of the formula a.

L em m a 3. For any generalized formulas a, fieF and any g eG, e e £ g,
(e, g)-function u and for an endomorphism H :F -» F fulfilling the conditions

42

|

from Definition 6, the following property holds: if 3(a) n Va a 3(f), then
h spH{oc) ~ saH(a) where sp and sa are designated by <g,e>. □

Proof. The proof is by induction on the relation < from Definition 9.
Case 1. If a is a minimal element of thejelation < then a e F a. Hence by

Lemma 2 (ii) we get s^hu{cc) = he(a) and d*hu(a) = he(a). Obviously the restric­
tion H/F = hu. Hence and by A14 the induction basis is proved.

Case 2. Let a eF and suppose that the thesis holds for every generalized
formula a' eF such that a' < a. Moreover assume that 3(a) n V0 <= 3(f).

Case 2.1. If a eF 0 then Lemma 2 (ii) ends the proof of this case.
Case 2.2. If a is of the form si ... sm5 for some <5 e F0 then we use the

abbreviation 2 = ...stn_ i smb. Since tf(Cn(P)) e 0^(0), we get h s^ # (a) =
^# (2) and J- saH(x) = s“H(2) according to the scheme A14 and by rl and r'
from Example 4. Since 2 < a, 3(2) n Va a 3(a) n 3(f), we get by the inductive
assumption f s*H(2) = sxH(X) and j- spH(X) = sxH(X). As an immediate con­
sequence we get \- spH(a) = ^¿/(a).

Case 2.3. Let a be of the form sI ... sm KM~\A, a t = Sj ... sm (-><5 a M2)
and a2 — Sj ...sm((5 a KX). We can observe that a x < a, a 2 < a,3(ax) n V„ cr
3(a) n 3(f). Therefore using the inductive argument we get \- saH(al) =
salH(ax) and (- = s<ziH(ai). In an analogous way we infer that
|- saH(a2) = s“2H(a2) and spH(a2) = sâ H(a2). Hence, by A24 and r 1 we get

spH(a) s fH {az v at) which by A24 proves the thesis for this case.
Case 2.4. If a is of the form sx ...sm [i t M]2 then we use the abbreviation

a A = S i... smK M),L Similarly by the inductive hypothesis, A23 and rx we
obtain the thesis for this case.

Case 2.5. Let us assume that a is of the form sx... sm KX. We denote

2 f = Si...smK ’2 for any i e J f .

Obviously 3(2/) n V 0 c 3(f) n 3(a). Observe that Xx < a for every i e J i.
Consequently, by assumption f / i f (2,-) = sXtH(Xi) and (- s“H(2t-) = sXlH(Xf for
every i e J f . Since (- f]K 6 ^ K l5 for any ¿ e i 7, ie J f and every ICeS,
we get }- s“ii(a) -» saH(2I) and \- spH(a) -> spH(Xf for every i e J i using r l and
r' from Example 4. Hence and by A23 for every ie / it follows:

b ?im- [si

and
h 5 ^ (a) ^ [s « [s 1 . ..s J*]W H (2) .

Using r 2 and A23 we conclude that j- spH(a) = sAH(a).

43

Case 2.6. If a is of the form sA... sm (J KA then by analogous considerations
the thesis holds for this case, since f- K'ö -*■ 1J K5 for any 5 e F, i e J f and
every K e S.

Case 2.7. Let a be of the form sl ...sm * [<5 K]A. We use the abbreviations
<5f = sx ... sm (jv_[i5K []]'(-■£ a 2) for every i e J/'. Since 5(5,) n V0 <=. 3(a) n 3(/J)
and <5f < a for every i e j V, we get by the inductive hypothesis j- fH {5 ^ ~
s^H{b^ and |- H (3 ¡) = for every i e j V.

Hence and by A23 we get

h - [*■[>, . . J j a (^ (¿ X []] g ‘H (- i A X)

and moreover

h s“H (S ,) [s ' [s , ... s J 3 M S K [J] ; m Ö A X).

Clearly |- sl ...smM tß' -* sl ...sm\JM ß' for any ß’e F, M e S and i e / .
Hence, by Ä25 and A23 it follows that

J- sßH(ö-) -> saH(a) and f- s“ii(<5;) -» sßH(<x) for every i e Jf_

Transforming for every i e J f the antecedents in the above two theses
according to the schema A23 and using the rule r 3 and A25 we get

sßH{a) - saH{a) and \- fH (a) -* sßH(a),

which ends the proof for this case.
Case 2.8. If a is of the form

Si - s m(2 a <5), ... sm (2 v <5), Sj ...sm(2 -» <5), ...sm(-n2)

then by the inductive hypothesis, the thesis of the above lemma holds. ■

Applying Lemma 3 we get the basic properties of program-substitution.

T heorem 3. For every program-substitution p eS b and for. all generalized
formulas a, ß:

(i) f- p(a -* ß) = (p(a) -* P(ß)\
(ii) |- p(a a ß) = (p(oc) a p(0)),
(iii) f- p(a V ß) = (p(a) v p(/l)),
(iv) f-p(-.a) = ^p(a)- □

44

Proof. We shall prove only the point (i) since the proofs of the other points are
analogous. Let us assume that p e Sb is defined by using some g e G and e e £ g.
Moreover let

() = i he ̂ for a e F °
^ for <xeF\F0

where sa is designated by a couple <g,e> and H fulfills the conditions from
Definition 6 . If a, ß t F 0 then (i) holds, since e is an endomorphism on F0.

Now suppose that a ^F 0 and ß$ F0. Thus p(a ^ ß) = sa" ß(H(a) H{ß)).
Since (- sa-'pTRUE, we get

p(a -*ß) = a) -> ^ ßH(ß)) by A19 and A20.

Hence and by Lemma 3 we conclude that (- p(a -* ß) == (saH(a) sßH(ß)),
which ends the proof for this case.

Now we consider the case a £ F 0 and ß e F 0. Then p(a) = saH(<x) and
p(a -* ß) = sa~'ßH (a ß)= -> By A19 and A20 we get
j- s ^ ß{H{a)^H(ß)) = (^ ßH (c i)~ > ^ßH{ß)). By Lemma 3 |- s ^ t f (a) s
saH(ct) and sa~*ßH(ß) ~ sßH(ß). Hence we conclude that \- p(a -> ß) =

; $F01 p(a) = saH(ct). Moreover by Lemma 2 (ii) we get(s*H(x) sßH(ß)). Sine
sßH(ß) = he(ß) = p(ß). By A14 j- sßH(ß) = sßH(ß) so sâ ß(H(oi)
(p(a) -> p(ß)). The case ß £F0 and cce F0 is analogous. ■

H{ß)) =

C oro llary 1. As an immediate consequence of Theorem 3 and Theorem 2 we
conclude that for any generalized formulas a, ß e F and for every program-
substitution p :F F, if a = ß then |- p(a) = p(ß). □

The next two subsections introduce the notion of program-substitution in
algorithmic logic with generalized terms, quantifiers and with non-determinis-
tic programs. We can omit them while reading the paper for the first time.
Therefore these two subsections will be printed in italics.

3.4 Program-substitution in AJO with generalized terms

In this chapter we shall to repeat the main results which were proved in earlier
paragraphs for the case o f generalized formulas. To illustrate the intuitive meaning
of the generalized terms of the form K x for K g S and x e V let us consider the
language of integers with s as succesor and 0, = as well-known symbols.
We consider the generalized formula of the form x L + x 2 + x3 = Ky where K
is of the form

[0/0, i/1] *[i < 3 Hy/y + xj [i/s(0]]]]-

45

Obviously in the intuitive meaning the term Ky may be understood as
a definition of the sum o f three elements, where x t means a term o f the form (p{x, i)
for some <p e Oz, xyie V ys€ C>1, 0 , 1 , 3 e This example shows that the notion of
generalized terms is natural. In the introduced language we shall give two
examples of generalized terms.

E x am p le 5 .

1. [x/x + (y- z)](z - (x-_y))
2 . *[x < y [x/x + 1]] (x + y) + y_[x = y [u/x - 1] [z/2]] ((x + u) - z). □

By t(x1/t2) for tAi xz, x e T' we denote the expression obtained from x
by simultaneously replacing all occurrences of the generalized term xx in x
by x2.

For further considerations we need the notion of the length of programs,
generalized terms and generalized formulas.

D efin ition 1 0 . The length len of the expression will be defined as follows:

(i) len{tf) = 1 for any g e V u Va u SQ u 0 O u {TRUE, FALSE}.
(ii) I f <p is an n-argument function symbol or p is an n-argument predicate

symbol and tx, xn are generalized terms then len((p(xv ..., xn)) =
l e n (p (x t„)) = len(xj + ... + len{x„) + 1 .

(iii) I f the generalized formula rj is o f the form: a a /?, a v or a - » / ? then
len(>]) = len{a) + lenlfi) + 1 , if rj = -> a then len{r\) = len(a) -|- 1 , if r\ = \fxa
then len(t]) = len(a) + 1 .

(iv) I f the expression is of the form Krj where rj is a generalized term or
a generalized formula then ien(Kr}) — len{K) + len{rj).

(v) I f rj{J Ka or >1 = 0 Ka then len{ti) = len(K) + len{a) + 1.
(vi) I f K, M are programs and a is a classical open formula then:

len({_KM~\) = len(K) + len(M) + 1,
len(±L[a K M]) = len(a) + len(K) + len(M) + 1,
M * [a K] = len(a) + len{K) + 1 . □

Moreover we define the set of all sub terms of the term x for any x e T .

D efin ition 11. The function q : T -> P{T) is defined as follows:

(i) c(t) = {t} for tg K
(ii) = q(x1)\j...K jq{xl)u{(p{xL,...,xnj} for any n e N and

Ti , , T „ e r ,
(iii) g(Kx) = q(x) u {Kx} for K e S and x e T . □

46

Now we introduce the operation x defined on T' kj F which enables us to
reduce any generalized term of the form (pix^ ...7xn)e T '\T 0 where (p e ^ n>

ne T ' and any generalized formula o f the form p(xi7 ...,xn), where p e P n,
n eN , xl7...7 t ne T to the form K x ... Km(p(t'u x'„) or K l ... K mp(x\, x'n) respec­
tively where K l7...,Kme S and x \ , t„ g Ta. Therefore the operation x changes
generalized terms (generalized formulas) of the form (p{xl 7 (p (tXj tJ)
by transporting all programs inside xi7...,xn to the left side of the expres­
sion (p or p.

D efinition 12. For every generalized term and every generalized formula the
operation x is defined as follows:

(1) for g e T ou F 0.
(2) x(Kx) = Kx(r) for K b S and xe T .
(3) I f x e F \ T 0 is of the form (p(xl ,...,xfJ where <p€<£>*, k e N , xi ,...,xke T \

5(t) = {xl 5 ...,xn, a1,...,am} and i is the smallest of the numbers j < k such
that X jfT 0 and Kx' is an element o f the set {Mx" € T : Mx" e c(t;) and there
is no element g ^(t;) such that len(Mx") < len(M1t) and Mx" ^ M fi]
and moreover if Kx' is the earliest element of the set T , ordered linearly by
a certain ordering relation, then we put

z(t) = l s ~ l sK]x iw lti......*!-!> xfK x '/sx 'l Xi+1>...,xk)),

where s = [x J y Lt..., xjy„, a jb x, a j b j and y lt ...,yn7 bl t bm denote the
first, different individual and propositional variables not belonging to
{xv ...,xn, al7..., am} in the linearly ordered set V(j Vg. The assignment
instruction s~x is inverse to s.

(4) I f a e F '\F 0 is o f the form p{xi 7 x f then

Z(«) = [s_ x(pfri> •••>Ti - 1» Tj(JKx#/ 5?), ri+1 ,..,x*))

where p eP k,k e N, xv xfc e T , i9(x) = { x * , x„, av amj and s, i, Kx' are
defined analogously as in (3).

(5) Ifo teF ' a n d K e S then z(Kcc) = Kx(a), x ({ JKci) = U ^ a) and. x(C\Kai) =
(W *) -

(6) * (a* 0) = XW ^XW) and *(-«) = ~'Xipc) for any a J e F and » e { A ,
v , -»}. D

Using this function x we add a new axiom to the set o f axioms Ax
A27 p(xL>...,x„) = xipiy

and we denote this new extended set of axioms by Ar

47

We add in D efinition 6 the new condition o f the form ;

(c) H(p{Tl f t j) = ifCc(p(Ti, T„)))

for every p{xu ...,xn)E F '\F 0 where p<=P„, n e N and xl f t„e T'.
Moreover we have to change in Definition 7the notion o f program-substi­

tution p:F ' F' as follows:

(d)
fhe(a) for <xeF0
(s ^ H ia) for a e F c Fn.

This new set of program-substitutions will be denoted by Sb
Now we present an example to explain the effects of program-substitution

from Sbx.

Example 6. Let z, u denote the first, different individual variables oi the set V \ {x, y}
where a e 1̂ and x # y. It can be easily seen that for and for p e Sb„ such that p is defined
as in (d) we get

p{a a p([x/y] x)) = a p([x/y]x))
= [g(g)/e(fl)](g(a) a /fCe(p([x/y]:x)))) _________
= [g(a)/e(a)] (g(a) a H ([[z / x , u/y] [x/z, y/u] [x/y]] p ([x/z, y/u]x)))
- [ff(a)/e(c)](5(a) a [[ff(z)/if(x),s(u)/?0];] [g(z)/3 (u)]]e(p(z)).

By Lemma 1 (i) and by applying A14, A23 we conclude that the generalized formula

ig{a)le{a)1 (g{a) a [[g(z)Mx), g{u)!g(y)] [g(z)/3 (u)]]e(p(z)))

is equivalent to the formula of the form

e(a) a ig{z)/g(x), g(u)/s(y)] {\.9 {z)lg{u)\ e{p{z))).

Since e e i p then two classical open formulas

e[a) a [g{z)/g{x), g{u)fg(y)'] {[g{z)/g[u)] e{p{z))) and e(c) a e(p(y))

are equivalent.
So we can say intuitively that p transforms a; p[y) into e(a); e(p(y)) respectively. ■

One can observe that if we change the symbols s*, sp, Sb in the proof of
Theorem 2 for sx{a\ sz^ \ Sbz respectively and if we extend the meaning of the
symbol H by (c) and the meaning of the notion of program-substitution p by (d)
then we get

T heorem 4. Algorithmic logic with generalized terms is closed under program-
substitution from Sbx. □

4 8

(16) Tn)), sp(zl ,...,Tn)> e X for s being a sequence of assignment
instructions sy ...sk, k e N , peP„, n e N , xL,...,xne T ' and for
p (t i , xn) e F '\ F0.

Therefore we obtain the relation < defined on the set of generalized formulas
of the language with generalized terms. These new definitions enable us to
formulate some version of Lemma 3.

L em m a 4. For any generalized formulas a, ß e F and any geG , e e £ g,
(e, g)-function u and an endomorphism H :F' -> F' such that H/F0 = hv, if
Hx(a)) n K c Hß)> then h sßH(a) = sz(ot)H(a) = sx(a)H(a), where sß and sz(a) are
designated by <g,e> . □

By applying Lemma 4 we can prove the theorem analogous to the Theorem 3:

For every program-substitution p e Sb and for all generalized formulas a,
ßeF ':

(i) p(a -*ß) = (p(a) -► p(ß))7
(ii) h p{a a ß) = (p(u) a p{ß)\
(iii) (- p(a v ß) = ip (a) v p(ß)),
0 V) h P(«) - - ? («) • □

3.5 Program-substitution in the language j£?" and «5fQ

The above considerations can be generalized for the language of the extended
algorithmic logic of the first order with classical quantifiers i f" (L Banachowski
i l l) and for the language o f algorithmic logic with non-deterministic programs
(G. Mirkowska [60], [61]).

To get the set of axioms o f i f" we add some new forms of axioms to the set o f
axioms Ax:

Q27 s(3xa) = 3ys([x/y]a) for y #9(sa),
Q28 [x/t] qc -*■ 3xa where a e F v, x e V and x e T a,
Q29 Vxa s - ,3x(->a).

We admit r0, r3 as the rules of inference and two rules of the scheme:

a -► ß [x/y] a -» ß
U 1 Ka -> K f Ts ' 3aa -> 7 ~ ’

where a, ß e F v, K e S , x, y e V and y££(a a ß).

In the sequel we extend D efin ition 9 assum ing th a t

4 Algorithmic... 49

Let CE be the consequence operation of the extended algorithmic logic with
quantifiers based on the set of rules {rp, r3, r4, r5} and defined by Definition 1.
Any formula of the set CE{P) will be called a thesis of algorithmic logic with
quantifiers and a e CE{% will be denoted by \= a. □

Now we shall introduce the language of algorithmic logic with non-
deterministic programs. There are many reasons, that motivate and justify studies
of algorithmic properties of non-deterministic programs, cf. D. Harel and V Pratt
[39], G. Mirkowska [60], [6 i] , S. Radziszowski [77], We have auxiliary
symbols: u, □ , O- Non-deterministic programs are constructed with the new
program connective u (non-deterministic choice) and are denoted by [iC1 u K z].
The programs without the symbol u will be called deterministic. In this language
the set o f programs will be denoted by Sa . We have new generalized formulas
in the language of non-deterministic programs jS?a . To the formation rules
describing the set Fy we add new formation rules and we change the symbol of the
set of generalized formulas and denote it by Fa :

(1) I f a e F a and K e S n is a deterministic program then Ka e F0 ,
(2) i /a e jF 0 and K is a non-deterministic program then DXa, 0 ^ a> □ U K a,

□ fiifcz, O U Ka> O f t K a e F - .

By a configuration in the realization 1% we shall mean any ordered pair
<v, K t ; where v e W is a valuation and K l,...,Kne S a. □

Let be the least binary relation in the set of all configurations such that
the following conditions hold:

(1) I f s is of the form (a) then < v, s; rest > -* # < o', rest> where v' is a valuation
such that v'{X;) = xigt for 1 < i < n and v'(z) = v(z) for z e (V \ j P̂) \
{xl 3 xn},

(2) < u ,[iC u M]; rest > -*■*< v,K; rest>,
(3) < vffK u M]; rest > ->a <v,M ; rest>,
(4) <v,sL[otKM)] rest >->a <v,K; rest> iff aa(v) = \Jo,
(5) < v, s l [_clKM^\ rest >-+a < v,M ; rest> iff aa(v) = f \ o,
(6) <v,[KM']; rest > -+gt<v,K,M\ rest>,
(7) <u,*[aiC]; rest rest> iff aa (v) = / \ o,
(8) <y,*[aK]; rest > - * a < v ,K ; *[aK]; rest> iff aa(v) — \Jo. □

Let i c / and for any n, m e / , the following condition holds: i f n < m
and m e I, then n e l .

The sequence (c)ieI o f configurations is called a computation of the program
K e Sn in the realization & and at the valuation v iff for any i, j e I : if
; = i + 1 then cf -+a Cj and c0 = < v,K > . □

50

I f the sequence (ct)ieI is finite, i.e. if it is a sequence clt ...,cn and cn = <v\ p>,
then the valuation v' is called the result of the computation of the program K in
the realization at the valuation ue W. □

The set of all results of the computation of the program K e SD in the
realization 3$ at the valuation v e W will be denoted by K^v). So if K e Sa is
a deterministic program, then K ^v) is at most a one-element set.

Let K ' e Sa be a deterministic program and K e SD. We put

(□^a)^(i;) = V 0 tff oil computations of K in the realization & and at the
valuation v e W are finite and for all veW , if v '£ K ^v) then ol̂ (v') — \ /
(OKa)gf(v) — \ f o iff K has a finite computation in the realization & and at the
valuation v e W and there exist v’ e K m{v) such that 1X3 (1/) = \ / ,
(□ U Ka)Jp) = sup {((□if)ia)3t(i>)
(0 U Ka)x(v) = sup {((OK)'a)*(iO: i £
(U K'cLtJy) = sup {(X',a)e,(!>): i e
(Pi K'«)„(3) = inf {(iC"*)»: i e Jf},
(□ Pi *«)«(») = inf { « O J : ie JIT),
(0 n **).(■>) = inf ■ > e JT),

where (□&)*« {and analogously {0K)la) denotes the formula:

a*(»') iff VeK'stiv)
/\^ in the opposite case

D K in K U U K a)...)) , (OK(OKUOKa)...))). □

Hence for example we get

*[<5iC]a (y) = {v 'eW : 3 e K#{v) and v0 = v and

- A 0 and vn = *0 }.

[iM] ,(!)) = { v 'e W :3 0..{v,,e K gi{v) and i/

[K u M] >) = K >) u M » .

A* 5 1

Now we present the axioms and rules of the algorithmic logic with
non-deterministic programs from (G. Mirkowska [61]): AX-A14, A26,
Q27Q29 and A15-A24 for deterministic programs and moreover for
® e {□,<>}:

N1 OK{a a $) = (D ifa a [JKP)
N2 0 ^ v ^) = (0 ^ v 0 ^)
N3 ® [if M > = 0K (® M a)
N4 = ((<5 a ®Ka) v (-><5 a ®Moc))
N5 *[<5 K fa s ((-<5 a a) v (<5 a £ '(*[5 if '] a)))
N6 ®*[<5K]a = ((-<5 a a) v (®if(®*[<5if]a)))
N7 O iK u A Q a = «>Ka v OMa)
N8 □ [if u M]a = (D ifa a DMa)
N9 (g) (J ifa = (a v ® J i f (®ifa))
N10 <g> f)K u s (a v ®
N il © if'a = 2f'a.

VPfe adopt the following rules:
r0, r5 and r2, r3, r4 for deterministic programs and moreover

a-* P { (s ^ S K f i y ^ ó a <x))-> p :ie jV }
T*' ® K a - * ® K f f 7 ' (s*[51f']a)-»j3

{(5® j¿[<5 K []] ‘M a a)) -+0:i ejV } {(s®if ‘ia) ft: ie ^ V)
7-8 : (s® *[51f]a)->0 ’ r 9 ' (s® J i f a) - » £ ’

{/? -> s® ifia:iEM''"}
Tl° : p-+s®f)Koc ■’

where ® e {□, <>}■

These ruies and axioms define the consequence operation of the algo­
rithmic logic with non-deterministic programs denoted by CD (G. Mirkow­
ska [61)).

The set o f program-substitutions SbY is defined in the extended algorithmic
logic with quantifiers analogously as in AL though defining the function H (see
Definition 6) we put

H(3Xa) = 3eWi*(a) and H(V,a) = VflWiT(a)

where x e V and a e FY.

52

Moreover in the algorithmic logic with non-deterministic programs the set
Sbn is defined analogously as in but we put additionally

H(DKa) = DKegH{ a)

for any D e { 0> OU> O f | , □> OU» d f l } and a e F n .

L em m a 5.

(i) g(V\S(ct)) n S(hu{a)) = 0 for every a e F0,
(ii) g(V \ S(K)) n &(Keg) = 0 for every K e Su ,
(iii) For euery generalized formula cc and for every individual variable y&V,

if y $&(«■), then g(y) where g eG and e s g g □ .

T heorem 5. The extended algorithmic logic with quantifiers and the algorithmic
logic with non-deterministic programs are closed under program-substitutions i.e.
P(CE{$)) c CE(f)) and p(CD(0)) c Cn (0) for every program-substitution p e S b v or
p e S b D respectively. □

Let us consider the set X ' of pairs <at ,a 2> in algorithmic logic with
quantifiers such that is equal to ct2 or < a 1, a 2> is one of the form from
Definition 9 or additionally of the form
(16) < s i ...s„[x/T]a,s1 ...s„3Ta > for a l5 a2> a e F v, sv ...,sne S 0, n e N , x e V
and x e T0.
We define the binary relation < ' on Fv in the extended algorithmic logic with
quantifiers for any a, fi e Fv:
a < 'ft iff there exist ai) ...,an e Fv such that al — a, a„ — /? atul for every
z€ n — 1} the pair <<*j,0Li+l> is an element of X'.

Let us notice that the relation <' is an ordering in Fv such that any nonempty
subset Z cz Fv contains a minimal element. The above binary relation can be
defined on Fa . For further considerations we shall need.

L em m a 6 . For any generalized formulas a, f ie FV(FD); if 9(a) r\ V0 c <9(/J) then
s^H(a) *-* saH(a) is a thesis o f C£($) (Co (0)). □

Proof For simplicity we shall prove this lemma only for the language o f the
extended algorithmic logic with quantifiers. The proof is by induction on the
relation < ' defined on F v. Since the proof is analogous to the proof of Lemma 3,
we consider only the case ot— 3 xX for some x e V and for some generalized
formula X.

Since [x/t] X < '3 y i and 9(2) n F 0 = 9([x/t] 2) n F0 — 9(a) n F0 for every
x e T a, we get

53

(1) (- / H{_xjx] X) <-> s“H ([x/ t] X) by the equality = sa and by the inductive
hypothesis for every x e T 0.

O
The inclusion H(CE(fi)) c CE(fi) holds and the rule of the scheme — is

sp
a derivable rule of the consequence operation CE, so by the axiom [x/t] A —> 3 XA
we conclude that
(2) f- f #([x/t]A) -► saH(o.) for every z e T 0.

According to (1) and (2) we obtain
(3) h sf [g(x)/g,(T)JH(Z) -* fH(a) for every x e T0.

We shall use the abbreviation 2 = g(V)\S{sfidl TRUE). 2 is an infinite and
enumerable set whereas g{9(X) u {x}) is a finite set, so there exists
z e 2 \ g(T(X) u {x}). Hence and by the definition of 2 there exists y e V such that
z - g(y) and g{y) $ S(sfi) u 5(s*). Since g{y) £ <?(5(A) u {x}), we get y $ 5(A) and
g(y) * g{x).

According to the Lemma 5 (iii) we get g(y) $ 9[H(X)). Hence g(y) f
9(H (X))K j{g(x)}\j9(j)u9V%

Putting in (3) x = y and using the rule of the scheme we
{1J) -> 6

conclude that
(4) s^H(a) -*■ s?H(a) for y £5(a ■ /?).

By the same argumentation as used in (2) we get f- s^_g(x)!g'{x)"\H{X) -*■
s?H{a). Hence and by (l) we obtain
0)V n 9 ix)lg '{x)]H {X)^s< iH{a). '

Simultaneously by similar argumentation as before we find a special element
y e Vand then putting in (5) v = y and using the above-mentioned rule we get
(6) j- s“tf(a) -> spH(a).

On the other hand by (4) and (6) we conclude that
(7) 1- s“H(a) <-+ saH(ot). ■

Chapter 4

Algorithmic structural completeness

4.1 The problem of completeness of C R

In this chapter we introduce the notion of the algorithmic structural comp­
leteness and we shall prove property for the consequence operation of AL.
At first we shall consider the substitution rule and the structural rules. Next we
shall study interrelation between all structural, Unitary and admissible rules on
one hand and derivable rules on the other hand.

By a substitution rule r+ we mean the rule of the form: where p is
p{a)

a program-substitution. Assume the following abbreviation: Rt = U u {r*}. □
It will appear that the substitution rule allows us to examine deeply

algorithmic properties of formulas and programs of AL.
We shall say that a rule r is structural iff <p(H), p(a)> e r for every sequent

< X ,a > e r and for every program-substitution peSb. □
We recall two definitions:

A generalized formula a is an element of the set £ iff there exists a classical
formula /? (i.e. a formula without programs) such that a and /? are equivalent.

A rule r is Unitary iff for every sequent < X, a > e r the set X is finite
and X u {a} c: / .

The consequence operation C is algorithmically structurally complete iff
every structural, limitary and admissible rule is derivable in C. □

Theorem 2 allows us to strengthen the consequence operation CR by
substitution rule and to examine the CR — consequence operation. Obvio­
usly CR (P) = CX(P). At first we shall solve the problem of completeness of CR ̂
and next we shall prove that the consequence operation of algorithmic

55

logic strengthened by the substitution rule is algorithmically structurally
complete.

D efin ition 13. Let xae V For any one-one mapping h0 of the set V into F \ {x0}
we define a function h on Tau S u F as follows:

(1) h(x) = h0(x) for every x£V ,
(2) hi< p{x^tj) = (p(h{zy) , for any (pe<b„, n e N and t 1>...,rIie T 0,
(3) h(q>) = q> for any <pe<50,
(4) h(ct) = a for every aeV0vj {TRUE, FALSE},

(7) h(s) =

(5) h(p(xv ...,z„)) = p(x0,...,x0) for any formula p{xl,...yx ^ e E,
(6) h(a • ß) = h(a) • h(ß) and h(~'Ot) — •—>/i(a) for any generalized formulas a,

ß and • e { a , v , —♦},
[] if s is of the form [x ^ , x„/tJ

Oi//i(ai),"., a jh (a j] if s is of the form (a),
(8) h&KAf]) = lh(K)h(M)l
(9) /i(_v_[<5KM]) = ¿¿lh(6) h{K) h{Mf\,

(10) h(*l5K}) = *lh(5)h{IQ],
(11) h(Ka) = h(K)h(a),
(1 2) ft(U Xa) = U h{K)h{a) and /i(D ^a) = f]h(K)h(a) □ .

T heorem 6. The consequence operation CR is incomplete. □

Proof At first we shall prove the following inclusion:

(e) h(CR ({p(x) -► p(y)})) c= CR(p).

By Definition i. we know that CR{X) = (J { C ^ X): y < i2}. We shall prove
that h(Cif{p(x) -► p(y)})) c CR($) for every y. _____ _

Let y be the least ordinal number i.e. y = 0. Since h(s)h(S) = h(sS) for
every s e S a and for every 5 e F0, the value resulted from applying h to the
axiom A14 is the thesis. Hence

h(Cl({p(x) Ptv)})) c C M

We assume inductively that /i(C^({p(x) -*■ p(y)})) c: CR(P) for every ordinal
number p < y.

If y is a limit ordinal number, then by the inductive hypothesis we
get

HCkS{p(x) -* p(y)}))c c R(P).

56

Now suppose that y = p 0 + i for some ordinal number p0. Let
a e h(CyRt({p{x) -> p(y)})). Hence and by Definition 1 we get

Then according to the inductive hypothesis \- a or there exist X c
(C^o({/)(x) -> p(>>)}), ß e F and r e R , such that a — h(ß) and <X, ß> er.

If r ^ r. then < h(X), hiß)> e r and by the inductive hypothesis
h(X) c CR(fi). Using the rule r we get (- a. Hence

(l) h (C M <= c m

If r = r„ then X — for some X e F and by the inductive hypothesis
h h{X). Since < { A } J> e r„ there exists peSb such that ß — p{X). Thus
a — h(p(X)). As we know for any r\ e F

where g e G, e e £ g and H fulfills the conditions from Definition 6 , so
H/F0 = hu for (e, g)~fu7iction u.

For further considerations some functions will be defined and their
properties will be thoroughly analysed.

Let he’ be an endomorphism on F0 such that for any 5 eA t

The above definition is correct, since it is enough to show that for any
classical open formula Xy, X2eF 0:

For Xu X 2 eF 0 u {TRUE, FALSE) by assumption and Definition 13 we get
Xi = X2, which gives the thesis. If Xlt X2eE then

ae/j(C^o({p(x) -> p(y)})).

he(t]) for rjeF 0
for rje F \ Fa

e
h(p{5 t)) if 5 — h(<5A) for some öy eA t
h(p(5)) otherwise

if h{Xy) = h[X2), then = h(p(l2)).

O i / u > p{xy, ...,xn)

and

X2 = [xj/ti xjx'n~] p(xy,...,xn)

57

for some classical terms and for some «-argument predicate letter. Therefore by
the definition of the set S g and by Definition 13 we get

i)) = /i(e([x1/T1,..,x„/Tn]p(jCi,...,xn)))

= h W it* i/ti, x j r j e(p(xl f xj)).

Obviously for any sL, s e S 0 and any tje F 0 if (S(sJ u 3(s\)) n V0 = P then
h(stf) = h(stf). Since g'(s)eS0 for every s e S 0 and e(p(x1,...,xlf))e F 0, we
get

= h {e(ix jx \,....xjz„] p(xl t x„))) = h(p(X2)).

Let fiei be an endomorphism on F0 such that for every 5 e A t

(h m) « S e V 0
(e.(<5) otherwise.

For any program X e S we define a program K! as follows:

(i) If K is of the form (a) then we put

K' = [h ig ixjyh ig 'izj),..., h(g{x„))/h{g'{xn)), ...>g{ajhei{a.j].

Obviously if K = [], then K' = [],

(ii) If K is one of the form o[MW], jvl [<5MN~\ or then K' is of the
form o [M'N'~\, _vl [hei(r5)M' ¿V'] or *[/iei(<5)M'] respectively.

Now we define a mapping H x on F in the same way as it was done for the
function H : F -» F from Definition 6 , i.e. instead of the (e, g)-function u and
K eg we put there et and K' respectively.

Now assume that ss is determined by a couple < hog, e,> for every 5eF .
Let q be a mapping defined on F as follows:

q(5) =
he*{6) if 6 e F 0
s^H^S) if 5 e F \ F 0.

58

Since he*{sp(xl , = h(g,(s))e.(p(z1>...,tJ) for every elementary formuła
p (r and for every s e S 0, we get h(g(V0)) n = 0. Of course
9(e,,(<5))n V <=. {x0} for any elementary formula 5. Hence s' z = %'(s))z for
every s e S and every z e ^(eJF)). Thus

(2) .s'ft*r(5) = hci(s5) for every 5 e F a and s e S a.

Moreover we get

(3) saH 1(a') = he*(a') for every <5, <x' g F0 such that K0 n % ') c 9(S).

By (2) we obtain the inclusion H l(Ax) cz CR{%. Simultaneously < f f 1(X),
Bx(«') > e r for every r e R and every <X, a '> e r. According to these
considerations we get

(4) H ^ C M cz C M

By (3), (4) and by the inductive hypothesis we get

(5) q (C M c C M

Using (3) and {4) we can prove by an analogous argument as used in
Lemma 3 the following property:

(6) For any generalized formulas, <J>, T e F if .9(0) n V0 cz 9(T), then
\- s^H M)

Similarly as in Theorem 3 by virtue of (3) and (6) we can prove that for
every O, T g F:

(7) h • ^0 *-* (q{®) • 9(D) f°r any • e { a , v , ->} and f- q(~>O)

Now we are going to prove the following equivalence:

(8) J- q{h(O)) <-» (h(p(<D)) for every O e F.

If O is a minimal element of the relation < introduced in Definition 9 then
the thesis holds in this case.

Suppose that (8) holds for every generalized formula O' e F such that
O' < 0 .

Let O be of the form su ...,sn5 for some <5eF0 and for some s1,...,s„eS0.
By A14, r, and (1) we get

h K h - s„<5) <-► h(st ... s„_ 1 s„S).

59

Hence, by (5) and (7) we conclude that

|- q(h(si ... s„<5) ^ qQiiSi... sn_ L s„5)).

Using the inductive hypothesis it follows that

h q{h(s1... s„_l sn5)) «-+ h{p(si ... x sM -

Moreover A14, r1 and (1) allow us to get

b h(p(st ... s„_ i s„<5)) <-> h{p(sl ... s j5)).

Therefore the thesis holds in this case.
If 0 is either of the form sA ...s„ o [KM~\ x¥, ... s„ _v.. [5KM] 'T or of the

form ... s„ * [¿K] *F, then by A23, A24 and A25 respectively and quite
similiar argumentation as used before we get the thesis.

Moreover for ® being of the form Sjl • '?') or ...sm(-■'i') for some
• e { A , v , ->} the proof is analogous as before by using the axioms
A16, A15, A19, A20, A17, A18 respectively, which ends the proof of (8).

Now we return to the proof of (e). Since |- /i(A), we get (- q(h(X)) by (5).
Hence, by (8) and r0 we conclude that f- h(p(X)), so (- a which ends the proof
of (e).

Let x, y be two different individual variables. Obviously p(x) -*■ p(y) $
c K m-

Moreover C^({p(x) -*■ p(y)}) ^ F. Since in the opposite case a, -.a e
CR ({p(*) -» p(y)}) for every formula a, so h(oc), ->h(a) e h(CR ({p(x) -> p(y)}))
and by (e), we get (- h(a) and |- ~'h(a), which is impossible. Therefore CR is
incomplete. ■

According to the Theorem 5 we can introduce the rule of substitution
analogously as in AL. We shall use the abbreviations C*E, Ch for the con­
sequence operation CE and Cn strengthened by the substitution rule. The
problem of completeness of the extended algorithmic logic strengthened by the
substitution rule can be solved in a way similar to the one preserved above.

In the next theorem we shall consider the consequence operations C*E and
Co, so we can omit it while reading the paper for the first time.

T heorem 7. The consequence operations CE and C*D are incomplete. □

Proof. A sketch o f the proof will be presented. We shall prove this theorem only
for the consequence operation C*E. First we define the function h analogically to

60

the Definition 13 but we add the condition h(3xa) = h(cc) for every x e V and for
every generalized formula a. The inclusion

(1) KC'e({p (x) p(y)})) c: C M

is proved similarly as in Theorem 6, though we must add the equality H 1(3Xa) =
3ft(9(;ç))i/1(a) in the definition of the function H 1. Moreover to proof the above .
inclusion we need two properties:

(2) For every generalized formula a e Fv: if y e V \ 9(a), then h(g(y)) $ 9(H f a)),
(3) For every program K e S: if y e V \S(K), then h(g(y)) £ 9(K').

The function q in this proof is defined for every generalized formula <5 e Fv as
follows:

The condition (S) in Theorem 6 is checked up for a' of the form 3xX in the
following way: q(h(a')) = q(h(_x/x]X)), while by the inductive hypothesis

h q(Kl

h(s*-)h(H(X)) = fc(s‘> (3 gWH(A)) = htf'Hia')) = h(p(a%

thus |- q(h(a)) ■<-»• h(p(a')).
These remarks enable us to prove (1) and the incompleteness o f the extended

algorithmic logic with quantifiers strengthened by the substitution rule. ■

4.2 The algorithmic structural completeness of

In the sequel we shall separate a special class of derivable rules of the
consequence operation CR . To do that we start with making some remarks
about structural and admissible rules. It is easy to see that the rule r2 is not
structural, but instead of it, we can consider a structural rule of the form:

[£f(X -» M K ‘a): i e JT)
3 F (X ^M (^K a)

where Sf denotes any finite sequence of substitutions.

moreover
h(j>([x/z-]X)) = K f i tx /x T s H m .

h h(f(Lx/xYtH m <-> h(s°')h(H(X))
and

6 1

The following remark concerns admissibility of rules. Observe that r0 is
an admissible rule but rA is not an admissible one, since for s = [a/T R t/£],
K = [afFALSE] where a eV 0 we get

< {a, KTRUE], Ka> e r L and s{a, KTRUE] c CR(® but

s(K a)iC Rm-

In order to introduce the notion of algorithmic structural completeness we
need the special set of generalized formulas J . For example lemma 7 in
G. Mirkowska [58] and theorem in G. Mirkowska [59], p. 158, exemplity
some forms of the formulas of the set

L em m a 7 For every generalized formula a without symbols *, f], [J we can
find in an effective way a classical open formula a0 e F0 such that for every
realization 9t and every valuation veW , cta(v) = a03f(u). □

T heorem 8 . Let K (, M ^ S , i g (0,1,..., n} be programs in which the sign
* does not appear and let a eFa. Any generalized formula ft of the form:

M 0 \J K 0...Mn { J K na

is a tautology o f algorithmic logic iff there exists a natural number m such that
the formula

m m
M 0 \ f j K ‘0...M„ \f /K { a is a tautology of algorithmic logic where

¡=o y=o
m

M \ f / K lX = M(2 v K xX v ... v K mX)) for any M e S, K e S, Xe F. □
j=o

It is easily seen that for any result of Theorem 8 we can apply Lemma 7
to find a formula <x0 e F o which is equivalent to the formula fi from Theo­
rem 8 .

Since the consequence operation is incomplete, it accounts for
theoretical investigation of algorithmic structural completeness which although
weaker, in accordance with our intuition.

T heorem 9. The consequence operation CR̂ of algorithmic logic is algorith­
mically structurally complete. □

Proof. Suppose that there exists a structural, finitary and admissible rule r of
the consequence operation CR, which is not derivable in this consequence

62

operation. Thus there exist a finite set X c= $ and a generalized formula ß e #
such that < X , ß > e r and ß $ C R (X). Let us assume that X = (Aa, > ln}-
According to the definition of the set # there exist two classical open formulas
a> A e Fa such that |~ (Xx a ... a Xn) X and f- ß «-+ a. Hence a 4 CR ({/l}). By
structurally and admissibility of the rule r we get for every program-
substitution peSb and every s e S ;

if s(ppO) C CR (P), then s(p(ß)).

Since by Corollary 1 [- p(Xx a ... a Xn) «-► p(X) and J- p(ß) <-» p(a) for every
p e Sb, we conclude by Theorem 3 (ii) that

(1) If (- sp(X) then |- sp(a) for every p e Sb and every s e S 0.

Let g e G be a mapping from Definition 2 such that g{Vvj V0) <= (J/u V0) \
9(a a 2). For further considerations we shall need an endomorphism he on F0
such that:

e(a) = g(a) a X for every a e V0,

e(TRUE) = TRUE and e{FALSE) = FALSE,

e(p(Tx, ..., t„)) = p(g'{xx),..., <?'M a 2

for every elementary formula p(ta, tJ g £.
Since g' (si) = g'(s)g'(x) for every t e T0 and for every s e S a and since

g\s)x = X, we get e(sp(zx,...,t„)) = g'(s)e(p{r , T„)j for every s e S c and any
elementary formula p fr j, ..., tJ g £. Thus e g ¿’g. Let us take (e, g)-function u,
u : At -» F0 and a mapping hu being an extension of u to an endomorphism
defined on F0. By Definition 6 we get an endomorphism H on F. By Defi­
nition 7 we get a mapping p : F F which is defined by using g e G and e e £ g.
Hence we get peSb.

Moreover let e0 be an endomorphism on F0 such that:

e0(TRUE) = TRUE and e0(FALSE) = FALSE,

e0(<5) = 5 a-><5 for every 5 e A t\{7R U E , FALSE}.

It can be easily seen that e0 e for g0 being an identity function on

Moreover J- heo(5) TRUE or \- heo(5) FALSE for every classical
open formula 5 e F0.

63

Let Y ~ {xl 5 x„, Q j , am}, then by symbol sy we denote the substitution
of the form

a jg (a j] .

By induction on the length of the classical open formula d s F 0 we get

(2) f- /ie(<5) <-+ ((s^5 a A) v (heo(5) a A)) for every 5 e Fu and every sY such that
m c 7

First we consider the case |- hco(<5) <-► FALSE. Then by (2) we get

(- he{5) ->■ (^5 a A), so f- /ie(5) -> (A -» Sy2>) for sy defined as in (2).

Let us assume that (- heo(5) <-> TRUE. By (2) we get

(3) h he(<5) -> (A -» ^5) for every classical open formula <5 e F0 and for sY
defined as in (2).

If \- heo(X) <-> TRUE, then by (2) for such Y that 9(a a A) = 7 we get

j- he(X) <-> (spA v - ’A).

Using ra we conclude that (- syhe(A) <-> (syŝ A v -is^A). Since 5(A) c
Qm}, we get 9(s^A) c g (F u F0). Therefore by the definition of

the fuction g it follows that 5(s^A) n 5(a a A) = Obviously

{x:, x„, al 5 a j = 5(a a A), so (xt, x „ , al 5 a j n 5 (v 0 = 0

and moreover sr%A = ŝ A. By A14 we get

|- srhc(A) <-» (ŝ A v --SyA).

Since p(A) = he(A) from Definition 7 then |- sr p(A). By (1) we conclude that
h sy(p(a)). __

On the ground of (3) and by using rt j- sYp{a) (syA -> sysya). By modus
ponens rule r 0 we get)- sYX -> sySya. Moreover by A14, A1 and rQ we get

)- syA -> sYsYa.
• Simultaneously sYJ^a = sya, so |- sYX -> sya. Moreover by 7-j, r0 we can

observe that sYa e C^({A}). Using the rule rx we obtain that sY Asya e C^({A}).

64

Since 5(a) c {xA, ..., x„, av ..., a j , {xt , xn> aL, ..., a j n g(Vu F0) = p and
since g e G is a one-one mapping, we get Sy 1 sra = a. Hence by A14 and r0

we get a g ^({A}), which is impossible.
If (- heo(X) *-*■ FALSE, then by the rule of substitution we get CKt({A}) = F,

which is impossible. ■

After defining the standard substitution rule by using the set of program-
substitutions Sbx we can prove the incompleteness of algorithmic logic
strengthened by the substitution rule in the language with generalized terms.
For this purpose we need to extend Definition 13 by adding a new condition:

(13) h((p(zL, tJ) = hixivitt, t„))) for every non-classical terra such that
<pe<I>n, n e N and t l 3 ...,Tne F'.

Moreover we can prove (in the same way as Theorem 9) that the
consequence operation of algorithmic logic strengthened by the rule of
substitution is algorithmically structurally complete in the language with
generalized terms.

S A lgorithm ic..

PART II

Chapter 5

Automated theorem proving

5.1 Axioms and Gentzen’s rules of inference

In this chapter we shall describe another system of algorithmic logic. It enables
us to formulate some problems connected with a retrieval system. It provides
a comprehensive tool in automated theorem proving including programs,
procedures and functions. We can get an answer whether some relations
defined by programs hold and we can prove functional equations in a dynamic
way by looking for a special set of axioms (assumptions) and then adding it to
the standard set of axioms. We formulate the RS-algorithm which enables us to
construct a set of axioms for proving some properties of functions and relations
defined by programs. By RS-algorithm we get the dynamic process of proving
functional equations and we can answer the question whether some relations
defined by programs hold. It enables us to solve some problems concerning the
correctness of programs. The system can be used for giving an expert
appraisement. We shall provide the major structures and a sketch of implemen­
tation of the above formal system.

We shall say that s is a sequent if it is a pair of sequences of generalized
formulas. □

We shall write a sequent s in the form X Jf- Y. The symbol a e X means
that a is an element of the sequence X and the symbol a es means that a e X
or a e Y The set of all sequents will be denoted by Seq.

Let ID be a family of sets of equations of the form t = x, where t, x are
terms.

D efin ition 14. I f X elD then for any classical terms t, u we shall say that t
and u are X equivalent iff one o f the following conditions holds:

5* 6 7

(1) there exists a sequence tl t tn o f classical terms such that t is equal to t1
and u is equal to t„ and for every ie {1,..., n — 1} either £; is equal to ti+1 or one
of the classical open formulas ti — ti+1, ti+l = t-v is in X,
(2) there exist n e N and n-ary functor cp and a sequence of classical terms
11, tn, ui t u„ such that for every 1 < i < n ,ti and are X equivalent and t is
equal to tn) and u is equal to <p(uv u„). □

D efinition 15. The sequent s the form X |J- Yis called an axiom if and only if the
sequent s fulfils one o f the following conditions:

(1) There exists a classical term t such that t = t belongs to Y,
(2) FALSE e X or TRUE e Y or X n Y ̂
(3) There exists X l c ID such that X t <=X and for some n-ary predicate letter
p and for some classical terms tv ..., t„, ul , ..., u„ the following property holds: £f
and are X t equivalent and p(tiy ..., £„) e X and p(ut , un) e Y, for every
1 < i < n. □

We shall denote the set of all axioms by Ax=. Now we shall introduce the
main tool for proving theorems. Let s be a sequence of elements of the set S0 Le.
the sequence of elements of the form: begin «4. = wt; ...,un:=w„ end, for some
n e N such that for 1 < i < n we get if u, e V, then w{e T0 and if u{ is
a propositional variable then wfe F 0.

D efin ition 16. I f s is understood as it was defined above Le. as a sequence
of the assignment instructions, then k(sw) means the execution o f s on the
expression w from F0 u T0. In other words we replace all u; by wf (1 <; i <, n)
respectively. Sometimes this operation will be done simultaneously, but in this
case we shall say that we count the function k in such a way.

I f a e F 0,pEFv, K, M e S and at least one o f the programs K, M is not an
assignment instruction then:

k(s begin K\ M end fi) = s(JC(MjS)),
k(s if a then K else Mfi) — s((<x a Kfi) v (-»a a Mfi)),
k(s while a do Kfi) — s(p:= TRUE) Q begin p: = p a a; K end (p a ->a a f),
where p is the least element o f the set V0 \ S(s while a do K p). □

U K is a program and i e J f , then K° — Id and K l is a sequence of i-times
written the program K.

For any F, Q, U being the sets of finite sequences of generalized formulas,
U <= At, U t* % s being the sequences of elements defined as in Definition 16,
K e 5, <5 6 Fv \ At, £ e At, a, e Fv, x e V we define the schemes of the rules o f
inference as follows:

68

(*+) rihe.*K« (-*) k{sKa), r||-G
r,sKa|H2

(P+) r\hU,Q,3
r\\-Q,s,u (-P) U,r,5\\-Q

r X u\]-q

(C+) r|hra,G;r||-sftQ
r| hQA* a p) (-C) sct,sp,r\\-Q

r,s(<x A P)\\-Q

(N+) su,n-Q (-N) r,s--«iH2

(1+) sa,r|hs/?,Q
r||-aa(o-/j) (-1) riNa,Q;sftr|t-e

(A +) r|l-sa,ŝ ,Q
r|(-e,s(Q£ V 0) (-A) s“,rihe;j/5,rii-e

r,s(a v «ll-fi

(U+) rH-s(JK(Ka), sa,Q
riH2.sU*« (-U) ffsUK«||-0

(n +) i'll-Q,s()Ku (-0) sHKilCa), so, Tlhfi
r,sn^i|-Q

(S +)
rit-m ,Q
HI-QM (-s) HsO,r\\-Q

r.tfli-G

(V +) r|hs({x:=y)a)}g
HI- Q̂Y*«

where y is the least element of the set V such that y £ ^({r, Q, s}).

(-V) = (J t6r (— V)f where for every t e T0\

(-V)

V \ S(sa).

sVxa, (y: = t) (s((x: = y)cc)), F 1|- Q
F> sVxa |[- Q

and y is the least element of the set

Let RSeil be the set of all of the above mentioned rules.
The deductive system <J5f, A x =, RSeq> will be called the system of ALQ

with identity. We divide all the rules into two groups: (R+) and (-R).

69

In the next paragraph we shall try to generalize the language i f on the case
of the set of generalized terms T.

It is known that for every generalized formula a of the language with
generalized terms there exists a classical open formula x(a) of the language i f
such that (a -> y(a)) a (yfa) -*■ a) is a tautology in this language. The definition
of the mapping x was introduced by G. Mirkowska [58]. To get a complete
characterization it is necessary to add to the previous rules, two rules of the
form:

(, x nhx(pfri,~ , Q) ,g , v x(p(^u->^n)lr \\-Q

5.2 Functions and procedures defined by programs

The idea of defining some properties of functions and relations by programs
played an important role in our considerations. It can be found in
G. Mirkowska and E. Orlowska [63], G. Mirkowska and A. Salwicki [64],
[89], A. Szalas [95], Some problems of elimination of defined symbols were
considered by W. Danko [22] where the halting problem was considered as
well.

Let cpp and pv ...,pr be symbols not belonging to the language if .
We assume that the functor q)j is m-ary and the predicate letter pt is n-ary, for
any j e {1,..., p) and i e {1,..., r}. By if* we denote the extension of i f obtained
by adding the functors <pls ..., <pp and the predicates pv ..., pT to the alphabet
of <e

Let K l7..., K r, M l 5 Afp be some programs from i f and let <xLi..., ar e F0
and t l5..., t e T0 be some classical open formulas and some classical terms
respectively such that:

for every ie{l,...,r} ,

HMjtj) = {yL>-,ymj} for every ze{l,.^p}.

Now we introduce the following set of equations and equivalences which
will be called the system of functions and procedures defining the notions
<Pv ., <pp and pv ..., pr:

w

Pi(*i, ...,xni) = K ial

<Pi(yv ymi) M pLp P i(X i ,- ,x J = Krar

where a = f is the generalized formula of the form (a -> P) a (fi -> a).

70

In the language if* the sets T0, At’, f t , f t f t , f t , f t Seq’ and (Ax=)’ are
defined analogously to the sets Ta, At, f t , F, f t , f t , 5, Seq and Ax = . To define
the set RSeq. analogously to the set RSeq we change using of the rules (P +) and
(-P). The rules (P’+) and (-P’) i.e. the rules (P +) and (-P) in the language
can be used even if the classical open formula <5 eAt’ contains (pj{tl7..., tm) for
some 1 < j < p where (pj is from (*). Obviously we get the set (R’ +) ancT(-R’)
in the language SF' instead of (R +) and (-R) respectively.

We extend the set of the rules of inference RSeq.. We shall consider (see
G. Mirkowska and A. Salwicki [64]) two new rules:

+) —) Tffi,-)/begiii = endM jt),Q

(, , ft)/begin xx :=Tt; ... x„. : = z„. e n d K ^ Q

where xA, x nj do not belong to ¡>({t1s ..., t„.}) for i e {1,.... r} and yx, ..., ym. do
not belong to <p¿{zl t xmj}) for j e (I, and 0 e A l\

Obviously the rules (-rcu) and (-ft) are analogous. Only the assignment
instructions from these rules i.e. for example the program begin
xA: ~ tx; x „.: ~ t„. end will be executed simultaneously on each classical
open formula from At ie. it will be executed as a function of substitution
e:AT -> T0 such that e(x¿) = xi and i e r}.

If s is as in Definition 16 then E(s) = {zv z„}. After using one of the
above mentioned rules we shall need the rule of the form:

r| ysm x\Q
1 ; m YQJisKx)

where /? e At’ and every element from ftft) u E(s) is not an element of any term
and formula in /? except sKx.

If it is possible, we shall use the rule (B) instead of Cf +) or (-ft Now we
define the set W of rules:

rit-Q(t = t/TRUE) r , FALSE, r ”\\-Q
} T t Q {Ta} T,,q>l = q>2,T"\\-Q

where cplt <p2 eO 0 and in the data structure of integers, the realizations cpL
and (p2 are not equal,

f r«+)
rn-g(tA)

ril-g
71

where t is a classical term built from constants, the standard functors *, +,~
(multiplication, addition, substraction) or the functors (pj from (*) for some

j < p and where x is a classical term, the value of which is equal to the
value of the realization of t in the data structure of integers.

Now we describe some rules which change the right side of the symbol Jf-.

(rCi +) — It replaces all occurrences {TRUE a a) or (a a TRUE) by a.
(rj41+) — It replaces all occurrences (TRUE v a) or {a v TRUE) by TRUE.
(rao+) — It replaces all occurrences (FALSE v a) or (a v FALSE) by a.
(rri +) — It replaces all occurrences (TRUE -> a) by a and (a -» TRUE) by

TRUE.
(rro+) — It replaces all occurrences (FALSE-* a) by TRUE and (a ->

FALSE) by ->«.
(rco+) — It replaces all occurrences (FALSE a a) and (a a FALSE) by

FALSE.
(tn+) — It replaces all occurrences (->->a) by a.
(rNl +) — It replaces all occurrences (->TRUE) by FALSE.
(rN0+) — It replaces all occurrences (- FALSE) by TRUE.

Moreover the analogous rules: (- r cl), (- r j , (~ rA0), (~ rn), (- r i0),
(~ rco)» (- r N0)> (~ rNtl (“ r iX (“ r =) belong to the set W.

By 31 we denote the set containing the rules from W and the rules: (x+),
i ' l l (rcu+). (~rj, (B), (P’+), (-P’), (r'cu+), 3i is the union of two kinds of
sets: (31+) and (-31).

5 3 Diagram of a formula

In this section we shall consider an extension of the well-known Gentzen’s
ideas [30], described by G. Mirkowska [58]. At first we recall some auxiliary
notions.

The following notions are standard: tree, root, leaf, level of a tree, height o f
a tree, path and branch.

If D — < D, < > and D is a tree then by P(x, D) we denote the set of all
immediate successors of an element x in D. □

Definition 17. <S, < > is a tree of sequents if and only ifS c z Seq’ and it has
exactly one root. □

If S is a tree of sequents <S, < >

shall understand the rule of the form

sequent s’ e P(s, <S).

and s e S is a sequent, then by r(s) we
P(s,<5) T
-------- . It means that s < s for everv

s

72

We shall say that the tree of sequents <S, < > is well formed for (-V') if the
following property holds:
if the rule (-V'){ was used, then earlier we had to use the same rule for each t’
ealier than t in the ordered set T0. □

The set of all generalized formulas on the left side (right side) of the
symbol \ f of the sequent s will be denoted by left(s) (right(s)).

Definition 18. A sequent s is called indecomposable in *£' if and only if
left(s) u right(s) c: A t’, s contains neither symbol q>j nor p j l < j <p,
1 < i < r/from (*) and if it contains at most classical terms. The other sequents
are decomposable. □

D efinition 19. By a diagram of a sequent s e Seq' with a special set of axioms
s i c Seq and the rules we shall mean the tree of sequents S s = <S, < > if
and only i f it fulfils the following conditions:

(1) The sequent s is a root of <Ss.
(2) I f s' e S and s' is indecomposable or if s is an axiom or a special axiom

then s' is a leaf.
(3) I f s' 6 S is on the even level of the tree 3 and if s’ is a conclusion o f a rule

from X where X = (9? +)\ (rcu +), (r^ +), (P'+)} then r{s) is an element o f X.
It means that the order < has the following property: for every sequent s,

the expression P (s, ®) is a rule from 9?. We assume that if s' is decomposable

then we consider the first generalized formula on the right side o f the
considered sequent s’ to construct r(s’).

I f s’ is not a conclusion of a rule from (9i +)\ {(re„+), (*"„+). (P’ +)} then:
(i) I f left(s') u right(s’) c At' then the following condition holds:

(il) I f s' is a conclusion o f some rule from {(rcu+), (r'y+), (P’+)} then
r(s’) is the same element o f this set. Otherwise r(s’) e
However if it is one of the rules (~tcv), (-t'cv) or (~P‘) then such
r(s’) is used as the last of all of these rules.

(ii) I f right(s') n ((F u Fv) \A t ') ^ 0 then r(s’) e (R '+).
(in) Ifright(s') c: At' and left(s') n {(F u Fv) \ A t ’) # pthen r(s’) e (-R ’).

(4) I f s’e S is on the odd level of the tree <3 and if s’ is a conclusion of a rule from
('-5R) \ {(— rcv), (-r'cu)> (~P)} then r(s) an clement from this set. We assume
that if s ’ is decomposable then we consider the first generalized formula on the
right side of the considered sequent s’ to construct r(s’).

I f s' is not a conclusion o f a rule from {(—t(U), (-t’cv), (-P')} then:
(i) I f left(s’) Kjright(s') <= At' then the following condition holds:

(il) I f s' is a conclusion of some rule from {(—rcv), (-r'cu), (-P')} then
r(s') is the same element of this set. Otherwise r(s‘) e (SR +).

73

However if it is one of the rules (-rcu), (-r'cu) or (~P‘) then r(s’) is
used as the last of all of these rules.

(ii) I f left(s) n ((F u F fi \A t) * p then r(s') e (-R ‘).
(iii) I f left(s’) c At' and right(s’) n ((F u Fv) \ A t) ^ p then r(s’) e (R ’+).

(5) <Ss is well formed for f-V '). □

The deductive system <.£?*, (Ax =)’ u si, jRSe?. u 91 > will be called the
retrieval system where s i is a special set of axioms. □

Using retrieval system we shall change the standard notion of proof which
enables us to prove some properties which are not tautologies but which hold
in a data structure. Moreover this system enables us to study some notions
defined by programs.

We shall say that is a diagram of generalized formula a if <S, < > is
a diagram of the sequent P ||-a with a special set of axioms s i and the
rules SR. □

Definition 20. We shall say that a formula a has the proof in the retrieval
system (a e proof < (A x =)' u s i, RSeq. u 9 i> j if and only if the height of the
diagram of the generalized formula a is finite and each leaf is an axiom
or a special axiom.

However it arises a problem how to choose the set s i of the special axioms.
Obviously this problem will be considered in a data structure (in a standard
model of arithmetic) in which the functors and predicates are realized and
where + ()m are interpreted as addition, substraction, multiplication,
m-th power respectively.

To explain an algorithm which is looking for the special set of axioms s i ,
first we shall study the example of the function f defined in the introduction:

/(n) = if n = 0 then z: = 1 else z: = n*f(n — 1); z.

We assume that the realization is in the set of integers with the obvious
meaning of used symbols.

For further considerations we assume that A x f = (A x=)' u (s e Seq’:
1 = u e right(s)} and/(n) does not contain the individual variable u and u is the
least element of the set V \ 5(f(n)) (we assume that V is well-ordered).

Example 7. The diagram o f the sequent |- /(l) = u in i f with a special set of axioms {s e Seq’:
1 = u e rights)} and the rules is finite and each leaf is an axiom in S ' i.e./(l) = u e proof < Ax",

9 l ; > -

Proof First we construct the diagram of the sequent
(1) Ih/fl) = u-

74

Using the rule (/■„,+) and (B+) we get
(2) |[-(n: = l(if n = 0 then 2:= 1 else z: = n * f(n — 1) (z))) = u.

By (B) we get
(3) ||-R : = 1 (if n — 0 then z := 1 else z :—n * f(n — 1) (z = u)).

By (ic+) and (A 4-) we get
(4) |h n : = l(^ = 0 a (z := l(z = 0))), n := 1(—-(/z = 0) a (z: = n*f(n - l)(z = u))).

Using (C-f) we get two sequents of the form:
(4.1) |f-fl := 1(—>(n = 0)), n := l(n = 0) a (z := 1(z - u))),
(4.2) |[-fl: = l (z := n *f(n - l)(z = u)), n:= 1(r = 0 a (z := 1(z = u))).
Case (4.1). By (C+) in (4.1) we get two sequents:
(4.1.1) |h« : = 1 (r = 0), n : = 1(- (r = 0)),.
(4.1.2) ||-r := 1 (z : = l(z =u)), n : = l(-<n = D)).
Case (4.2). Using (C +) we get two sequents:
(4.2.1) |j-n: = l(n = 0), n := l(z := r*/(r — l)(z = u)).
(4.2.2) |h « : = 1(2 := l(z = u)), n:= 1 (z: = n */(n - 1) (z = u)),
Case (4.1.1). By (N+-) we get an axiom.
Case (4.1.2). Using (N4-), (-s), (s +) we get 1 = 0 |f-l = u, which by (rj is an axiom.
Case (4.2.1). Using (s4-), (r_4-) and (s-f) we get
(5) |h l = 0, /(0) = u.

By (rn> +). (p ’+) ^ (B) we get
(6) |f-n: = 0(iin = 0 then z := 1 else (z := n*/(n — 1)(z = u))), 1 = 0.

By (P’+), (fc+), (P’4-), (A4-) and (P'4-) we get
(7) 11-1 = 0, r :=0(r = 0 a (z := 1 (z = u))), n:= 0 —>(n = 0) a (z := n*/(n — l)(z = u))).

Using (C4-) we get two sequents:
(7.1) |J-R: = 0(—>(n = 0)); 1 = 0, « = 0(n = 0 a (z := 1 (z = u))).
(7.2) ||-n : = 0(z := n * /(n - l)(z = u)), 1 = 0, n := 0(n = 0) a (z := 1 (z = u))).
Case (7.1) By (C4-) we get two sequents:
(7.1.1) ||-r :=0(n = 0), r : = 0(--(n = 0)), 1 = 0,
(7.1.2) ||-n :=0(z := l(z =u)), n : = 0 (i n = 0)), 1 = 0.
Case (7.1.1). By (P'4-) and (N4-) we get
n := 0 (r = 0) | |- 1 = 0, n := 0 (r = 0) which is an axiom.
Case (7.1.2). By (P’4-), (N 4), (4-s) and (s4-) we get the sequent
0 = 0 ||- 1 = u, 1 = 0 , which is a special axiom and which belongs to Ax".
Case (7.2). By (C4-) we get two sequents:
(7.2.1) [f—n :=Q(n = OX n := 0 (z := n*/(n — 1) (z = u)), 1 = 0,
(7.2.2) ||-r : = 0(z := 1(z = u)), n := 0 (z := rt*f(n — l)(z = u)), 1 = 0.
Case (7.2.1). By (P’-f), (s4*X (r„ 4-) and (s4-) we get
(8) |(- 0 = 0, 0 = u, 1 = 0, which by Definition 15 is an axiom in ST since 0 = 0 and TRU E are
equivalent.
Case (1.22). Using (P’4-) and (s4-) we get
(9) H O * /(0 - 1)) = u, 1 = 0, r : = 0 (z : = 1 (z — u)).

Thus by (r_4-) and (54-) we get the sequent | | - 1 = u, 0 = u, 1 = 0 from Ax".
Case (4.2.2). Using (s4-X (r„ 4-) and (s4-) we get the sequent ||- 1 = u, /(0) = u from A x~ . ■

It can be seen that the construction of the diagram enables us to find the
special set of axioms which are necessary to prove of the above mentioned
classical formula /(l) = u. In Lemma 8 we shall explain how to eliminate the
case 0 = u, 1 = u. The interpretation of the functor/and the other functors in
a data structure, for example in the set of integers, allows us to choose a special
set of axioms to prove the needed properties.

75

5.4 Retrieval algorithm for functional equations
and relations

In this paragraph we shall try to formulate the algorithm which enables us to
find a special set of axioms using the premise of function or procedure defining
some notions.

Definition 21. By the premise of function defining the notion <pj from
(*)/I < j < pf for the classical terms t l t ..., te T '0 we mean the classical open
formula x = u for some x e V0 and for u being the least individual variable not
belonging to the expression defining (pj in (*). The formula x = u enables us to
prove (Pj(tl}..., i^) = u in the language by the special set of axioms {s e Seq":
t = u e right(s)) and the rules RSeq. vj 91.

By the premise of procedure defining p{from (*)/I < i < r/for the classical
terms xv xn e T'a we mean either the expression b, when we can prove
p,(x1}..., xn) = b in the language T£“, by the special set of axioms {s e Seq’:
b e right(s)} and the rules RSeq. u 91 or the expression -^b when we can prove
pj(x1, ..., t„) = b by the special set o f axioms {seSeq': b e left(s)} and the same
set of rules.

The premise of function defining the notion q> will be called the premise o f
functional equation and the premise of procedure defining p will be called the
premise of relation defined by programs. □

It can be easily seen that for p fx) = p a --p, where p e VQ and x g T'0 and
for -ib as the only premise we can prove the classical open formula p fx) = b
in the retrieval system by the special set of axioms ^ = {se Seq’: b e left(s)}
and the set of rules RSeq. u 91. In this case b can be realized as a logical
constant FALSE.

We shall give an algorithm which will be able to decide during the
execution whether the starting definition of relation p{ from (*) /I < i < rj is
correct. It means that the definition of relation p{ is not of the form:

Pit*» x n) = .., xn.).

This loop will be eliminated by the following procedure: if during
the construction of the proof of p;(i i , ...» t^) = in the retrieval system
we met fe, and p, on the same side of the symbol ||- then STOP — we have
to do with the case of the loop in the definition of pf and the proof does not
exist.

Exam ple 8.
Let p be defined by the following procedure:

p(x) = ->p(x).

7 6

We shall try to prove p(x) = b in the retrieval system, with the empty set of special axioms.
Therefore we consider the sequent:
(1) lb P(x) = b.

By (C +) and (1+) we get two sequents:
(2) P(x)|f-b,
(3) bf|-p(x).

Using the rule (-rcJ) to (2) and (rn>'+) to (3) we get
(4) -p { x)|hb ,
(5) b i(~ ->p(x).

Using (-N) and (N +) for (4) and (5) respectively, we get
(6) | |- p (4 b,
(?) P{4 b |K

If we do not use the above mentioned procedure we shall gel the loop, using (r^ +) to (6), (-r^J
to (7) and next using (-N) and (N-f). ■

The notion of the premise will be explained in the algorithm which will be
able to guess for which x e T'0 we shall get % — u and whether b or ->b is
a premise.

RS-algorithm looking for the premises of functions and procedures defining the notions
<Pu -> (Pp, Pi, - ,P , of the form:

/I < j < P and 1 < i < r/ and constructing the special set of axioms in a dynamic process, runs as
follows:
(If the main idea is clear to the reader, we suggest omitting the details).
1. j : = 1; i := I;

Read(k); (k is a natural number helpful for “while")
J (\ — an empty file; (It preserves some kind of sequents)

2. n := 0; X := an empty file, which represents the premises of functional equations and relations
defined by programs;
We put the sequent tJMJ — Uj as the root in the j-diagram and we put the sequent
lb Pj(tj , ..., t*) = b, as the root in the ¡-diagram, where Uj is the least element of the lineary
ordered set V\3({<pj(t(,.... tj), Mt}}) such that Uj £ {ul3..., for j > 1 and where the element
bt is the least element or the lineary ordered set V0 \ 3 ({pj(tj, ..., tM, iC.-a,}), such that

for i > 1.
3. If a sequent s on the n-th level is indecomposable or if it is an axiom or a special axiom /i.e. an

element of the set s4 of the form: (s e Seq’: a e rights) for some a from X and a # ~ bm for each
m :£ i, or b„e lelt($) for some ~tom e X, m <, i <, r}/, then s is a leaf. If s has more than one the
same element on the left or right side of the symbol ||- then we omit the rest We check this point
after using any rule. If all sequents on the n-th level are leaves then STOP — the proof exists
and the set of axioms and special axioms is of the form {Ax") u s i.

4. n := n + 1;
We construct the n-th level of the j-diagram of the sequent |f- < p j (t \ , — Uj and the

n-th level of the i-diagram of the sequent ||- p,(r j , t̂) = b, in S?' with the rules 9t and the
special set of axioms, which was defined above.

77

I f it is possible we use, as in D e fin itio n 19, the rule from (91 u R Sei-)\ { (- (J)} to construct
the n-th ievel in the h-diagram where h 6 (i j j by the premises of the considered rule.

If we need use in the construction o f the n-th level in the h-diagram the rule (- (J) for
a sequent s o f the form:
W , s'(p : = T R U E) (J begin p : = p a a; K end (p a —•« a /?) |(- Y , ¿¡, Z , then for further
considerations we denote by Ai„(Q the expression o f the form:
begin s ^ p := T R U E end [begin p := p a b; K end]'. W e mean that I is a natural num ber.

It is known that we get the fo llow ing set of sequents as the result of using the ru le (-(J):
{M „(l)(p a 'a a p), W j[— Y , bh Z: l e J r }, but in practice we do not construct a ll o f these
elements. We denote Y , bb Z by T.

N ow we consider the fo llow ing condition for the sequent of the form a —><a a /f),
W | | -r: we use RS-a lgo rith m from the point 3 to the sequents: k{M„(k)p) |(-; Af„(fc) —>a ||—;
M n[k)p |f- and if R S-a lgo rith m gives us the proof o f one of the generalized form ulas:
~ ’k(A fn(k)p), a, then we assume that the n-th level contains o n ly k-1
elements of the form : M n(l)(p a —¡a a /3), IF | | -r for 1 < 1 < fc — 1-
In the opposite case the n-th level contains the sequent

/(p := T R U E) (J begin p := p a K end (p a -> a a 0), W ||- T

and additionally it contains either k elements o f the form : M„(!){p a - i « a /J), W ||-T for
1 < i <, k when the rule (- (J) is used for the first tim e for the sequent with regard to
s'[p := T R U E) (J begin p := p a a; K end (p a ->a a /?) or one element M„(k)(p a ~>a a ff),
W\\- F when the rule (- (J) is used for the sequent more than once with regard to the above
m entioned, generalized form ula. (In fact it means that on the n-th level instead o f in fin ite set o f
sequents {M „(i)(p a —>a a /?), W ||-T : l e J r) we shall consider only a finite num ber o f
sequents).

(To have on the n-th level on ly finite num ber o f sequents we do nearly the same w ith the rules
(f) +) and (-V). How ever instead o f the classica l term t we put a tem porary pointer o f dum m y
d /see P. G b o rzyn sk i [29], [28]/. M oreover on each level we have to decide whether some sequents
are axiom s. To do that we shall use the w ell-know n unification algorithm on the both sides o f the
sign B -

k := k + 1;
5. W e revise the n-th level o f the h-diagram and for every sequent s which does not belong to

s i \j (A x “)’ we consider two cases:
(i) We lo ok for the classica l open form ula of the form t = u} in the sequent s such that
t = Uj £ right(s), t does not contain the functor <pJ and t was obtained by none of the rules:
(r„ +), (- r .) applied to a generalized term t containing the functor <p} and b u ilt by the functors:
+ >*./. O™ for some /e.g. if in some sequent, the classical term t which is equal to 0 was
obtained from 0 * ip ^(t{,...,tJm) by (r_ +) then the decom posable sequent was changed into the
indecom posable sequent ana we lost the essential property/.
I f we find such a sequent s which fu lfils two conditions:
(1) a e A t’, for every a e s,
(2) s is not a conclusion o f any of the m les from the set 9 = {(r, - f), (-r j), (r _ + X (-r„X (r j,
(rn +), (- i j , (P ’ + X (- n (B), (C + X K J . (X + X (-*)},
then we consider two cases:

Case 1. If there is another classica l open form ula of the form t ' = Uj (we consider this case even
if the restriction concerning the rule (r . +) in the point 5 (i) is not satisfied), then we put this
sequent to the file J i unless s is in M . W e ca ll this sequent the special leaf and we assume
that s has no immediate successor.

78

Hovever, if s is in M then S T O P — if h = j then the proof o f the classical open form ula
<Pj(Li , = “j in the retrieval system does not exist and if h = i then the proof o f the
classica l open form ula ..., r i J & b; in the retrieval system does not exist.

Case 2. If r = u} is the only classica l open form ula for some x w hich fu lfils the co nd ition (i),
then we put r = in the file X and the sequent s becomes a leaf. Then we remove a ll special
leaves from J i co ntain ing t = on the right of the sign)(- and we call them leaves.

(ii) We lo o k for the element bt in the sequent s. I f we find such a sequent containing p, and bt on
the same side o f the sym bol |[- then S T O P — we have to do w ith the case o f the form :
Piix i, - j *„,) = ..., x „) and the proof does not exist. I f s is not a conclusion of any of the
rules from © we consider three cases:

Case 1 . I f for every a e lefl(s) we get a e A t’\ {F A L S E , i>(} and a does not contain the predicate
letter p L and if fo r every ft e rig h ts) we get f ie A t '\ {T R U E } and 0 does not contain the
predicate letter pL and bt e right(s), then we put into the file X .

Case 2. I f for every a e le ft(s) we get a e A t‘\ {F A L S E } and a does not contain the predicate
letter p, and b, e left(s) and if for every e r ig h ts) we get /J e A f\ {T R U E } and does not
contain the predicate letter p{ then we put —>bl into the file X .

Case 3. I f there is b, and —*6 , in X then S T O P — the pro o f of the generalized form ula
Pi (T j , t ' j = bt in the retrieval system does not exist.

6. I f s is an indecom posable sequent on the n-th level o f the h-diagram which is not an elem ent o f
sd u (A x ") ' then S T O P — the proof o f the classical open form ula t}m) = ti} or
Pjfx'p) = b, for the case h = j or h = i respectirely in the retrieval system does/not exist.

7. I f each indecom posable sequent from the n-th level of the h-diagram is an element of the set
sd u { A .O and if there is no other sequent on the n-th level then S T O P — if h = j then the set
{s eSeq’: a e right(s) for some classica l open form ula a from X and a ^ bd and x ^ —>bd for
1 < d < /} is the special set o f axiom s for the proof of the classica l open form ulas:

Pifri» £,) - “i. ■«. V>M’ -> = uj>
and the file of the premises o f the above functional equations exists and contains a ll the elem ents
from X which are neither bd nor —•bd fo r any d e {] ,.... i). How ever if h = i then the set {s e Seq’:
bd e right{s) for some bd from the file X where 1 <, d < i or bd e ieft(s) for some —<bi from the
file X where 1 < d < i} is the special set of axiom s for the proof of the generalized form ulas:

- » Tn\) = bu ■■■> Pfc\> » . = K

and the file of the premises o f the above relations defined by program s exists and contains a il
the elements from X which are of the form bd or ~'bJ for any d e { 1, ..., i}.
I f j = p and i = t then S T O P — sd is the special set of axiom s for the proof o f a ll generalized
form ulas from (F P) and X is the file of the prem ises o f functional equations and relations defined
b y program s from (F P). I f {j < p and i < r) ax (j < p and i = r) or (i < r and j = p) then we
change i and j respectively and we go to the point 2 . □

Now we want to pay attention to a special case, which was mentioned in
Case 1 of the point 5 (i). We want to prove in the retrieval system f(2) = u
by RS-algorithm.

Exam ple 9.
We start w ith the sequent:

(1) |hfl2) = u.

79

A lter using some rules we get am ong other things two sequents:
(2) |(- {n := 2){n = 0), (n : = 2)(z := n *f{n - l) (z = u)\
(3) lh {n := 2)(z := 1 (z = u)), (n := 2) (z := n * /(n — 1) (z = u)).

The continuation of the proof depends on which sequent w ill be decomposed.
We shall show both of them:

Case 1. If we continue our considerations w ith the sequent (2), we shall get at last the sequent o f
the form :
(4) 0 = 0 |H 2 = 0, 1 «= ft 2 = u.

B y Case 2 o f the point 5 (i) of RS-algo rith m we get 2 = u as the premise. Therefore each
sequent containing this premise on the left side o f the sym bol ||- is a special axiom . It allow s us to
end the whole proof.
Case 2. If we continue our proof with the sequent (3) we get at last the sequent of the form :
(5) ||- 0 = u, 1 = u, 2 = u.

M oreover 0 in (5) was got from the classical term 2* (0 */(0 — 1)) by (r„ +). Since we sh a ll not
be able to choose only one prem ise, we ca ll this sequent in the Case I of the point 5 (i) o f
RS-a lgo rith m the special leaf and put it in to the file M . A t that moment we consider other
sequents, fo r exam ple the sequent (2), w hich allow s us to get the prem ise 2 = u. B y Case 2 of the
point 5 (i) o f R S-a lgo rith m we remove the special leaf from J (and we ca ll it a leaf. It allow s us to
end the whole proof even in this case. ■

Case 1 in the point 5 (i) is based on the standard model of arithmetic with
standard realization.

If there exist only terms without individual variables in the considered
programs and formulas, except individual variables of the form x in the
expressions x: = z and if we use only recursive functions and the computations
of all programs in (FP) stop then the following lemma holds:

L em m a 8. Let <S0 = < S ,< > be the diagram o f the generalized formula a.
of the form q>j{yv —,y m̂ = Mitj from (FP). I f during the execution o f
RS-algorithm for the premise o f function defining the notion cpj we get an
indecomposable sequent s of the form |}- u = u — xn, T 2 then there
exist two sequents sk and s2 in S such that s < sv s2 < s1? s and s2 are not
compared by < and s2 contains exactly one classical open formula from
{u = tx, u = t„} on the right o f the symbol |[~.

We want to pay attention to one important matter. The diagram <5a usually
has an infinite path (see the diagram for /(2) = u) but using RS-algorithm,
we get a finite subtree < S ’, < '> of the tree S a i.e. a finite S’ <= S and
< ' = < /g. where < /g. means the restriction of the relation < to the set S’.
Since the computation of the program Mj stops and gives us the result of this
computation, this computation points out the path to the sequent s2.
Obviously there is only one sequent s2 with the above mentioned property.

The main idea of this lemma is the following: if during the execution of
RS-algorithm we get the path with the indecomposable sequent s of the form
i f ||- u = t1? ..., u = t„, r 2, (in this case we do not know which x} is the
calculation of M f) , then by the assumption (the computation of all programs

80

in (FP) stops), there exists another path containing the indecomposable
sequent s2 with the only formula of the form u = x for some j e { 1 , n} where
Xj is the result of the computation of Mjtj. Therefore during the execution of
RS-algorithm we stop the calculation along the path with the sequent s
and we continue the calculation on the other branch constructed up this
moment and we look for the sequent s2. The sequent s2 enables us to get the
premise of the considered function of the form u = t - and to extend the set of
special axioms.

Further we shall give some examples showing that the idea presented in the
above algorithm allows us to fmd the special set of axioms for functions and
relations defined by programs.

Using the rules from RSeq. u 9? we will be able to fmd the premises and
a special set of axioms to solve the equality of the form < p (U , t j = u for the
Function defining the notion q> such that cp(tl tJ = Mi is from (*) and
u $ &{cp(tv i J) u S(Mt). Let = {s e Seq': a e right{s) for some a from the
file Z j for i e {0, 1, 2, 3) and for the set of premises X t

Exam ple 10 . There exist the files X a, X v, X 2, X 2 of the premises and the special sets of axioms
sd0, jd t, sd2, sd3l which are found by using R S -algorithm during the proof of the following
expressions:

(1) g(n*) = k e proof < (A x -)' \j sd0, R Seq, u ! R > ,
(ii) h(l, 2) = « j e proof < (A x -)’ u j d lt R Stq- u 9 l> ,
(iii) k(x, 1) = u2 e proof < (A x -)' u sd2, R Scq. u 3 t> ,
(iv) p (l, 2) — b e proof < (A x -)' \j sd2, R Scq. \j 5R>,

O b vio u sly sdq = {s e Seq’ : r& = u e r ig h ts)}, sd y = { s e Seq': 2 = Uj e rig h ts)}, sd2 =
[s e Seq ': x + 1 — u2 e right{s)} and sd3 — (s e Seq': b e right(s)}.

Proof, (i) T o find X 0 an sd0 we m ake them empty and construct the diagram of sequent

W IF S("*) = «
by R S-a lgo rith m in the language SC" w ith the special set o f rules St and the special set o f axiom s
sdq. B y (r ^ + J and (B +) we get the sequent
(2) IF begin x := n*; i : = n end (begin i : =» « + 3; z := x end(2 = «)).

Th u s by (s +) we get
(3) |F n4 - a-

N ext by Case 2 o f the po int 5 of R S-a lgo rith m we put n* = u into X 0 and therefore the
sequent (3) belongs to the set sd0.
(ii) T o find the needed X t and sdy we m ake them empty and construct the diagram o f the
sequent
(1) M (l , 2) = « x
by R S-a lgo rith m in the language if* w ith the special set o f rules 91 and the special set o f axiom s
sdy. U sin g (>■ „+) and (B +) we get
(2) |F begin x := 1; y : = 2 end if x — 0 then z := 2 else z:= h[x - 1, h(x, y)) (z = ut).

Hence and by (k +), (A +) and (C +) we get two sequents of the form :
(2 .1) ¡F begin x := 1; y : = 2 end(->(x = 0)), begin x := 1; y := 2 end((x - 0) a z := 2 (z = « j)),
(2 .2) ||- begin x : = 1; y := 2 end z : = h{x - 1, /¡(x, y)) (z = Uj)), begin x := 1; y := 2 end((x = 0) a

(z := 2 (z = u j)).

6 Algorithmic.,. 81

Case (2.1). U sin g (C +) we get two sequents of the form:
(2 .1.1) |(- begin x : = 1; y : = 2 end (x = 0), begin x : = 1; y 2 end (—>(x = 0)),
(2 .1.2) ||-begin x : = 1; y : = l end (z = 2 (z = u j) , begin x : = 1; y := 2 end (->(x = 0)),
Case (2.1.1). B y (N +) we get an axiom .
Case (2.1.2). B y (N +), (-s), (s +) and (ra) we get an axiom .
Case (2.2). U sin g (C +) we get two sequents o f the form :
(2 .2 .1) . |(- begin x : = l ; y : = 2 end (x = 0), begin x : = l ; y := 2 end { z := h(x — l , h(x,y))
(z = “ l)X
(2.2.2) |(- begin x : - 1; y : = 2 end (2 = 2 (z = u j) , begin x : = 1; y 2 end (2 := /z(x - 1 , h{x, y))

(z = ui)X
Case (2.2.1). U sin g the rule (s +), (r _ +) and (s +) we get
(3) |M = 0, /i(0, h (l, 2)) « =« ,.

U sin g the rule (r „ + X (P ’ +), (B +), (P ’ -HX (k +) and (P ’ +) we get
(4) 11-1 = 0, begin x : = 0 ; y : = h{ 1 ,2) end(((x = 0) a (z := 2 (2 = «,))) v (- .(x = 0) a (z :=
h(x - 1, k(x, y)) (z = u ,)))).
B y (A +) and (P ’ +) we get
(5) |f-1 = 0, begin x \ — (X y : — A(1,2) end((x = 0) a (z := 2(z = Uj))), begin x : = 0; y := h (l,2)
end(—'(x = 0) a (z := h{x - 1, h(x, y))(z = u j)).

F o r sim p licity let us denote by H the second generalized form ula on the right-hand side o f the
above sequent. Le t us introduce the fo llow ing abbreviations:
a = begin x : — 0 ; y : = h(l, 2) end(—>[x — 0)),
b = begin x : = 0; y : = h (l ,2) end (z := h[x — 1, h (x ,y))(z — u,)),
c = begin x : = 0; y ; = / i(l, 2) end(x = OX
d = begin x : — 0; y : = h (l,2) end (z := 2 (z = u,)).

U sin g in (5) the rule (C +) we get two sequents:
(5.1) |f- a, 1 = 0, H ,
(5.2) |(- b, 1 = 0, H .
Case (5.1). U sin g (C 4 -) and (P ’ +) we get two sequents:
(5.1.1) If- 1 = 0, c, a,
(5.1.2) |f-1 = 0, d , a .
Case (5.1.1). By (N +) we get an axiom .
Case (5.1.2). B y the same rule as used in Case (5.1.1) and by (-r j) we get
(6) 1 |f- 2 = u ,, 1 = 0. Then by Case 2 of the point 5 of R S-a lgo rith m we put 2 = u , in to X 2 and
therefore the sequent (6) belongs to the set sd v
Case (5.2). U sin g (C +) and (P ’ +) we get two sequents;
(5.2.1) If- 1 = 0 , c, b,
(5.2.2) If- 1 = 0, d, b,
Case (5.2.1). U sin g tw ice the rule (s +) and (r j+) we get an axiom .
Case (5.2.2). U sin g twice the rule (s-F) and (r „ +) we get
(7) ||- 2 = «, A (—1, h(l, 2))) — uu \ = 0.

The sequent (7) is an element o f the set s t v The case (2-2.2) is sim ilar, so we
om it it.
(iii) To find the needed X 2 and s i 2 we m ake them empty and construct the diagram of the sequent
|f- /c(x, 1) = u2 by R S-a lgo rith m . The proof is sim ilar to (i). After using m any rules we get a t last two
sequents of the form :
(1) |f- fc(x, 0) + 1 = u2, 1 = 0 ,
(1’) ||-fc(x,0) + 1 = u2, x = u2.

F irst we consider (1). B y (P ’ +), (r „ +) and (B +) we get
(2) f| -y ; = 0 (ify = 0 then z : = x else 2 : - k (x ,y - 1) + 1 (z + 1 = u2)X 1 = 0 .

8 2

Hence by (P ’ +), {& +), (A +) and (C +) we get two sequents of the form:
(2 .1) ||- y : = 0 (—0 ~ 0)), y ■ = 0 (y *= 0 a (2 : = x) (z + 1 = u2)), 1 = 0 ,
(2 .2) |[-y \ ~ 0 ((z : = k(x, y - 1) + l) (z + 1 = u2)), y : = 0 (y = 0 a (z := x) (z + 1 = u2)), 1 = 0 .
Case (2.1). U sin g (P ’ -f-), (C - f) and (N +) we get an axiom and the sequent of the form :
y G(y = 0) | (-y := 0 ((z := x)(z + 1 = u2)), 1 = 0 . After using (+ s), (P ’ +) and (s +) we get
0 = 0 |f- z + 1 = «2, 1 = 0. Then by Case 2 of the point 5 of R S-a lgo rith m we put z + 1 = u2 into
X 2 and therefore the sequent (6) belongs to the set sd2.
Case (2.2). B y (P ’ +), (C +) , (s +), (/-„ +) and (rj +) we get, after some steps, the axiom of the form

— 1) + 2 = u2, T R U E , 1 = 0 and the special axiom of the form
|(- k(x, — l) + 2 = u2, x + l = u 2, l = Q.

The case (1‘) is sim ilar to the case (1), so we om it ¡L It is worth to m ention, that if we first
consider the case (T) we shall get the proof by the Case 1 in the point 5 (i) in R S-a lgo rith m .
(iv) To find X 3 and s / 3 we m ake them empty and construct the diagram of the sequent
(1) lb P (l. 2) = b,
by RS-a lgo rith m for i = 1, b2 = b and k — 2.

O bviously by (C +) we get two sequents. N ext by (I +) we get:
(2) p (l ,2)|b b ,
(3) b |b p (l, 2).

U sin g the rule (—r 'J to (2) and (r^ -l-) to (3) we get
(4) begin x : = 1; y : - 2 end K2a |b b,
(5) b |b begin x : — 1; y : = 2 end K2a.

A t first we consider the point (4). B y (-k) and (-A) we get two sequents:
(4.1) begin x : = 1; y : = 2 end ((x = y) a (a := F A L S E) a) Jb b,
(4.2) begin x : = 1; y := 2 end (—>(x = y) a begin u := 0 ; while —>((u = v) v (u — x)) do u : = u -f- 1;
if u = x then a T R U E else a := F A L S E ; end a) |b b.
C ase (4.1). B y (-C) and (-s) we get the sequent
F A L S E , begin x : — 1; y : = 2 end(x = y) |b b w hich is an axiom .
Case (4.2). B y (-C), (-/c) and (-N) we gel
(6) begin x := 1; y := 2 end (« := D(begin while —>((u = y) v (w = x)) do u := u + 1; if u = x then
a : = T R U E else a := F A L S E ; end a))|b begin x : = 1; y : = 2 end (x = y), b.

By (P ’ +), (-k), (s +), (-fc) and (-r„) we get
(7) begin x : = l ; y := 2 end(u; = 0 (p : = T R U E (J begin p : = (p A -’ftu = y) v (u = x))); u: = u + 1
end (p a ((u = y) v (u = x)) a if u = x then a : = T R U E else a F A L S E (a)))) |b 1 = 2, h, where
p is a special element from V0 (see D efin ition 16).

Since we need to use the ru le (—(J)> by point 4 of R S-a lgo rith m we denote by n the level o f the
considered diagram and by M „(0 the expression of the form:
begin x := 1; y 2; u : = 0; p := T R U E ead(begin p i - p a ->((u = y) v (u = x))j u := u -t- 1 end)'.

N ext we verify whether the sequent k(M„(k)p) |b has the proof in the retrieval system
for k = 2.

Since k{M n(2)p) is o f the form T R U E a -> ((0 = 2) v (0 = 1)) a -> ((0 + 1 = 2) v (0 + 1 = 1)),
using the rules (- r „) , (- r j) , (- r X I), (- r K1), (- r co) to the sequent k{M J2)p) |b we get the sequent
s0 such that F A L S E eleft(s0). Hence s0 is an axiom . B y the point 4 o f R S-a lgo rith m we sh a ll
consider only two sequents of the form:
(8) M n(l) (p a ((u = y) v (u = x)) a (if u — x then a := T R U E else a : = F A L S E ; a)) [\-l = 2 ,b for
ie { 0 , i } .

U sing twice (-C) in (8) we get for l — 1 the fo llow ing sequence.
(9) M „ (l)((« = y) v (u = x)),M r(l) if u = x then a :— T R U E else a .= F A L S E a), A f„ (l)p

I H - 2 ,b.
U sing (-s), (-rc l), {-k), (-A), (-N) and (P ’ +) we get two sequents:

(9.1) M „(l)(« = y),M „ (l)((« = x) a ((a : = TRUE)a)) v (- (« = x) a ((a := F A L S E) a))) lb 1 = 2 ,b,
(0 = 2) v (0 = 1).

83

(9.2) M ,(l)(u = y),M „(l)((u = x) a ((a: = TR U E)a)) v (* > = x) a ((a := F A L S E) a))) | M = 2,6 ,
(0 = 2) v (0 = 1).
Case (9.1). B y (A 4-), (-A) we get two sequents. N ext using (-s) and (r„) we get axiom s, since F A L S E
is on the left-hand side o f the sign ((-.
Case (9.2). B y (A +) and (-A) we get two sequents:
(9.2.1) M „(l)((u = y) a ((a : = F ftt/B Ja)), A f„(l)(« - x) |(- 0 = 2,0 = 1, 1 - 2), 6 ,
(9.2.2) A f„(l) (—> (u = x) a ((a : = FALSE)a)), M n(I) (a = x) ||- 0 = 2 ,0 = 1, 1 — 2), b.
Case (9.2.1) U sin g (-s), (-r_), (-C) we get
(10) M„(L) (a = x), M „(l) ((a : — TRU E)a), T R U E |h 0 - 2, 0 = 1, 1 = 2,6.

B y (-P), (-s) and (-r_) we get the sequent o f the form :
(11) T R U E |[- 0 = 2, 0 = 1, 1 = 2, 6.

B y Case 1 o f the point 5 o f R S-algorithm we put b into the file X 3 and the sequent fro m (11)
is an element o f the set M oreover the sequent (9.22) is the special axiom too. O b vio u sly the
sequent (8) for / = 0 is the special axiom , since b is in it on the right-hand side of the sign |f-.

Now we consider the point (5). U sin g (/c+), (A +) and (C +) we get two sequents:
(5.1) b |f- begin x : = 1; y := 2 end—>(x = y), begin x : = 1; y : = 2 end((x = y) a (a : = F A lS E ja) ,
(5.2) 6 |(- begin x := 0; y : = 2 end(begin u : = 1; while —>((u = y) v (u = x)) do u : = u + 1; if u = x
then a :— T R U E else a: = F A L S E ; end a), begin x : = 1; y : = 2 end ((x = y) a ((a := F A LS E)a)).
Case (5.1). B y (C +) we get two sequents such that using (N +) for one of them we get an axio m and
using (N 4-), (-P), (s +), (-s) we get the sequent o f the form 1 = 2, 6 |(- F A L S E w hich by (r0) becomes
an axiom .
Case (5.2). B y (C +) we get two sequents:
(5.2 .1) 6 |f- begin x : = 1; y : = 2 end (x = y), begin x : = 1; y := 2 end (begin a : = 0; w h ile- '((u = y) v
(u = x)) do « := « + ! ; if u = x then a :~ T R U E eke a : = FALSE-, end a),
(5.2.2) b ¡¡- begin x : = l ; y : = 2 end((a: = F A L S E)a \ begin x : = 1; y : = 2 end (begin u := 0 ;
while —>((u = y) v (u = x)) do u := u + 1; if u = x then a : = T R U E else a :— F A L S E ; end a).

Since both cases are nearly the same, we shall consider o n ly the case (5.2.1). F o r further
considerations we shall introduce the fo llow ing abbreviations: a is equal to ((a = y) v (u = x)), s i
denotes begin p : = (p a —>a); « : = u 4- 1 end. U sin g { k +) , (s +), (k +) , (P ’ +) and (f c +) in (5.21)
we get
(12) 6 ||- begin x : = 1; y \ — 2 end (« := 0 [p .— T R U E \ J s i (p a- >—>aA if u = x then a : = T R U E
else a := F A L S E] a))), 1 = 2, where p is a special element from V0 (see D efin ition 16). B y (r„4~),
(P ’ +), (U +)> (P ’ -b) and (C 4-) we get two sequents, but one of them, after using ((J 4-), (P 4 -) and
(s-t-), becomes an axiom because T R U E appeares on the right-hand side of the sign]J-. Therefore
we consider o n ly the last sequent which is o f the form :
(13) 6 |(- begin x : = V , y : = 2 end {u := 0 {p := T R U E (« A if u = .x then a := T R U E else
a: - F A L S E ; a))), 1 = 2, begin x : = l ; y := 2 end (u := 0 (p := T R U E \ J s l(s l(p A a a if u = x then
a : — T R U E else a : = F A L S E ; a)))).

Let us denote by 6 the sequence o f generalized form ulas of the form:
begin x : = l ; y : = 2 end (u := 0 (p := T R U E \ Js l(s l(s l(p A a a if u — x then a := T R U E eke
a := F A L S E ; a))))), begin x : = l ; y := 2 end (u := 0 (p := T ftl7 B (s l(p A c a if u = x then
a: — T R U E else a : = F A L S E ; a)))).

U sin g ((J 4-), (P 4-) and (C 4 -) in (13) we get two sequents:
(13.1) 6 |f-begin x : = 1; y : = 2 end (u : = 0 ((p := T R U E) a)), 1 = 2 , 6,
(13.2) 6 j|-begin x : = l ; y : = 2 end (u := 0 ({ p := r R I7 E) if u = x then a := T R U E else
a := F A L S E ; a), 1 = 2, 5.

Let C be o f the form : begin x : = l ; y : = 2 end (fz := 0 (p := T R U E f J s l(s l(s l(p A h a if u = x
then a := T R U E else a := F A L S E ; a))))).

84

Case (13.1). By (C +) we get two sequents:
(13.1.1) b |b begin x : = 1; y : — 2 end (« := 0 (p: = T R U E (sip))), begin x : = 1; y : = 2 end (« : = 0
((> := TRUE)«)), 1 = 2 , C,
(13.1.2) b |(- begin x : = 1; y : = 2 end (« := 0 (p := T R U E (st (a a if u — x then a T R U E else
a : = F A L S E ; a)))), begin x : = I; y : = 2 end (« := 0 ((p : = T R U E (a)))), 1 = 2, (.
Case (13.1.1). B y (1 J +), (P +), (A +), (s +), (rc l +), (C +) we get two sequents. U sin g for each of
them (1 J+) , (P +), (s - f), (N +), (-A), (ra) we get four sequents which are axiom s because F A L S E
belongs to the left side o f the sign ((- o f each of them.
Case (13.1.2), Let us consider only the generalized form ula T o f the form : begin x := I ; y := 2 end
(u : = 0(p ;= T R U E (s i (« a if u = x then a := T R U E else a ; = F A L S E ; a)))), which belongs to the
right side o f the sign ¡b in (13.1,2). It is easily seen that using some rules of inference to the sequent
(13.1.2) w hich is of the form b |f- T , F , we get the sequent of the form :
(14) b ft- r , T .

Le t ¡i be of the form begin x : — 1; y : — 2 end (tr: = 0 (p : = T R U E (sl((a))) and k be o f the form
begin x : = 1; y: = 2 end (u: — 0 (p := T R U E (s i(if u — x then a :— T R U E else a := F A L S E ; a)))).
U sin g (C +) in (14) we get two sequents:
(14.1) b ih ft, r ,
(14.2) b ih k , r .
Case (14.1). U sing some rules of inference to the generalized form ulas which belong to T '
we get at last some sequents o f the form b [(- T j, p. N ext by (A 4-) we get sequents of
the form :
(15) h | l- r 2J begin x : = i ; y : = 2 end (u := 0 (p := T R U E (s l(u = x), r 3.

Repeating this process and using in turn two rules o f inference (s +), (rx - f) we get at last some
sequents of the form :
b |f- T R U E , F +, w hich are axiom s.
Case (14.2). U sin g some rules of inference to the generalized form ulas from F we gel at last some
sequents o f the form b ||- F s, k . B y (k +) we get
(16) b |b begin x := l ; y := 2 end (u := 0 (p: = T R U E (s i ({(« = x) a ((a : - TRU E)a)) v (- (u = x) a

((« := FALSE)*)))))), F 5.
U sin g some rules of inference to the generalized form ulas from T s and at last using (A +) we

get the sequent o f the form :
(17) b ¡1- begin x : = 1; y := 2 end (u := 0 (p := T R U E (s l((u = x) a ((a : - TRUE)a))))), Va.

N ow we use some rules of inference to the generalized form ulas from r„ . A t last we use (C +)
getting two sequents o f the form:
(17.1) b ||- begin x : = 1; y : = 2 end (u := 0 (p := T R U E (s i (« = x)))), F 7,
(17.2) b |b begin x : = 1; y := 2 end (a := 0 (p := T R U E (s i ((a := T R U E) a))), r 7.
Case (17.1). Repeating th is process and at last using in turn (s +), (r „ +) and (r} +) we get some
sequents of the form b |b T R U E , r 8 which are axiom s.
Case (17.2). Repeating this process and using at last (s +) we get some sequents o f the form
b }b T R U E , F 7 w hich are axiom s.
Case (13.2). W e shall on ly show how to use the rule for a special generalized form ula of the sequent
because the other rules are not essential. Therefore this special generalized form ula w ill be still
written on the righ t side or the considered sequent. By (C +) we get two sequents:
(13.2.1) b |b r „ begin x : = 1; y : - 2 end (« := 0 (p := T R U E (si p))).
(13.2.2) b |b F 9, begin x : = 1; y : = 2 end (u := 0 (p : = T R U E (s i(a a if u = x then a \~ T R U E else
a : = F A L S E ; a)))).

It is easily seen that case (13.2.1) is analogous to the case (13.1.1) and the case (13.2.2) is
analogous to the case (13.L2).

W e have proved (iv) for - {s e S e q ': b e r ig h ts)} and X 3 containing the cla ssica l
form ula b. ■

85

The above examples show that the constructed algorithm computes even
such generalized formulas for which the standard computation is helpless, since
as it was mentioned in the introduction, it is impossible to compile the program
K 5 defining the function h{x, y) in the case x = 1 and y = 2. The retrieval
system, however is able to find the additional premise u = 2 of function h to
prove the formula h{ 1,2) = u.

5.5 The data structures and implementation
of a retrieval system

The system is based on Gentzen’s axiomatization of algorithmic logic
G. Mirkowska [58]. The implementation needs some structures. Objects of the
type TNODE of the form:

K IN D ID E N T

L E F T R IG H T

where types KIND and IDENT are INTEGER and types LEFT and RIGHT
are TNODE represent generalized formulas, generalized terms and programs.
We present some representations:

a a ß ----- > 53 := t ■ - ->

IF a T H E N K E L S E M ß - >
IF

a

T H E N

K

E L S E

M ß

V.iOt--- >
V i

a

B E G IN K] M E N D a ------->
B E G IN E N D

------- f c j
a r ;

K M

W H IL E a D O K ß ----- >
W H IL E

a

D O

K ß

P2(/1(jc5)) - - - >
P 2 / l X 5

1 r 1 r
L _

86

The object of the type FORMULA is of the form:

P L E A F

L L E A F

N E X T

where PLEAF and LLEAF are of the type TNODE and where NEXT is of the
type FORMULA. The list of objects of the type FORMULA represents the
sequent X \\- Y. Let POINTER be an object of the form:

S E Q U E N T

" d o w n

where SEQUENT is of the type FORMULA and DOWN is of the type
POINTER. Let HEAD be of the type POINTER. We can represent the list of
the sequent X , |f- Yv X k |(- Yk where X t |J- Yt = { f t , a 'f} |h { f t , ..., f t j for
1 < / < k in the following way:

H E A D

i

S E Q U E N T

D O W N

P L E A F 1

L L E A F

N E X T

I X, ¡h Yi

K IN D ID E N T
L E F T R IG H T

K IN D ID E N T
L E F T R IG H T

— a11

- ß\

i
K IN D ID E N T

P L A E F r L E F T R IG H T

L L E A F K IN D ID E N T
N E X T L E F T R IG H T

l
S E Q U E N T

D O W N
xk it- n

We use the rule only for the last non-empty PLEAF or LLEAF in the
considered sequent. It can be seen that (A+) adds a new FORMULA and
(C +) generates a new POINTER and a new SEQUENT. Using (C +) to the
last non-empty PLEAF in the sequent X JJ- Y, we copy X |J- Y and we put
a new HEAD1 such that HEAD1. SEQUENT points to the copy of X [J- Y.
Next we pull a from the last non-empty PLEAF in the sequent X ||- Y. Thus

87

we change TNODE a a 0 into a. Then HEAD l.DOWN; = HEAD.DOWN;
HEAD.DOWN: = HEADl. Moreover we pull from the last non-empty
PLEAF, which lies in the line pointed by HEAD 1.SEQUENT. Next we change
TNODE a a /f into /?. During the proof we use a lot of options to reduce the
complexity of the tree.

In the end we shall provide a sketch of implementation of the retrieval
system i.e. we shall present the main procedure PROVE showing only the area
of activity of major procedures and functions.

U N IT P R O V E : P R O C E D U R E (M : P O IN T E R);
< D eclaration of constants, variables and objects >

B E G IN
Read a form ula from a file and construct a sequent pointed by M;
Read a definition o f function or relation and construct a sequent pointed by M l;
Replace a function in a sequent by its definition and move a program outside the equality predicate
or replace a relation in a sequent by its definition;
W hile possible, use some basic procedures to the last generalized form ula from the rig h t side o f
M .S E Q U E N T :
— com pute arithm etic expressions /use (;■ _+)/ e.g. 1 + 2 — > 3,
— compute special arithm etic expressions e.g. 0 *J\x)— > 0 , jc° — > 1,
— convert classical terms f j ^ t2 in a model of arithm etic into lo gical F A L S E /use (r j/ ,
— convert classical term s, w hich are equal in the above-m entioned m odel into lo g ica l T R U E

/use (r i+) / ,
— sim plify lo gica l expressions e.g. T R U E a a — > cr.
Remove a sequent including F A L S E on left side or T R U E on right side;
W hile a tree M of sequents is not em pty, execute the proof:
— while the considered sequent pointed by M contains program s, connectives, fu nctio ns or

predicates defined in M l, continue the proof and lo o k for the set o f axiom s:
— if in a considered sequent its antecedent exists then search for a connective or a program

in the last form ula from righ t side o f M .S E Q U E N T .
— If a connective or a program was found, use a proper rule from (R +) or (+ R), else either

if it is possible m ake substitutions and move the last form ula from the antecedent to the
beginning o f a sequent, or lo ok for the first form ula From the antecedent not belonging to A t
and move a ll others form ulas on the righ t of it to the beginning of this sequent,

— do some ordering procedure sim plifying the sequent i.e. remove empty Inodes, search
axiom s and when found, erase the sequent,

— repeat the above-m eDtioned two procedures for the premises o f the sequent;
— search for a special axiom s w hich enable us to fin ish the proof and update the list o f them,
— continue the proof fo r the next sequent after rem oving the proved sequent.
E N D .{P R 0 V E }

5.6 Results of experiments

Now we discuss some experim ental results. In our experim ents we use IB M P C /A T w ith frequency
of 50 M H z. Le t us consider the fo llow ing theories:
A R — arithm etic,
A L — algorithm ic logic,

88

S T — set theory,
L T — lattice ; A LT — axiom s o f the theory of lattice,
B A — boolean algebra ; A ba — axiom s o f the theory of boolean algebra,
G — geometry,
C Q — calcu lus o f quantifiers,
P L — propositional logic.

F o r further considerations let us define the fo llow ing program :
K 6 — if x = 1 then q l := F A L S E else q l := TR U E;.

Now we define some sets of axiom s:

¿i-*
a l - VxV7(P (x ,y)^ Q (x ,y))
a2 - VxV ,(e (x ,y) - P (x ,y))
a3 - VxV ,(J?(x,y) = (S (x ,y) v T(x,y))).
a4 — Vx(l/ (x) - W(x))
a5 - VI V/(fP (x) = - .(P (y ,x) a S(x,y)))
where

P(x, y) — means that x £ y ,
Q (x, y) — means that x c y or x = y,
R(x, i') — means that the power of the set x is less than the power o i the set y o r these sets
are equipollent,
S(x,y) — means that x and y are equipollent,
71X y) — means that the power of the set x is less than the power of the set y,
U(x) — means that the set x is fin ite,
\V(x) — means that x is Dedekind finite set;

b l — VXV ,VUV 0(T (X , y, n, v) -+ P(x, y, u, u))
b2 — VrV,VuV„(P (x, y, u, u) -> E{x, y , v, u, v, y))
b3 — T(a,b,c,d]
where

T (x , y, u, v) — means that xyuv is a trapezium ,
P{x,y ,u1v) — means that the segment xy is parallel to uv,
£ (x , y ,z ,u ,u , w) — m eans that the angles xyz and uvw are equal.

I N :
T i - Vx(Vy(y < x - P(y)) -» P (*)) - Vx P(x)
T2 - VxV7(x + y = y + x)
T3 - Vx(x + Cl - x)
T+ — Vx((x * Cj A X * c2) -*• c2 < x)
Ts — VxV /(x < y) = 3z(z * c , a x + z = y)))

T6 — c i ^ c2
The constants c , and c2 can be interpreted as 0 and 1. T h is exam ple shows as well th a t we

can use another definition of the m athem atical induction.

G.:
G , - Vx VrVx .Vr V0(p1(2C, Y, X ', Y ,a) - i CI p2{X , Y , X ', Y, C ,))
g2 - vxvrvx,vr.vavClvC2((pj(at, y X', r,«) a Pl{x, y , x\ y c2) a p3(c!, ca» - p*(c2, «))
g3 - vB3xar3x,3r p,(x, y r , r,*)
G4. — VC l3C2 P 3(C 1, C2)

M oreover the expression p2(X ,Y , X \ 1",a) means in tu itive ly that two points X , Y lie o n the
first arm o f the angle and two points X 1, Y 1 lie on the second a im of this angle and the p a irs of
segments O X , O X \ X Y , X ’Y 1 osculate respectively.

89

The expression p2(X, T , X', £ C J means that ihe point C j lies on two lines X Y 1 and X ’Y .
The expression C 2) means that C 2 is the line O C y The expression P 4(C 2, a) means that
the line C 2 is a b isectrix o f the angle a.

I f X is a set of axiom s then by X we mean the conjunction of a ll these axiom s. B y L we
denote the num ber of used axiom s in the considered theory. T denotes the duration o f the proof
o f theorem or the duration o f the verification o f an expression. We recall that theorem s o f
P L ,C Q ,A L can be proved w ithout axiom s because retrieval system has a ll necessary rules o f
inference. B y D E F we denote the definition of a function or a relation defined by program (see
(F P))

If during the proof o f an expression, w hich should be written in the set D A T , wc need
a special axiom , then in the colum n R E S U L T the premise w ill be w ritten to inform us about the
elements o f si.

T a b ic 1

The table of some experim ental resides o f R S-a lgo rith m

T i l D E F D A T L R E S U L T

T IM E
P C 486

50 M H z

[m] l>3

A L

/(«) =
K xz

II E si\ u — 2 0.33

/(3) = u s i :u — 6 0.45

m = i a
(Y t i- '(* = 0) - » {f[x) — x *f[x — 1) -»

+ 1) = (x + i) +f{xm

T H E O R E M 0.07

k(x, y) =
K 3(z)

k(x, 1) - x + 1 T H E O R E M 0.30

k(x, 2) — u s i \ u = x + 2 0.32

sM =
K M

21II■T*
¿J,

*KIIa 0.03

p{x,y) =
K 2a

P(l» 2) = b s i :b
means

b = T R U E

2.27

p'(x) =

■ W)

p'(l) B b si\~>b
means

b s F A L S E

0.30

S T Ü A 1 -
V*V ,((I/(jc) a P(y, x)) -+ T[y, x))

5 T H E O R E M 0.88

L T I 1 a l t -» v x((
_ y = y —*-x = 0) a (VyX n y = y -* x = 1))

15 T H E O R E M 256

B A 11 A b, - ({X v Y)\ Z = {X \ Z) u (A Z)) 18 T H E O R E M 2.8

i ! A ba Y xV r (X c Y ->
Vz ((Z \ Y) c : (Z \ X)))

18 T H E O R E M 0.07

E [A a A - V x V r((X = T) =
VZ((F c : Z) -> ((Z \ X) n (Z \ 7) = Z \ Y)))

18 T H E O R E M 0.39

90

Com. Tab. 1

G f l A 2 -> E[a, b, d, c, d, b) 3 T H E O R E M 0.18

A R n iN - ((P (o) A
P(x + 1))) -> VxP(x)

T H E O R E M 2.10

C Q W f c jO s V , V , P (x , y) T H E O R E M 0.12

3 ,(3 yP M p ,.x)A 3 r P(fcjZ ,x)) v
(3y- P M y ,c) a 3 ,- ^ p f c M)

T H E O R E M 0.16

v .O p .M -a .x P a t* .))
= 3x2(P iW -»• Pa(Xa)))

T H E O R E M 0.06

C Q {(x = J'} A (a = z) a P (x , u)) -* P(y, z) T H E O R E M 0.06

(P M -* v ,ô W) = Vy{P(x) -*■ Q(y)) T H E O R E M 0.10

- (3 XP M V 3 yÖ M) V 3 .(P (z) V 2(a)) IS N O T A
T H E O R E M

0.03

P(x) =
- P M

P(jc) = 6 D E F IN IT IO N
IN C O R R E C T

0.02

P L (P - > (ß ~ » S)) - ((P ~ > ß) - { P “> S)) T H E O R E M 0.01

Chapter 6

Theorem proving by decomposition

6.1 Axiomatization and decomposition

Let us consider the language <£”' = <L,To,T ,F 0,F ,S 0,S ,F ’v> where F'v is
defined as Fv and additionally it is based on the language with generalized
terms T.

D efinition 22. Let M be a program. We say that

(i) the program M is correctly constructed if it is not a composition,
(ii) the program M is of normal form iff one of the following conditions holds:

(a) M is correctly constructed,
(b) M — [M A, M f\ for some correctly constructed programs M x > M n

and for n > 2,
(iii) the program M is a normal assignment iff M is an assignment instruction

or M = [Mj ^ , M„] where M x, M n are assignment instructions and
n > 2.
A normal assignment will be denoted by £. □

D efinition 23. Let 9 be a generalized term or a generalized formula and let
a, eri 5 an be assignment instructions, neN . We define the execution o f LO as
follows:

(i) i fL — a then L8 is the result of execution o f substitution c for the expres­
sion 9,

(ii) ¿fX = [f f i . - . f f j then X 0.= [_ol y a„9. □

92

D efin ition 24. Let K, L, M, P be the programs. We denote by symbols v, * the
operations defined as follows:

(i) vP: = P when P is correctly constructed,
v[P ,.K]:= [P, vi<C] when P is correctly constructed,
v [[K ,L],M]:= v [K ,v [L ,M]] .

(ii) S * K [5, K] when S is correctly constructed,
[K,L~]‘M : = [JC, L*M]. □

Let J{ be a model, v - - a valuation, K, L, M — programs, Z — a normal
assignment, 5, <5A — classical formulas /i.e. formulas without programs and
quantifiers/ and let cr be an assignment instruction.

A xiom s of decom position
If U, V} are programs, then we put

We denote by symbol < the relation defined as follows:

A1 [Z,[a,iC]] < [Z \ t,IC],
[Z,cr] -<ZV,

A2 -< [Z,(vK)*L] if K is not correctly constructed,
A3 [Z ,[^[<5iC L],M]]^< ?Z5([Z,(vK)*M]; [Z,(vLrM]),

[Z, [<5K L B < ?Z<5_0;Z, vK]; [Z, vL]),
A4 [Z ,[+[5 i :] ,M]^ < ?Z<5([Z,(v[K, [Z, A/]),

[Z,* [&K]] -< ?Z«5([Z, v[K, * [<5K]]]; Z),

We can see that these axioms give us the rules of decomposition.
Operations v and * defined in Definition 24 prepare the program for
decomposition in the case when the program is of the form [IC, M] and K is
not a normal assignment. To explain Definition 24 and the idea of axioms of
decomposition let us consider the following example [[51)s2], [s3, s4]] where
st, ..., s4 are assignment instructions.

K < L ,L < M
K < M

[[s1#52], [s ^ s j] -< by Al.
[[s 1,s2] 's3,s4] = by Definition 24 (ii).
CUi , 52S3],5 4] = by Definition 24 (ii).
[[> ! , [i 2 > S3]] ^ J < [i l , [S 2, S 3]] % fey A I -

93

[si> s4- 4̂] — C5i> [52’ _ r^n ĉ 2> e^3’^4.i!n —
[slf S z , s3, s4] by Definition 24 (ii).

The expression [[s1,s2] } [s3>s4]] is not an assignment instruction but
using the operations v and * we get a normal assignment of the form [i1, s2>
S3> 54 J -

L em m a 9. For any programs K, L, M and for every normal assignment
X — [o v ... of] the following conditions hold:

(i) vvK = vK,
(ii) len(vK) = len(K),
(iii) (v^)a(y) = K#(v) for every valuation v and for every realization 3Î in

a non-empty set U and in the boolean algebra 08o,
(iv) for every assignment a the program E’er is a normal assignment o f the form

[c x, on, cr],
(v) v((vK)*L) = v[K, L I
(vi) (vK)*({vL)*M) = (v[KyL])*M- □

Definition 25. The length of the decomposition of the expression of the form
[K, L] is equal to:
1 — i f there do not exist programs K ‘, L such that [K, L] -< [£ ', Ii]
a + 1 — if there exist programs K \ L’ such that the length of [ii ', L’]

equals n and [ü , L] < [Ü 1, l f \ is o f the form of one of the axioms
A l—A4. □

It is easy to prove the following theorem:

T heorem 10. I f Wt < W2 then (W ^ = (W2)m. □

L em m a 10. Let X, Xx be the normal assignments and let K, L be the programs.
I f [Z ,K] < then [L,(vK)*L] -< [Xx,L].

Proof (Induction on the length of the decomposition of the expression [X, !£])•
If the length of the decomposition of the expression [X, JKTj is equal to 2 then
A z was used. Because £ j is a normal assignment, then [X,fC] -< 2^ is of the
form [X, cr] -< E’er. Hence K - cr, Xx = XV, thus [X,(v.K)*L] = [X,[er, L]] and
[£,[<7, 1 /]] and [E’er, L] — [£¿,1], which ends the proof of the
first step of the induction.

Now we consider all cases of decomposition of [X, IC] by the relation -<.
Let us assume inductively that for any K any normal assignment X' for which
[Z '3 if '] -< XL and the length of the decomposition of the expression [£', K ']
is less than [X,JT], we have [E',(vjK:')*L] < [I ,v L\.

If Al of the form [Xr,[c r,ir]] < [X 'V,K '] is used then K = [* ,£ '] ,
E = X'. Since by Definition 24, we have [X,(viQ’L] = [X,[or,(v.K,)*.L]] -< [X'V,

94

(vK')*L]. Using the induction assumption we get [E'*o-,(vK:')*L] -< [E lfL], thus
[E,(viC)*L] -< [E z, Lj, which ends the proof in this case.

Let K \ L be the programs. If A2 oi the form [£ ',[£ ', L']] < i'L'XvKJL'] is
used then K = [K', L'], E = E'. In an analogous way we get [E,(v((vK')*L'))*L]
< [E X,L] by the induction assumption. Since by Lemma 9 (v) v((vK')*L') =
vlK\L~] and [E^vCKMTD'L] < [S t,L], we have [E,(v£)VL]-< [E ^L],
which ends the proof in this case. Let K', L, M’ be the programs. If A3 of the
form L '],M /]] -< ?E5([E,(viC/)*Mf]; [E,(vL')*Ai']) was used and
since ?E(5([E,(vK')*M']; [E,(vL')*M']) -< Ex then we get [E^viCXM'] < E ^ in
the case M jj- E<5 (the other case is similar). Thus by the induction assumption
we get < [2 i, Q- Since by Lemma 9 (vi) (v{(vK‘)'M’))*L =
(v[iC',M/])’L = (viCX((vMXLr) and [Z,(vin*{vMT.L] -< [2 l5 L], we get [E,

<[_!.,l i L l d K ' , ^ (vM')-L]] and [E, [.*.[5*7,
[vM JLf] < ?E5([E, (vX')*((vMTL)]; [E,(vZ0* ((vMTI)]) and moreover ?E<5
([Z,(vKT((vMTL)]; [E, [(vL')‘((vMTL]) - [E ,{vK')*{{vM')*Lf\ and [E,
(vK')*((vMXL)] < [E l5 Zi]. enables us to finish this case of the
proof.

The proof in the case when A3 is of the form [X, si,[5K \ L]] -< ?E<$([E,
v K 'l [E, vL']) is similar.

Let A4 be of the form [E, [*[<5i£'],ikf]] < ?E5([E>(v[iC,, * [^ ']]) ‘M '];
[E .M 7]) and let M 1= —■?E«5. Then [X, AT] -< Eĵ and by the induction
assumption we get [X, (vM')*L] < [Xl5L], Thus [E,(v[*[<5i£'], M'])]*] -< [E,

and [£ , [* [^ ' 3 , ^) ^]] < ?E5([E,(v[A:', *[<5K']])’
((vMO’L)]; [Z,(vM')*L]) and ?X5([X,(v[lC,<52C]])*((vM0m [E,(vM0*Lj) =
[X,(vM')\L] and finally [E,(vM')*L] < [Xl5L].

Let now J i |= E5. Then [Z>[2C ,*[5K ,]]),M'] < E1. By the induction
assumption of the form [X,(v((v[K^*[<5,IT]])W3)LL] < [X1:,L] and since
V((VlK ',* [S K '^yM ') = (v lK '^ S K '^ n v M 1) we get [2Uy[*[<52C,3,
-< [E ,[* [^] ,(v M T L]] and [X, [* [^ '] ,(v M T O] ■< ?E<5([E,(v[X>[5JK:']
])*((vMTL]); [E,(vM0-T]) and ?S5([E,(v[iC'>*[«5K']]r((vM0*I)]; [Z,(vM0*L3)
= [E ,(v[K '5*[5ii']]r((vM')*L)] and finally [E, (v[X ',+[5^]])*((vMTL)] <
[E 1,L], which ends the proof in this case.

The proof in the case when A4 is of the form [E, *[&K]]
< ?£5([X, v[K, *[<5£]]]; E) is similar. ■

Definition 26. A normal assignment E is well-formed for the program K iff
9 (5 ^ n 9(sJvvj) = P for every st, Sj(i ^ j) from E and for every wk, w, e &(K)
where for any expression x, 9(x) denotes the set of all individual and propositional
variables occurring in x. □

95

Definition 27. We shall say that the program K has STOP property in the
model J i iff Kgfo) LOOP for every valuation v in the model J i. □

By Lemma 10 we can prove the following theorem:

T heorem 11. Let K be a program and X be a normal assignment well-formed
for K. I f fZ , iQ has STOP property in the model J i then there exists a normal
assignment X* such that [X, IT] -< XK. □

Proof. (The proof is by the induction of the length of K). The case when K is an
assignment instruction is trivial since [X, c] -< XV. Therefore by Lemma 9 (iv)
X* = X*cr is a normal assignment.

Let K be of the form [L, M], Since [X,K] has STOP property in the
model J i , for every valuation v we get:

LOOP * [E , [L ,M 3] » = Ma(L *(X »)) = Q M

Hence [X, L]a (y) ^ LOOP for every v. Thus [X, L] has STOP property in the
considered structure. Since the length of [X, L] is less then the length of [X, K],
by the induction assumption there exists a normal assignment XL such that
[X,L]-<XL. By Lemma 10 we get [X,(vI}*M] < [XL,MJ. By A2 and
Theorem 10 [XL, M] has STOP property in J i. Because XL is well formed for
M then there exists XLAf such that [XL, Af] -< XLM which ends the proof in this
case.

Let K be of the form By A3 [X, _y_[<5LM]] -< ?X5([X, vL];
[X, vM]). Let us assume that J i f= X<5. Hence [X ,j^[5L M]] ■< [X, vL\. By
Theorem 10 we get that the program [X, vL] has STOP property. Since X is
well formed for vL and by the induction assumption there exists a normal
assignment Xvi such that the following relation holds [X, -< XvL.
The proof of the case M -rX<5 is similar.

Moreover the proof in cases when K is one of the form [^[¿L M],JV],
[*[<5L],M] or *[<5L] is obviously similar. ■

C oro llary 2. By Theorem 11 we get that every program K having the STOP
property in a model J i can be decomposed by the decomposition rules to the
normal assignment, which we denote by the symbol K M. □

6.2 Decomposing proving system
Let J i be a model of arithmetic. For any T, Q, U being sets of finite sequences
of generalized formulas, U c: At, U ^ 0, s being a normal assignment, K e S ,
3 e F '\At, ^ e At, a, fi eF', x e V we define the schemes of the rules of inference
as follows:

9 6

(P+)
n U , Q y5
t \ - Q ,5 ,U (-P) ^ . r . i j - G

f . i t / i - G

(N+)
sct,r\-Q

V{-Q ,$-«x (-N)
T|- sa,Q

F,jr^aj-Q

(C+)
rj-5a, Q ;r \-sp ,Q

FbQ,s(a a p) (-C)
sa,sj?,rj~Q

r , s(a a P)\-Q

(A +)
r\-scc,sp,Q

rh fi,5 (a v P) (-A)
scc ,r]rQ ;sp ,r\-Q

r,s(a v P)\-Q

d +)
sa ,r \-sP yQ

r \ - Q A « ^ P) (-D
r \- s a ,Q ;s p ,r \-Q

r,s(cc~* P)\-Q

(D +)
{T \-sK lat Q \ ie J r }

r \ - Q , s f] K a (- 0)
in x (K «) .« , r i - f i
' r . s n & i - e

(U +)
r \- s { J K (K a) ,s a >Q

r \ - Q ,s { J K a <-U)
{siCia ,r |-8 : ie ^ K ‘}

(s +)
r i - (5) ,e . . (¡ a r i - e
rj-G .se r ,s £ \-Q (fc+ u r \-Q ,s K a

(- *)*
[sK JMa X \-Q

r ,s K a \-Q (V+)
r(-s((x:=y)a),0

where y is the least element of the set V such that y $({r, Q, s}).

(-V) = U?er0(“ ^)z where for every t e T 0:

(~ n
sVxa, (y:=*t)(s((x:=y)a))t F\-Q

r,sV x*\-Q
• set F \ Q(sa).

and y is the least element of the

Formulas containing existential quantifiers are transformed in a standard
way into equivalent formulas containing universal quantifiers. The rules (—k)M,
(k+)M by Corollary 2 reduce programs to substitutions. Then the rules (s-f-),
(-s) may execute the substitution on atomic formulas.

7 Algorithm ic... 97

Let Rfeq be the set of all of the above mentioned rules and the rules of
decomposition. We divide all the rules into two groups: (£ +)■* and {—R)M.

It is known by G. Mirkowska [58], [57] and by A. Biela [5] that every
generalized formula p(xt, tJ containing programs can be transformed by the
function i into the formula of the form K t ... K mp{x\,..., t') where p(x'L,
does not contain programs. To get a complete characterization it is necessary
to add to the previous rules two rules of the form:

(s x{p(xi ,...,xj)yr\-Q
rhQ ,p(T15.. . ,o x r,p(Ti ,...,TII)F(2

Let <p and p be the symbols not belonging to the considered language. We
assume that the functor (p is m-ary and the predicate letter p is n-ary. By if* we
denote the extension obtained by adding the functor (p and the predicate p to
the alphabet.

Let K, M be programs and let cceFa and te T a be such that:

HKcc) = { j q , xn)

${Mt) = [y ^ - .^ y j

Now we introduce in the same way as in chapter 4.2 the system o f function
and procedure defining the notions cp, p:

[FP) (p(yv ..., yml) = M t p (x xni) = Kct

In the considered language if* the sets At’, Seq’ and {Ax~f are defined
analogously to the sets At, Seq and (A x =). To define the set R £ q- in if*
analogously to the set Rfeq we change the usage of the rules (P+) and (-P). The
rules (P’ +) and (-P’) can be used even in the case when the classical formula
<5 e At’ and 5 contains (p{tl t ..., t j , where (p is from {FP}. Obviously we get the
set (£'+)■* and (-& ')'* hi the language if* instead of (£+)■* and {—R)M
respectively.

We extend the set of the rules of inference Rfe q We shall consider the
following rules:

{rcu +), (r^ +), K J , (-4), (rAH-), (- r j , (rj, (r=+), (- r =).

These rules and the set W are defined analogously as in Chapter 4.2.
We shall need the rule of the form (B) which is one of the rules (B +), (-B)

and for example:

r\-sK (x= u),Q
n - a (^ T) = u

98

where u is not an element of &(sK). This rule is a case of the rule (B) from
Chapter 4.2.

Moreover the rules simplifying generalized formulas containing FALSE or
TRUE {e.g. FALSE v a changes into a) belong to the set W.

By we denote the set containing the rules from W and the rules: (x +),
(-id 6 ^ +), (~0> (B), (P’ +), (-P’)» 0"™ +), (-O- is the union of two sets (# .+)
and (-£?.).

6.3 ^-diagram

In these considerations the model and the idea of decomposition will be
used and the above-mentioned two rules (&+).*, (—k)M will play an important
role.

The notion of indencomposability of a sequent in F£’ is analogous to
Definition 18.

D efin ition 28. Let M be a model. By ^-d iagram of a sequent seSeq ' with
a special set of axioms cz Seq’ and the rules we shall mean the tree o f
sequents S s — < S, < > if and only if it fulfils the following conditions:

(X) The sequent s is a root o f 6 S.
(2) I f s 'eS and s' is indecomposable or s’ is an axiom or a special axiom then s'

is a leaf.
(3) I f s 'e S is on the 2n-th level of the tree <5 and s' is a conclusion o f a rule

from X where X — (^ +) \{ (r cy+), (r^+), (P’+)} then r(s’) is an element
o f X. It means that the order < has the following property: for every

P(s, <3)
sequent s, the expression — -■—- is one o f the rules from We assume that

s
i f s’ is decomposable then we consider the first generalized formula on the
right-hand side o f the considered sequent s’ to construct r(s’).

I f s' is not a conclusion of a rule from (^* +)\ {(rCI>+), (r*y +), (P'+)}
then:
(i) I f left(s’) u right(s’) c At' then the following condition holds:

(il) I f s' is a conclusion o f some rule from {(rcu +), (r'u+), (P'+)} then
r(s’) is the same element of this set. Otherwise r(s’) £(-£%*).
However if it is one o f the rules (-reil), (-r'y) or (-P') then such r(s') is
used as the last of all o f these rules.

(ii) I f right(s’) n (F f\A t) =£ 0 then r(s') e (P' +)M.
(iii) I f right(s’) c: A t’ and left(s’) r\(F y\A t) i= fi then r(s') e (- R) M.

(4) I f s’e S is on the 2n + 1-th level of the tree & and s’ is a conclusion of a rule
from (-^ J \{ (“ 0 ’ (“'in). (-P*)} then T(s’) is an element from this set.

v 99

We assume that if s’ is decomposable then we consider the first generalized
formula on the right-hand side of the considered sequent s' to construct r(s’).

I f s’ is not a conclusion of a rule from {(—rm), (-?•'„), (-P')} then:
(i) I f left(s’) urigh t(s’) c A t’ then the following condition holds:

(il) I f s’ is a conclusion of some rule from {(—rcu), {-r'co), (-P7)} then r(s’)
is the same element of this set. Otherwise r(s‘)e (& m +). However if it
is one of the rules (-rcu), (-r'„) or (-P') then r(s’) is used as the last o f
all of these rules.

(ii) I f left(s’) n (F'f\At) * 0 then r(s’) e{~ R y* .
(iii) I f left(s’) c A t’ and right(s’) r\ (F'v\A tr) ^ 0 then r(s’) e (R' +)M.

(5) S s is well-formed for (-V). □
The deductive system <.&?*, (Ax=)’ u u M,> will be called the

RETRPROV system where sdM is a special set of axioms. □
Using the RETRPROV system we shall change the standard notion of

proof in order to prove some properties which are not tautologies but which
hold in a model of arithmetic. Moreover this system enables us to consider
some notions defined by programs.

We shall say that is Ji-diagram of generalized formula a if < S, < > is
^-diagram of the sequent 0 (- a with a special set of axioms sdM and the
rules □

D efinition 29. We shall say that a generalized formula a has a proof in the
RETRPROV system (a eproof <(Ax")' ■u R feq- u ^ , >) if and only if the
height of the J i -diagram of the generalized formula a is finite and each leaf is an
axiom or a special axiom. □

However, there is a problem how to choose the set of the special
axioms. Obviously this problem will be considered in a model (i.e. in a standard
model of arithmetic in which the functors and predicates are interpreted and
where +, —, *, f f r j are interpreted as addition, subtraction, multiplication,
m-th power and division respectively.

Let us remark that the ^-diagram of the generalized formula extends
Gentzen’s ideas: this is shown in Definition 28 (point 3 (i) (il)), since it makes
further proving possible even in the case when we get a sequent containing the
atom of the form (FP) or containing the atom including a term of the form (FP)
e.g. a term defined by programs (see Example 11).

6.4 Algorithm for proving theorems

In this paragraph we shall formulate the RETRPROV-algorithm which
enables us to prove theorems as well as to find a special set of axioms for
expressions containing procedures and functions defined by programs.

1 0 0

Let (FP) be a system defining the notions q> and p. Any Jt-diagram o f
a generalized formula (p(tL>..., tm) = u from (FP) will be called a (p-Jt-diagram
and any Jt-diagram of generalized formula p(r1) r j = b will be called a p-^tt-
diagram □

The RETRPROV-algorithm:

1. Read(k); (k is a natural number helpful for “while”),
2. n :~ 0; X:= an empty file. We put the sequent (- ^ (i1,...J£m) = u as the root

in the (p-Jt-diagram (where <p(tL>..., t j is a classical term from (FP)) and we
put the sequent f- p(xv ...,xn) = b as the root in the p-^-diagram (where
p (t15..., t„) is a classical formula from (FP) and ue
Moreover b e V0 \ 5({p(rl 3 t„), Ka})\

3. If a sequent s on the n-th level is indecomposable or if it is an axiom or
a special axiom (i.e. it is an element of the set of the form: (seS eq ’:
a eright(s) for some a from X and a ^ -*b or b eleft(s) for ~*b eX}), then s is
the leaf. If all sequents on the n-th level are leaves then STOP — the proof
exists and the set of special axioms is equal to

4. n : = n + 1;
We construct the n-th level of the (p-Jt-diagram of the sequent
(- ip{tv, ..., t j= ^ u and the n-th level of the p-^f-diagram of the sequent
\- p(1?..., t„) = b with the rules 0 , and the special set of axioms which was
defined above.

If it is possible we use rules from (0 , \j R fei‘) \ {(-fj)} to construct the
n-th level in the <p-Jt-diagram or in p-^-diagram using the premises of the
considered rule. We pay attention to use the rules (rct,+), (—rcu), (P’ +), (-P’)
only in the case when no other rule from 0 t can be applied.

If we need use in the construction of the n-th level in the cp-, Jt-diagram
or p-^f-diagram the rule (-1J) for a sequent s of the form: T, s1 t j {Kcl)\-Q,
then for further considerations we denote by M ff) the expression of the
form ¿K l where l is a natural number.

It is known that we get the following set F Q} of sequents as the
result of using the rule (-(J).

However we do not construct in practice all of these elements. In this
case we assume that the n-th level contains the sequent T, s' \J (Ka) j-Q and
additionally it contains either only k — 1 elements of the form: T \-Q
for 1 < / < k — I when the rule (-(J) is used for the first time for the sequent
T, s' (J Ka. Y Q-, or one element Mfk), T |-Q, when the rule (-(J) was used for
the sequent more than once.
(In fact it means that on the n-th level instead of an infinite set of sequents
{M„(f)> T 1-Q : le J f} we shall consider only a finite number of sequents).

(To have on the n-th level only a finite number of sequents we do nearly the
same with the rules (f)+) aod (-V). However instead of the classical term t we

101

put a temporary pointer of dummy d. Moreover on each level we have to
decide whether some sequents are axioms. To do that we shall use the
well-known unification algorithm on both sides of the sign ¡-).

k : = k + l ;
5. We revise the n-th level of the tp-^-diagram or p-^-diagram . If a sequent

se(Ax~)' then s is a leaf. Otherwise if s£{i4=)' u then we consider two
cases:
(i) We look for a classical formula of the form x = u in the sequent s such
that t = u e right(s) and t does not contain the functor (p and x was not
obtained by any of the rules (r= +), (-r=) to a generalized term t containing
the functor q> and built by the functors: + , *, —, ()m for some me J f (e.g. if
in some sequent, the classical term t equal to 0 was obtained from
0*<p(tx, tm) by (r= +), then the decomposable sequent was changed into
indecomposable sequent and we have lost the essential property).

If we find such a sequent s that fulfils two conditions:
(1) a e A t’ for every a e s ,
(2) s is not a conclusion of any of the rules from the set 2# = {(rx +), (-rj,
(% +), (-r,), (rj, (r„+), (-r„), (F +), (-P’), (B), (r^+), (-O , (Z +), (-*)},
then if r = u is the only classical formula for some r which fulfils the
condition (i), we put t = u in the file X and the sequent s becomes
the leaf.
(ii) We look for the element b in the sequent s. If we find such a sequent,
containing p and b on the same side of the symbol f- then STOP — we deal
with the case of the form: p(xv ...,x j = ~^p(xl}..., x j and the proof does
not exist. If s is not a conclusion of any of the rules from we consider
three cases:
Case 1. If for every a e left(s) we get a e At’\ {FALSE, b} and a does not

contain the predicate letter p and for every e rightfs), ¡3 e At’\ {TRUE}
and does not contain the predicate letter p and b e right(s), then we
put b into the file X.

Case 2. If for every a e left(s), a e At’\ {FALSE} and a does not contain the
predicate letter p and b e left(s) and for every /Jeright(s) we get
ft e At’\ {TRUE} and if ft does not contain the predicate letter p then we
put ->b into the file X.

Case 3. If there is b and - h in X then STOP — the proof of the generalized
formula p(r l t r j = b in the RETRPROV system does not exist.

6. If s is an indecomposable sequent on the n-th level of the p-^-diagram or
<p-^-diagram which is not an element of u (Ax-)' then STOP — if we
considered <p-^-diagram then the proof of the classical formula

t j = u in the RETRPROV system does not exist. Otherwise the
proof of the classical formula pizj,,...,x„) = b in the RETRPROV system
does not exist.

1 0 2

7. If every indecomposable sequent s from the n-th level of the <p-^-diagram
or p-^-diagram is an element of the set u (A x =) and if there is no other
sequent on the n-th level then STOP — if we considered (p-M-diagram
then the set {s e Seq’: a e right(s) for some classical formula a from X and
a ^ b and a # ^b] is the special set of axioms for the proof of the classical
formula:

and the file of the premises of the above mentioned functional equation
exists and contains the only element from X which is neither b nor ->&. If
we considered p-J{-diagram then the set {s e Seq’: b e right(s) for b from the
file X or 6eleft(s) fo r-h from the file X) is the special set of axioms for
the proof of the generalized formula:

P(t = b. n

Let us make a remark: the RETRPROV-algorithm can prove the classical
formulas as well as the generalized formulas.

6.5 Examples

Now we shall give an example which shows that the idea presented in the
above-mentioned algorithm allows us to find a special axiom for a function
defined by a program.

To explain the main ideas of the execution of our system let us consider the
following example:

Exam ple 11.
H /U) = u where f is a function defined as follows: /(«) = K Ls. We recall that K 1 means if n = 0
then s : = 1 else s : = n*f[n — 1).

T o prove the above mentioned expression we shall try to find a m issing assumption.
The execution runs as follows:
h s1 : = l (i f = 0 then s : - 1 else = s 3 +/(s2 - l))(s = u)((reu +), (B)),
[-begin S j : = 1; s : = s2 » fts, - 1) end (s = u) .. ((-*).*)>
(Sometimes for simplicity we shall write such a generalized formula in the form:
\- begin s : = / (0) end (s = u).)

>/(0) = u-..... ((* +)),
|-s2 : = 0 (if s2 = 0 then s3 : = 1 else s3 : = s2*J[s2 - l)) (s a = u)((r„ +), (B)j,
h begin s2 : = 0; s3 : = 1 end (s3 = u) ..- ((—k) ^ ,
h 1 = - ((*+))-

Th is system admits the sequent |- 1 = u as an additional axiom (a special axiom). Intu itively
it means that / (l) = 1. So our system proved the expression [- /(7) « u by finding an additional
axiom and calculated the value of /(1). ■

1 0 3

Exam ple 12.
Let r /(3) = u where /(«) is defined as in Exam ple 11. D uring the execution of the

R E T R P R O V -a ig o rith m the set of additional axioms is generated. The proof is identical to the
proof in Exam ple 11. In this case = (u = 6}. ■

The R E T R P R O V -a ig o r ith m is a dynam ic way of looking for a missing axiom necesary to
solve a functional equation defined by procedure. O u r system can as well find the boolean value o f
the relation defined by the procedure P (x) = K ol

Example 13.
Let us consider the order relation between natural numbers.

(1) (- p (l, 2) = b where p[x, y) = K 2q and

K 2 means if x 3 = x 2 then q : = F A L S E else
begin x 3: =■ 0;

while—>((x3 = x 2) v {x 3 = X j))
do

*3 '• — x3 + 1;
i f x 3 = X j

then q : = T R U E else q : = F A L S E
end

(2) p Q ,2)h b .. ((C +) , (1 +)),
(3) b \ - p { l ,2){ (C +) , a +)) ,
(4) begin x 3 : = 1; x 2 : = 2 end K 2q h b .. ((2) and (- F J) ,
(5) b j- begin x 1 := 1; x 2 : = 2 end K 2q .. ((3) and (r^-P)),
(4.1) begin x3 0 while —>((x3 = 2) v (x 3 = 1)) do x 3 : = x s + 1; i f x 3 “ 1

then q : = T R U E else q : = F A L S E end q \ - b- ((—k)^),
(4.2) begin x 3 0; (v(begin x 3 : = x 3 + 1 ; while —>((x3 = 2) v (x3 = 1)) do x 3 : = x 3 4-1

end))* i f x 3 — 1. then q : = T R U E else q : — F A L S E end q (- b (by the rule of
of decomposition A4),

(4.3) begin x 3 : = 0; (begin x 3 : = x 3 + 1; (while ~ ,((x3 = 2) v (x 3 = 1)) do x 3 : = x 4- 1;)* if
x3 = 1 then q : = T R U E else q : = F A L S E end) end q f- b (by D efin ition 3 (i)),

(4.4) begin begin x 3 : = 0; x 3 : = x 3 + 1 end begin (while -■ ((x3 = 2) v (x 3 = 1)) do x 3 : = x 3 4 -1 ;
if x 3 = 1 then g : = T R U E else q := F A L S E end end q\-b (by the rule of
decomposition A1 and Definition 3 (ii)),

(4.5) begin begin x 3 : = 0; x3 x3 + 1 end if x 3 = 1 then q := TRUE else q := FALSE end q\~b
............... .. (by the rule of decomposition A4),

(4.6) begin begin x 3 := 0 ; x3 : = x 3 + 1 end g := T R U E end q\-b
... (by the rule of decomposition A3 and Definition 2 (i)),

(4.7) begin x3 := 0; x3 := x 3 + 1; q : = TRUE end q (-6
....................... _................ (by the rule of decomposition Al),

(4.8) T R U E 1-6 - ... ((-s))-
By point 5 (case 1) of the RETRPROV-aigorithm we put b into X and by point 7 the sequent

(4.8) becomes a special axiom in the se since ^ — [seS eq ': 6 e rights)}.
By analogous considerations in the case (5) we get the sequent b [- TRUE for b f-p(l, 2), which

is an axiom. ■

Example 14.
Let us consider another example. We consider the function h defined as follows:

h{xltx2) = (if x J - 0 then x 3:= 2 else x 3 := A(x, - 1, h(x1,x 2)))x3.

1 0 4

We shall try to compute the value of function h (l, 2). Let us remark that some com pilers
(for example P A S C A L , C) cannot do i t However our algorithm manages to solve even this
problem, which seems to be rather sophisticated:
(1) M (U) = «
(2) |- begin x , : = 1; x 2 '■ = 2 end (if x , = 0 then x3 : = 2 else x 3 : = h(xl — 1, h(x ,, x 2))) (x 3 = u)

.. ((r „ H (B +)) ,
(3) |- begin x 3 : = /i(0, h(1,2)) end (x3 = u) .. ((& +).*), (r„ 4-)),
(4) f- h(Q, A(l, 2)) = u ((s +)).
(5) |- begin X j : = 0; x 2 : = A(l, 2) end(if x x - 0 then x 3 : = 2 else

*3 := K * i - 1, /»(Xj, jc2)))(x 3 = u) .. ((r „ +) , (B +)),
(6) h begin x 3 : = 2 end (x 3 = «) .. ((* +).«)>
(7) h 2 = « ... ((s +)).

B y point 5 (i) of the R E T R P R O V -a ig o r ith m we put u = 2 into X . B y point 7 of this algorithm
we get sdM = {s e S e g ': u = 2eright(s)}. So |- u = 2 becomes a special axiom. ■

Exam ple IS .
Le t us consider the function k defined as follows:

k f c j . x J = (if x 2 = 0 then x 3\— x x else x 3 : — k(xu x 2 — 1) + l) x 3.
By using the R E T R P R O V -a ig o r ith m we shall try to prove the expression of the form:

(1) (- k(x, 2) — v where x is an individual variable.
(2) |- begin x x : = xr, x 2: - 2 end (if x 2 — 0 then x 3:= x 1 else x 3 : = k(xx, x 2 - 1) + l) (x 3 = u)

 - (('»+), (B+)),
(3) (- begin x 3 : = fc(x, 1) + 1 end (x 3 = «) .. ((* +).«).
(4) h k{x, 1) T l = u ((s +)),
(5) h begin x x := x; x 2 : = 1 end (if x 2 = 0 then x 3 : = else x 3 : = fc(xj . X j — 1) +■ 1)

(*3 + 1 = U) ...- .. ((rcu +)i (® +))j
(6) (- begin x 3 : = k{x, 0) + 1 end (x 3 + 1 = «) .. ((/c +)_*),
(7) \~ k{x, 0) + 2 = u ... ((s +) and (r„ -t-)),
(8) (- begin x 3 : = x; x 2 : = 0 end (if x 2 = 0 then x 3 : = x x else x 3 : = fc (x j,x2 — 1) +- 1)

(x 3 + 2 = m) ..((r„ +), (B +)),
(9) h begin (x 3 := x) end (x 3 + 2 = u) ((*+).*).

(10) x + 2 = u((s -T))-
B y point 5 (i) of the R E T R P R O V -a ig o r ith m we put k ==x + 2 into X . By point 7 o f this

algorithm we get .<aM = {se S e q ': u = x + 2eright(s)}. So (10) becomes a special axiom. We can
see that our algorithm does not sim ply calculate an expression, but instead it tries to prove i t W e
gel the expression x + 2 = u as a solution of the functional equation k(x, 2) = u. which certainly is
not only a calculation. ■

Exam ple 16.
Le t us consider the following expression:

(1) I“ V x2((Pi(^z) -* 3*p2(x)) = 3 x10 j (x 2) -v p2(xj)))
O f course we present only a sketch of the proof of the sequent (1).

-(2) |- x2 := y(((pi(x2) -* —tyx -■ p2(x)) -► -'V 11 - (p ,(x 2) - p2(x,))) a

(-iVxl ->(Pi(*2) -*> Pa(*i)) -* (Pi(x2) -* T ito))) ... (* +)>
(3) |- x , : = y{ ->Vxl ->(p1(x2) -* p2(x j)) -► (p j(x 2) -* -> p2(x)))- (C +) ,
(4) x 2 : = y ((p ,(x2) -> - V , - -p 2(x)) - - ’VXJ —'(pa(x a) -» p2(x,)) ... (C +) ,
(3.1) \ -x 2 := y(Vxl - { p ^ a) - ► p2(xj))), x 2 : = y (P j(x 2) - - V t -»p2(x)) (I +), (-N),
(3.2) x 2 : = y (p i(x 2)), x 2 : = y(Vx ” ,jPzM) h x 2 y(xj := y , (—-(p,(x2) -> p2(xj)))

.. (I+) , (N +) , (V +) ,

105

(3-3) Pi(y), *2 := y{Vx ~ ‘p2{x)), - ’pa(l1), x 2 : = y (x , := P jO b ta) -* p2(x,)) h
- ...(- n (-s). (n +),

(3-4) p M x 2 : = y (V , - .p 2(x)), p2(y j (- p ^) (I+) , (-N), (-s),
(3.5) p,(y), x 2 : = y (V ^ p 2(x)) \- p2{h), p ,(y) .. (I+) , (-N), (s +),

which is an axiom by unication,
(4.1) x 2: = y (p ,(x2) -» ->VX->p2(x}), x 2 : = y(VXJ ~ '(p J(x 2) -* p2(Xj))) (-

............................... -.......... -.... ...(I + X(N+),
(4.2) x 2 : = } {V ; i - '(p 1(x2) - > p 2(x 1)))> (y2 : = i 2(x2 : = y (x i : = y 2(- - (P i(x 2)-»

Pi(^i))))) h Pi(y) -■ - - ...(- v), (-1), (s +) ,
(4.3) x 2 : = y(Vxl - ’ (p1(x2) -> P jfx J)) , (y2 : = r2(x2 : = y{x, : = y2(- (p , (x 2) ->

P i(* ,))))) \ -x 2: = y(x : = y 3(- ,p2W)
(4.2.1) x 2 : = y(Vx, -■ (p ,(x2) -*■ p2(x,))), p ,(y) h p2(i2), pj(y)

...(-N), (I +), (s-h), (’S), which is an axiom,
(4.3.1) x 2 : = y (Y , 1- . (p 1(x 2) - p 2(xi))), pjCy), p2(y3) h p2(£2)

... (-N), (I +), (N +), (-s), (s +) which is an axiom by unification. ■

Exam ple 17.
Let us consider the following formula:

f) = l A (Vn(- (n = 0) -*■ if[n) = n *J[n - 1) ->/(« + 1) = (n + 1) *Jt«))))
where f was defined in Exam ple 11.

In some cases we axe able to use the mathematical induction, e.g. in this example
we proved the correctness of a program defining the factorial. It means as well that we
proved (this proof is too long so we omitted it) the equivalence between two descriptions of
factorial: the mathematical definition and the program. The mathematical definition is as
follows:

- . r
1 n * (n — 1)1

when a = 0
(«)

when n > 0

and the program is given in Exam ple 11. T h is proof shows the correctness of the program.

Example 18.
I f we want to calculate the value of the expression of the form:

l. L
------(. — where i 2, ml7 m2 denote the variables o f the type of integer, first we calculate the value
m j m2
m3: — NWW(mu m2) where NWW(mu m2) is the least, common multiple of m1 and m2. N ext we

calculate the values lj :=* * — , ¡2 ; = l2 « — and 13 : = lx + l2. Obviously the result of the division
Tfl ̂ TTi^

l3
during the calculation of I j and l2 is integer. Hence — is the result of the considered expression.

m3
D uring this calculation we considered the function NW W (x, y). Now wc show how we can use the
rules of decomposition especially the rules (—&)_* and (fc+)^ . Let NWW{xiyy }) — K az where K 0
means:

begin
x : = x 2; y : = y ,;
while —>(x = y) do
if x > y then

x : = x — yy

106

else
y : = y - x\

«’: = x;
2 : = x , *(y,/w);

end
We shall show how to get NWW (6, 4) in the standard mode! of arithmetic. We have to

calculate the value (A ^ z),,^ ,) where a, is the valuation such that u ^ x ,) = 6 UjQ#,) = 4. T h is
valuation is represented by the substitution s — begin x , : = 6; y , : = 4 end. We decompose the
program begin s; K 0 end to the norm al assignm ent
[sK J = [[x,/6, y,/4], [[x/x„ y/yj, [* [-(x = y) ^_[(x > y) [x/x - y] [y/y - *]]], [w/x],
[2/(*j -Oj/w))]]]] A-k [[[x ^ .y ,^], [x/xj,y/y,]], [*[~<x = y)_Y.[(x > y) [x/x - y'J [y/y - x] j'J,
[w/x], [z/x, *(y,/w))]]] [[[xj/6, y,/4], [x/x„ y/y,]], (v[^[(x > y) [x/x - y] [y/y - x]],
-[-(x = y)^[(x > y) [x/x - y] [y/y - x]]])‘ [[w/x], [z/(x, *(y,/w))]]] Dcr-^ (iKii)[[[x,/6, y,/4],
l x/xi> [>-[(* > y) [-x/x - y] [y/y - x]], [*[->(x = y) _y.[(x > y) [x/x - y] [y/y - x]]],
CCw/x], [a/iXj.^/w)}]]]]] A2< [[[x,/6,y,/4], [x/xl5y/y,]],(v[x/x - y])-[*[-*(x = y)*.[(x > y)
ix/x — y] [y/y ~ *]]], [[»/*], [*/(*, * (y »)]]]] «■*■*«« [[[*,!«, y,/4], [x/^.y/yj],
[[x/x-y], [*[->(x = y) _y_[(x > y) [x/x — y] [y/y — x]]], [[w/x], [z/(x, *(y,/w))]]]]] Ak
[CCxAyi/4], [x/xj,y/y,]]‘[x/x — y], [*[-’(* = yj -*.[(* > y) [x/x - y] [y/y - x]], [[w/x],
[2/(Xj *(y1/w))]]]]Dtf-|:*iii) [[[x,/6,y,/4], [[x/xj.y/y,], [x/x-y]]] [*[->(x = y) _y.[(x > y)
[x/x - y] [y/y - x]], [[w/x], [z/(x, *(y1M)]]]] ^ [[[x,/6, y,/4j, [[x/x„ y/y,], [x/x - y]]],
[[w/x], [z/x, *(y,/w)}]]] A-k [[[x,/6,y,/4], [[x/x„y/y,], [x/x - y]]]*[w/x], [z/(x, *(y,/w))]]
D‘r^ “’[[W fi.h/fl, [[x/x,,y/y,], [x/x - ?]]’[*>/*]], [z/(x, »(y,/w))]] L[[x,/6,y,/4],
[[x/Xj.y/y,], [[x/x - y], [w/x]]]], [z/(x, *(y,/w))]] Ak [[x,/6, y,/4], [[x/x„y/y,], [[x/x - y],
[w / x]]]] - ^ , ^ »)] « ' ^ « [[x,/6,y,/4], [[x/x„y/y,], [[x/x-y], [[w/x]], [z/(x, *
(y»)]]]]].

L e t us denote the normal assignment [[X j/ 6 , y ,/4], [[x / x , ,y / y ,] , f [x / x — y], [[w / x] ,
[z/ (x , * (y ,/w))]]]]] by symbol £ 0. We proved by using it ,rjuul that the program [s K J can be
decomposed to the norm al assignment X Q. Therefore [s JC J -< By Theorem 10 we get
I s K J R(v) = Hence (JC .zU » ,) - zr {K r (Vj)) = zr (K oK(sM) = = 2*(Z.*(t>)) =
6 * (4 / (6 - 4)) = 12.

W e proved that the function N W W (6 ,4) defined by program has the value 12. Therefore
R E T R P R O V -a Jg o ritb m during the prove f- JVWW(6,4) = u finds a special set o f axiom s
jit ah = {-s £ Seq': 12 = u e right(s)}. ■

Let us remark that the RETRPROV system described above definitely
differs from JRS-algorithm. The main difference concerns the set of rules (rules
of decomposition) and the RBTRPROV-algorithm. The key idea lies in the
rules {k+)M and {—k)M, since from Corollary 2 and the model of arithmetic,
the expression (sK)^ being the result of the execution of program enables us to
optimize the calculation. It is also worth emphasizing that RETRPROV
produces results in an evidently shorter and faster way (see Example 7 and
Example 11 or Example 10 (iv) and Example 13), the correctness of which is
guaranteed by Corollary 2.

Chapter 7

Summary and concluding remarks

7.1 Conclusion

The main result of the first part of this paper is algorithmic structural
completeness of algorithmic logic strengthened by the substitution rule i.e. the
derivability of all structural, finitary and admissible rules. To date the
well-known substitution rules which were considered do not fit into these
considerations, since they do not preserve the properties of programs. The
substitution rule which was defined in this paper was just enough strongly
deductive to allow to prove algorithmic structural completeness of algorithmic
logic. This result enables us to use many structural and finitary rules in practice
provided admissibility of them is proved. Some examples of such rules:

¿'(while ad o K) TRUE, ¿ ' M TRUE, ¿ ' L TRUE
¿‘’(while a do begin M ; K; L end TRUE)

where (5(M) u 9(L)) n (5(a) u 5(K)) = 0 and ¿ ' denotes any finite sequ­
ence of substitutions.

2. where a is a classical open formula and p is any program-
P(«)
substitution.
Let us take peSb wich is defined by geG , classical open formula X
and by the functions e and e0 such as in Theorem 9. We get from a the
formula p{a) equal he{a) which is equivalent (s^a a X) v (/ie°(a) a ->X) for
sY being such as in Theorem 9.
________________ _______________________
¿'({while a d o K) TRUE -» (while £ do K) TRUE’
where ¿ ' denotes any finite sequence of substitutions.

1 0 8

Such rules allow to simplify the proofs of correctness of programs.
It is worth to pay attention to the following questions:

(1°) Is it true that the property of structural completeness of some logic is
a result of the completeness of this logic i.e. of the property of the form
CR{X) — C ̂ {X} for every set of formulas X.

(2°) Is it true that the property of Post-incompleteness of algorithmic logic (i.e.
Q?.({a}) ^ F for some a strengthened by the substitution rule is
a result of the completeness of this logic for the set of rules R.

To answer these questions it is not enough to know whether the property of
completeness holds.

Let us consider the point (1°). There exists a consequence which is complete
but is not structurally complete. Such a system is for example the classical logic
with quantifiers based on the set of axioms A Q and on the set of rules
RoV — { t 0 , r¥}, where r 0 is the modus ponens rule and r¥ is the generalization
rule of the form:

a, a -» (i a
" n 5 rV ■ wP Vra

Indeed, such a system is not structurally complete. To illustrate that let us
consider the rule r defined as follows:
<{a}, $ > e r iff there exists e e £ such that:
a = ~’VxV}l(e(P(x)) e(P(y))) and = Vx -(e(P(x)) -» e(P(x))),
where £ is the set of substitutions defined by W. A. Pogorzelski and T. Prucnal
[71].

The admissible rules in the logic with programs are called permissible in the
logic without programs. The defmition of the latter is analogous to the former
one. The rule r is admissible in the considered logic since a is not valid in any
interpretation, in any model with a single element therefore a $CRô (AQ) for
every e e £ . Since the antecedent of the definition of permissibility is false
therefore the rule r is permissible in this logic. Moreover r is structural.
However r is not derivable in this logic since in the opposite case for e e £
such that e(P(x)) = P(x) and e(P(y)) = P(y) by the deduction theorem, we get
a ^ P f c) a -P(y)) -► Vx -(P(x) -> P(x)) e CRoV(Aq) which is not true. Therefo­
re the structural completeness is not an immediate result of the property of
completeness. □

Now we consider the point (2°). Some variant of the question (2°) was
known i.e. the logic without the substitution rule is incomplete. However, with
regard to the study of the structural rules and the extension of algorithmic
logic to the algorithmically structurally complete logic it appeared that the

109

introduction of the notion of the substitution rule was the sufficient condition.
After introducing a new substitution rule with a very strong deduction we get
the algorithmic structural completeness of algorithmic logic strengthened by
the substitution rule. Therefore> the algorithmic logic strengthened by the
substitution rule could become complete. So we have to prove the incom­
pleteness of such extended algorithmic logic. The proof of incompleteness of
this logic could be done in a different manner if we knew that the substitution
rule was hereditary in every model (i.e. if < {a}, /? > er. and a is valid in
a model then (S(fi = p(a)) is valid in this model too). But we think that it is not
easy to prove this property without our considerations. The difficulties depend
on changing the shape of Formulas by using the substitution p e Sb which is
defined by e fulfilling some properties (see Definition 3, 8 and Theorem 9).
For example: e{p{xly...,xn)) = p(r'u ...,z'n) a X.

It is worth to notice that the theorem on algorithmic structural comp­
leteness allows us to use many secondary rules in various considerations. The
only condition which such a rule ought to fulfil is to be structural, fmitary and
admissible in algorithmic logic strengthened by the substitution rule. This
condition is in a way a useful criterion for using many secondary rules.

There is an interesting and open problem of getting structural completeness
without assuming Unitary rules. □

The second part of this paper is devoted to the construction of proving
algorithms. The first of these algorithms called RS-algorithm use Gentzen’s
method and some idea of decomposition of formulas containing programs. We
use some P. Gburzynski’s ideas [28], [29] connected with proving theorems
without programs but we make it possible i.e. we extend these ideas essentially
to a case of algorithmic logic i.e. we can prove algorithmic formulas and test
programs and their properties for example the correctness and equivalence of
some programs and we can consider functions and relations defined by
programs. At the time the existing implementation of proving theorems was
not able to achieve that. Therefore our implementation was the first one
serving programs. The new created RS-algorithm in a sense enables us to
execute an expert’s report since it answers the question whether some relation
p(x, y) defined by a generalized formula holds. For example if p(x, y) is defined
by K 2b which expresses the order relation between natural numbers x = 1
and y = 2 then we ask the question by writing for example p{ 1,2) = b and we
understand this expression as follows: for which b the relation p(1,2) holds. The
proof depends on assuming b to be TRUE when the relation p(x, y) holds or to
be FALSE otherwise. For example if x = 1 and y = 2, the algorithm tries to
prove the expression p{1,2) = b by replacing p(l, 2) by the program K zb
defining this relation. Finally using the rules of decomposition we get the
sequent TRUE |= b which ends the proof by adding the special axiom
{seSeq' :beright(s)} to the set of axioms.

1 1 0

The action of RS-algorithm cannot be treated as a calculation of the
program since for the program of the form: begin i : = i + 3; z : = x end and
for the function g(x) defined by K Az7 the algorithm gives for the equality
g(n)4 = u the axiom i.e. the set of sequents {seSeq'iu = n4 e right(s)} as the
solution to this equality.

It is known that without changing variables into values the standard
calculation of function g is impossible. It is worth to notice that the considered
RS-algorithm gives us the result even in case when the standard calculation
overflows the stack. To explain that let us consider the program of the form: if
x = 0 then z: = 2 else z :~ h(x — l)h(x,y))\ denoted earlier by K s and the
function h(x,y) defined by K sz.

We shall try to calculate the value of the function h(1,2) during the
execution of RS-algorithm and in fact we shall try to prove the equation
h(l, 2) = u3. RS-algorithm finds the solution u3 = 2 though the shape of the
program defining the function h evidently makes it impossible for compiler
since the compilation leads to overflowing.

The mere process of dynamic looking For the set of axioms is more
complicated than it seems from this short description. The example of this can
be a test of the proof of the expression/(2) = u for /(2) defined by K Lz. During
the proof there appeare two sequents. The first of them leads to the sequent of
the form: (= 0 = u, 1 = u, 2 = uy which at first sight makes the further proof
impossible since we have difficulties with choosing the proper assumption
among the expressions of the form: u = 0, u = 1 and u = 2. The second
sequent leads during further decomposition to the sequent of the form:
O = 0) = 2 = O, 1 = 0,2 = « which becomes an axiom after assuming that each
sequent s for which 2 = u e right(s) is an axiom. Lemma 8 enables us to solve
this problem. It ensures that for every leaf of the tree which unables us the
univocal choice of the specific axiom (the sequent containing the expression of
the form u = t on the right side of the symbol |=) among many such
expressions occuring in this leaf there exists another leaf in which this choice is
univocaf i.e. there exists only one expression of the form u = t on the right
side of the symbol |=. After this choice the earlier leaf in which appears
diversity of meaning becomes an axiom too.

RS-algorithm contains also a particular manner to avoid the difficulties
which appear during the decomposition of the sequent containing the program
with the word WHILE. The rule generates in one case the infinite set of
sequents and only the special treatment of this case enables us effective activity
of RS-algorithm.

The expression of the form: W, s while a do Y ,b ,Z is changed by the
rule (+k) into the formula W, s(p:= TRUE) (J begin p: = p a a; K end(p a
— a a /?) |= 7, b, z. For further considerations we denote by Af„(/): begin sr,
p : = TRUE end [begin p := p a a; K end]i where l means a natural number.

I l l

As a result of using the rule (+ U) we ought to consider the set (M„(i)
(p a ->a a p), W (= Y, b, Z : Since it is impossible to construct all of
these elements in practice therefore we further consider the sequent of the form:
M„(/)(p a ->o! a (5), W £= r where r denotes the expression: Y, b> Z. This
sequent is treated in a special way by RS-algorithm in the point 4.

RS-algorithm enables us to prove the correctness of some programs with
STOP property. Moreover this algorithm eliminates the inconsistence of the
definition of relation. Let us assume the following definition: p(x) =

If we want to know whether the relation holds RS-algorithm starts the
proof of the expression of the form: [= p{x) = b. Since during the execution of
RS-algorithm we meet the expressions b and p(x) on the same side of the
symbol [= therefore RS-algorithm STOP and we get an answer about the
inconsistence of the above definition of p(x) since only the expression with
negation is able to change the side of the symbol J=.

Besides the Gentzen’s method we considered in our paper a sequential
method of the decomposition of programs. This method decomposes each
program with STOP property in the model M into a normal assignment which
can be executed on terms or on formulas. The assumption of STOP property
of the program means in implementation the possibility of execution of all
needed calculations in this program. Under such an assumption there is no
problem with the decomposition of the considered program.

References

[1] Banachowski L: Investigations of properties of programs by means of the extended
algorithmic logic. I. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticac,
Vol. I. 1, 93—119 (1977).

[2] Bartol W. M., Gburzyśski P., Findeisen P., Kreczmar A., Lao M., Litwiniuk A.,
Muldner T., Nykowski W., Oktaba H., Salwicki A., Szczepańska-Waserstrum D.:
loglan. International Summer School of the programming language. Zaborów.
Poland, September, 5—10.1983. Institute of Informatics, University of Warsaw.
Warszawa 1983.

[3] Bibel W.: Automated Theorem Proving 2., rev. ed. Braunschweig—Wiesbaden—
Vieweg 1987 (Artificial intelligence).

[4] Biela A.: Program-substitution and admissibility of rules in algorithmic logic. Acta
Informatica, 25, 439—473 (1988).

[5] Biela A.: Retrieval system and dynamic algorithm looking for axioms of notions
defined by programs. Fundamenta Informaticae, Vol, 19, No. 3 (1993).

[6] Biela A., Dziobiak W.: On two properties of structurally complete logics. Reports
on Math. Logic, 16, 51—54 (1982).

[7] Biela A., Borowczyk J.: RETRPROV: a system that looks for axioms. Acta
Informatica (1995).

[8] Biela A., Wojtylak M.: Automatyczne dowodzenie twierdzeń. Wyd, Uniw. Śląskiego,
Katowice 1993.

[9] Blake A.: Canonical expressions in Boolean algebra. PhD thesis, Univ. of Chicago,
Illinois 1937.

[10] Blasius K., Bisinger N., Siekmann L, Smolka G., Herold A., Walter C.: Vie
Markgraf Karl Refutation Procedure. Proceedings of the IJCA1-81, 1981,
pp. 511—518.

[11] Bledsone W. W., Tyson M.: The UT interactive Prover, MEMO ATP-17, Math.
Dept. Univ. of Texas, May 1975.

8 Algorithmic... 1 1 3

[12] Boyer R. S., Moore J. S.: A Computational logic. ACM Monograph. Academic
Press, New York 1979.

[13] Boyer R. S., Moore J. S.: A verification condition generator for FORTRAN.
Academic Press, London 1981.

[14] Bundy A.: Catalogue of Artificial Intelligence Tools. Springer—Verlag 1986.
[15] Cardelli L.: MLunder Unix. Bell Laboratories, Mursay Hill, New Jersey 1982.
[16] Chang W., Lee R.: Symbolic logic and Mechanical Theorem Proving. Academic

Press, New York—San Francisco, London 1973.
[17] Chlebus B.: On the decidability of propositional algorithmic logic. Zeitschr. fur

Math. Logik und Grundlagen der Math., 28, 247—261 (1982).
[18] Church A.: Introduction on Mathematical logic. Princeton 1956.
[19] Cooper D.C.: Theorem proving in computers. Advanced in programming and

non-numerical computation, ed. Fox, Pergamon Press, Oxford 1966, pp. 155—182.
[20] Dańko W.: A criterion of undecidability of algorithmic theories. Ann. Soc. Math.

Pol., Ser. IV. Fundamenta Informaticae, 3, 605—628 (1981).
[21] Dańko W.: Algorithmic properties of finitely generated structures. Proceedings,

Poznań, August 1980. Lect. Notes in Computer Science, Vol. 148: Logic of
programs and their applications. Springer, Berlin 1983, pp. 118—131.

[22] Dańko W.: Definability in algorithmic logic. Ann. Soc. Math. Pol., Ser. IV.
Fundamenta Informaticae. II, 277—287 (1979).

[23] Davis M.: A computer program for Presburger’s procedure. Summaries of talks
presented at the Summer Institute for Symbolic Logic (1957). Second edition
published by Institute for Defense Analysis, Princeton NJ 1960.

[24] Davydov G. V.: Synthesis of the resolution method with the inverse method. J. Soviet
Math., 1, 12—18 (1973).

[25] Dummet M.: Elements of inluitionism. Clarendon Press, Oxford 1977, p. 169.
[26] Dunham B., North J.: Theorem testing by computer. Proc. Symp. Mathem. "Theory

o f Automata". Polytechnic Press, Brooklyn NY 1963, pp. 173—177.
[27] Engeler E.: Algorithmic properties of structures. Math. Syst. Theory, 1, 183—195

(1967).
[28] Gburzyński P.: Badania eksperymentalne w dziedzinie automatycznego dowodzenia

twierdzeń. Analiza porównawcza dwóch metod. Praca doktorska. HU W, Warszawa
1982, pp. 1—57.

[29] Gburzyński P.: Mechanical proving system of universal purpose. Raport CO-PAN
nr 390, 1980.

[30] Gentzen G.: Untersuchungen uber das iogische Schliessen. Math. Zeitschr., 39,
176—210, 405—431 (1935).

[31] Gordon M. J. C : Representing a logic in the lef metalanguage. In: Tools and Notions
for Program Construction. Ed. D. Neel. Cambridge University Press, Cambridge
1982.

[32] Gordon M., Milner A., Wadsworth G: Edinburgh LCF: A Mechanized Logic of
Computation. Lect. Notes in Computer Science, 78, Springer—Verlag, Berlin 1979.

[33] Green G: Theorem proving by resolution as a basis for question — answering
systems. In: Machine Intelligence 4. Eds. B. Meltzer, D. Michie. Edinburgh
University Press, Edinburgh 1969.

114

[34] Greenbaum S.: Input transformations and resolution implementation techniques
for theorem proving in first order logic. Ph.D. thesis. University of Illinois at
Urbana Champaign 1986.

[35] Greenbaum S,, Plaisted D.: The Illinois prover: a general purpose resolution theorem
prover, 8th Conference on Automated Deduction 1986.

[36] Grundy J., Newey M.: Theorem proving in higher order logics. 11th International
Conference, TPHOLs'98, Canberra, Australia, September 27—October 1. Lect.
Notes in Computer Science, 1479, 1998, 497 pp.

[37] Guard J., Oglesby F., Bennett J., Settle L.: Semi-automated mathematics, JACM,
18, 49—62 (1969).

[38] Haan J., Schubert L . K.: Inference in a topically organized semantic net.
Proceedings of the AAAI-86. 1986, pp. 334— 338.

[39] Harel D., Pratt V.: Nondeterminism in Logics of programs. Proc. 9-th Ann. ACM
Symp. on Theory of Computing, Boulder, Colorado, May 1977. MIT, Cambridge,
MA 1977.

[40] Harrison J.: Theorem proving with real numbers. Logical Found, of Computer
Sciences & Mathematical Logic, 12, 186 (1998).

[41] Herbrand J. J.: Recherches sur la theorie de la demonstration. Travaux Soc. Sei. et
Lettres Varsovie, C1.3 (Math., Phys.), 128 (1930)

[42] Hermes H.: Introduction to mathematical logic. Springer, Berlin 1973.
[43] Hilbert D., Ackermann W.: Grundzüge der theoretischen Logik. Springer, Berlin

1967.
[44] Hines L. M.: Building in Knowledge of Axioms, Ph. D. Dissertation, Univ. of

Texas.
[45] Hines L. M.: Hy per-chaining and Knowledge-based Theorem Proving. CADE-9.

1986.
[46] Jansohn H. S., Landwehr R., Wrigtson G.: An Interactive Proof System for Higher

Order logic. Proceedings of the 5th European Meeting on Cybernetics and System
Research, 1980.

[47] Jansohn H. S., Landwehr R., Wrigtson G.: Design. Implementation and Results of
an Interactive Proof System for Higher Order Logic. Universität Karlsruhe,
Interner Bericht 19/79, Karlsruhe 1979.

[48] Krcczmar A.: Effectivity problems of algorithmic logic. Ann. Soc. Math. Pol.,
Ser. IV. Fundamenta Informaticae, Vol. LI, 19—32 (1977).

[49] Kreczmar A.: The set of all tautologies of algorithmic logic is hyperarithmetical.
Bull. Acad. Polon. Sri., Ser. Math., 21, 781—783 (1971).

[50] Loveland D. W.: Automated Theorem Proving: A Logical Basis. Fundamental
Studies in Computer Science, Vol 6, 406 (1978) (ISBN 0-7204-0499-1, North-
Holland).

[51] Loveland D. W.: A linear format for resolution. Symp. on Automatic Demonstration.
Lect Notes in Math., 125. Springer, Berlin, pp. 147—162.

[52] Loveland D. W.: A simplified format for the model elimination procedure. JACM,
16, 349—363 (1969).

[53] Loveland D. W.: A unifying view of some linear Herbrand procedures. JACM, 19,
366-384 (1972).

8* 115

[54] Luckham D.: Refinement theorems in resolution theory. Symp. Automatic Demons­
tration. Lect. Notes in Mathem., 125. Springer, Berlin 1970, pp. 163—190.

[55] Lusk B. L., McCune W. W., Overbeek R. A.: Logic machine architecture: kernel
functions. D.W. Loveland 6th Conference on Automated Deduction. Lect. Notes in
Computer Science, 138. Springer—Verlag, Berlin 1982.

[56] Miller S. A., Schubert L. K.: Using Specialists to Accelerate General Reasoning.
Proceedings of the AAI-88, pp. 161—165.

[57] Minc G.: Proizvodnost dopustimych pravii Issliedovanija po konstruktivnoj
matiematikie i matiematiceskoj logikie. Vol. 5. Matiematićeskij InstituT. kn.
V. A. Steklova. Leningrad 1972, pp. 85—89.

[58] Mirkowska G.: Algorithmic logic and its applications in the theory o f programs.
I. Ann. Soc. Math. Pol., Ser IV. Fundamenta Informaticae, Vol. 1.1, 1— 17 (1977).

[59] Mirkowska G,: Algorithmic logic and its applications in the theory of programs II.
Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae. Vol. 1.2, 147— 165
(1977).

[60] Mirkowska G.: Algorithmic logic with nondeterministic programs. Ann. Soc. Math.
Pol., Ser. IV. Fundamenta Informaticae 3, 45—64 (1980).

[61] Mirkowska G.: Model existence theorem in algorithmic logic with non-deterministic
programs. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae 3, 157—170
(1980).

[62] Mirkowska G.: On formalized systems of algorithmic logic. Bull. Acad. ScL, Ser.
Math., 19, 421—428 (1971).

[63] Mirkowska G., Orłowska E.: An elimination quantifiers in a certain class of
algorithmic formulas. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae
I (1978), 347—355.

[64] Mirkowska G., Salwicki A.: Algorithmic logic. PWN. D. Reidel Publishing
Company, Warszawa 1987.

[65] Newell A., Shaw J., Simon H.: Empirical explorations of the logic theory machine.
Proc. West. Joint Computer Conf. Vol. 15. 1957, pp. 218—239.

[66] Ohlbach H. J.: link Inheritance in Abstract Clause Graphs. J. Automated
Reasoning, 3, 1—34 (1987).

[67] Paulson L.: Natural deduction as higher-order resolution. J. Logic Programming, 3,
237—258 (1986).

[68] Perkowska E.: On algorithmic m-valued logics. Bull. Acad. Polon. ScL, Ser. ScL
Math. Astr. Phys., 20, 717—719 (1972).

[69] Fetermann U.: On algorithmic Logic with partial operations. Proceedings, Poznań,
August 1980. Lect. Notes in Computer Science, 148. Logic of programs and their
applications. Springer, Berlin 1983, pp. 213—223.

[70] Pogorzelski W. A.: Structural completeness of the propositional calculus, Bull. Acad.
• Polon. SeL, Ser. ScL Math. Astr. Phys., 19, 349—351 (1971).

[71] Pogorzelski W. A., Prucnal T.: Structural completeness of the first order predicate
calculus. Zeitschr. fur Math. Logik und Grundlagen der Math., 21, 315—320
(1975).

[72] Porte J.: Antitheses in systems of relevant implication. J. Symb. Logic, 48. 97'—99
(1983).

116

[73] Pratt V.: Semantical Considerations on FJoyd-Hoare Logic. In: Proceedings 17-th
Ann. IEEE. Symp. on FCS, October 1976, pp. 109—121.

[74] Prawitz D.: An improved proof procedure. Theoria, 26, 102—139 (1960).
[75] Prawitz D., Prawitz H., Voghera N.: A mechanical proof procedure and its

realization in an electronic computer. JACM7, 102—128 (1960).
[76] Prucnal T.: Structural completeness of Lewis's system S5. Bull, de l’Acad. Polon. des

Sei., Ser. Sei Math. Astr. Phys., 29, 101—103 (1972).
[77] Radziszowski S.: Programmability and P = NP conjecture. Proc. FCT' 77. Cont.

Lect. Notes in Computer Science, 56. Springer, Berlin 1977.
[78] Raph K. M. G.: The Markgraf Karl refutation procedure, Seki-84-08-kl. Fachbe­

reich Informatik, Universität Kaiserslautem 1984.
[79] Quine W. V.: A way io simplify truth functions. American Math. Monthly 62,

627—631 (1955).
[80] Rasiowa H.: On logical structure of programs. Bull. Polon. Acad. Sei., Ser. Math.

Astr. Phys., 20, 319—324 (1972).
[81] Rasiowa H., Sikorski R.: Mathematics of Metamathematics. PWN, Warsaw

1968.
[82] Rasiowa H.: -valued algorithmic logic as a tool to investigate procedures. Proc.

MFCS'74. Lect. Notes in Computer Science. Vol. 28. Berlin, Heidelberg: Springer
1974.

[83] Robinson J.: A Machine-oriented Logic Based on the Resolution Principle. IACM
12, 23—41 (1965).

[84] Robinson J.: Logic: Form and function. University Press, Edingburgh 1979.
[85] Robinson J. A.: Mechanizing HOL. Machine Inteligence 4. Edinburgh Univ. Press.

Edinburgh 1969.
[86] Rusinoff D.: An experiment with the Boyer-Moore theorem prover: A proof of

Wilson's theorem. J. Automated Reasoning, 1, 121—139 (1985).
[87] Salwicki A.; Axioms of Algorithmic Logic univocally determine Semantics of

programs. Proc. MFCS’80. Lect Notes in Computer Science 88. Springer, Berlin
1980, pp. 352—361.

[88] Salwicki A.: Formalized algorithmic languages. Bull Acad. Pol. Sei., Ser. Sei. Math.
Astr. Phys., 18, 227—232 (1970).

[89] Salwicki A.: Programmability and recursiveness, an application of algorithmic logic
to procedures. Dissertation. Uniwersytet Warszawski, Warszawa 1976.

[90] Segerberg K.: A Completeness Theorem in Modal Logic of Programs (abstract),
Notices of the American Mathematical Society, October 1977.

[91] Stickel M. E.: An introduction to Automated Deduction. Fundamentals of Artificial
Intelligence. An Advanced Course. Lect Notes in Computer Science, 232. Sprin­
ger—Verlag, Berlin 1986, pp. 75—132.

[92] Stickel M. E.: A Prolog Technology Theorem Prover: implementation by an extended
Prolog compiler. Eighth International Conference on Automatic Deduction. Lect.
Notes in Computer Science, 230. Springer—Verlag, Berlin 1986, pp. 573— 587.

[93] Stickel M. E.: Automated deduction by theory resolution. J. Automated Reasoning,
1, 4, 333—355 (1985).

[94] Stickel M. E.: Automatic Deduction by Theory Resolution. Proceedings o f the
IJCAI-85. (1985), pp. 1181—1186.

117

[95] Szałas A.: Algorithmic logic with recursive functions. Ann. Soc. Math. PoJ., Ser. IV.
Fundamenta Informaticae, 4, 975—995 (1981).

[96] Thiele H.: Wissenschafistheoretische Untersuchungen in algoritmischen Sprachen.
VEB Deutscher Verlag der Wissenschaften, Berlin 1996.

[97] Trybulec A.: Język informacyjno-logiczny MIZAR-MSE. Prace IPI PAN, ICS
PAN REPORT, No. 465, PAN, Warszawa 1982.

[98] Tsitkin A. I.: On structurally complete superintuitionistic logics. Doki. AN SSSR
241, Moskwa 1978, pp. 40—43.

[99] Wang T. C: Designing examples for semantically guided hierarchical deduction.
Proceedings of the IJCAJ-85, 1985, pp. 1201—1207.

[100] Wang T. G, Bledsone W. W.: Hierarchical deduction. J. Automated Reasoning 3,
35—77 (1987).

[101] Wang H.: Proving theorem by pattern recognition. I. Comm, of ACM, 3, 220—234
(1960).

[102] Wang H.: Proving theorem by pattern recognition. II. Bell System Technical
Joum., 40, 1—41 (1961).

[103] Wang H.: Toward Mechanical Mathematics. IBM Journ. of Research and
Development, 4, 2—22 (1960).

[104] Wojtylak P.: On structural completeness of many valued logic's. Studia Logica, 3,
3—8 (1974).

A ndrzej Biela

A lgory tm iczna s tru k tu ra ln a zupełność
i system w yszukiw ania dowodów tw ierdzeń

w teo riach algory tm icznych

S t r e s z c z e n i e

Dow ody poprawności oprogramowania są jedynym sposobem zapewnienia użytkow nika
(inwestora), że można z niego korzystać bez ryzyka. W pracy rozważa się zatem klasę reguł
algorytmicznie strukturalnie zupełnych, pozwalających na poprawne wnioskowanie.

D uże znaczenie w automatycznym dowodzeniu twierdzeń ma właściwy dobór reguł, dlatego
badania rozpoczęto od próby uzasadnienia wyprowadzalności reguł dopuszczalnych w logice
algorytmicznej.

W publikacji zawarto w yniki badań dotyczące algorytmicznej strukturalnej zupełności lo g ik i
algorytmicznej oraz omówiono system automatycznego dowodzenia twierdzeń, w którym pewne
relacje czy funkcje mogą być reprezentowane za pomocą programów. Badania przedstawiono
w języku umożliwiającym wyrażenie własności programów (rozdz. 2).

Pierwsza część pracy dotyczy:
1) wprowadzenia reguły podstawiania do logiki algorytmicznej i do logiki z Diedetermini-

stycznym i programami ora2 udowodnienia zasadniczych własności podstawiania (rozdz. 3),
2) uzasadnienia algorytmicznej strukturalnej zupełności logiki algorytmicznej z dołączoną

regułą podstawiania (rozdz. 4).
Zdefiniowano zbiór podstawień tald, że wprowadzona za jego pomocą reguła podstaw iania

okazała się, mówiąc intuicyjnie, na tyle „silna dedukcyjnie", iż pozwoliła na uzyskanie a lgorytm icz­
nej strukturalnej zupełności lo giki algorytmicznej. N a podstawie tej własności stwierdza się, że
w konsekwencji logiki algorytmicznej każda reguła strukturalna, Unitarna i dopuszczalna jest
w niej wyprowadzalna. M ożna zatem swobodnie stosować reguły z tej klasy. Ponadto dla
niezupełnego systemu logiki algorytmicznej otrzymano pewien rodzaj guasi-zupełności, którym
jest algorytm iczna strukturalna zupełność.

D alszą część pracy (rozdz. 5) poświęcono omówieniu systemu dowodzącego, który u m o żli­
wia dowodzenie twierdzeń metodą Gentzena, sformułowanych w języku różnych teorii, a także
dowodzenie twierdzeń o programach. Ponadto możliwe są dowody wyrażeń nie będących
twierdzeniami, polegające na znalezieniu i dołączeniu dodatkowych aksjomatów um ożliw ia­
jących dowód. System ten pozwala również na dowodzenie poprawności programów, ro z­
wiązywanie równań funkcyjnych, których funkcje są zdefiniowane za pomocą programów,
a także badanie relacji zdefiniowanych za pomocą procedur oraz badanie niezależności
aksjomatów.

Pragnąc potwierdzić wiarygodność teoretycznych rozważań, system ten został zaimplem en­
towany w języku L O G L A N , a następnie w języku P A S C A L i z jego wykorzystaniem wykonano
liczne eksperymenty. Niektóre z nich zostały zaprezentowane w podrozdz. 5.6.

Była też możliwa inna metoda dowodu wyzyskująca model arytmetyki, dlatego rozdz. 6
zawiera opis tej metody, polegający na rozkładzie programów. W książce podano aksjom aty

119

rozkładu i twierdzenie gwarantujące sprowadzenie każdego programu z własnością S T O P -u
w rozważanym modelu do podstawienia będącego wynikiem tego rozkładu. Reguły om aw ia­
nego systemu dowodzącego posługują się wynikiem będącym podstawieniem, a nie samym
programem, co znacznie upraszcza dowód. W rozdziale 7 omówiono główne idee przedstawione
w pracy.

Andrzej Biela

AjiropHTMHqecKasx CTpyKnrypHaH nojmoTa
h c H C T e M a H a x o / íK ii h A O K a 3 a T e jif c C T B a T e o p e M

b a jir o p H T M H H e c K H X T e o p iu ix

P e 3 K3 M C

B aaTOMaTHiHOM A0Ka3axeju,CTBe TeopeM fiojiLuioe añaTeane HMeer cooTBercTByrotuHH
ox6op npaBHJi, n03ToMy ara HccneaosaHafl nasajm c HcabrraHHH A0ica3aTejn>CTBa BLraeAeHHK
npaBHji flonyCTHMLix B ajtropHTmhhcckoh jtorHKe, B pafiore coaepxaTCa a ro ra HCcneAOBaHHñ,
Kacaiomaeca anro parMErnecKoñ crpyKTypHoñ noJiHorw ajrropfrrMfnecKoü noratua, a Taic«e
o6cy*fíeHa a aefi cacrreMa aaroMaTHiaoro AOKaaarejiiCTBa TeopeM, b tcoropoñ fleaoroptie
or Hornean« hah (JtyHKUUH Moryr 6utb npeAcrawieHLi c noMOmwo nporpaMM, 3 r a
HCCJieAOBaHHH npeACTaaiiemj Ha H3hiKe ajiropar mhhcckosí jiothkh, Ae-JiaioiueM bo3mojkhmm,
BHpaxeHBe co6cr bchhocth nporpaMM (rnaBa 2).

ílepBas stacrfc pafioTLi Kacaerca:
1) BseAeHHH upaBHJia itoactslhobkr b ajrropHTMHaecicyio Jioraiíy 0 JioraKy

c HeAeTepMaancrKHecKHMH nporpaMMaMH a Tarace AOKaaaTej&cTBa npHmwaaarabHKDí cbohctb
noACTaHOBKrr (raasa 3).

2) AOKaaarejTLCTBa anroparMHaecEoñ CTpyirrypHoñ nojiaOTU ajiropBrrMHaeCKoñ nonaim
c npHJio«eHHUM npaBHJioM ixoact lhobkh (rirnsa 4).

Tcm cawíJM onpeAenHJia Tasoe MHoaecrBO hoactehobok, a ro no3BOmno uoAyaarb
crpyKrypHyio rtonsory ajiropHTMirreCKOH jiothkh. 3 r a cofierBeHHoerb ycTaHaBJiHBaer, ato
b pe3yjXŁraTe arcroparmrbcckoh normar KaxAoe crpyjorypBoe, tfiBRHTapaoe r AonycTHMoe
TipaBHno flBJwerca BWBeAEHRLiM- TasHM o6pa30M mokho cbo6oaho npHMeHETŁ npaBHJia H3
3Toro tenacea, KpoMe Toro ¡vía Henojiaofi cacreMu ajiropfrrMEraecicoñ jiorasa nojiyaeH
HeKOTOpŁIH pOfl qUASÍ-nOAHOTM, KOTOpblM HBHHeTCK ajITOpHT Mxrrecica¿i crpyKTypHaji
noAHOTa.

Cneayio m aíi n a c rt pa6orbt (m asa 5) nocsam cHa oficyxAeHHio AOKaaBrsaiom ea cncxeM tr,
KOTOpaH «enaer bo3Mojchlim AosasarejibCTBO TeopeM mctoaom resrrueH a ctjjopM ynHpOBaHHLix
Ha fObiKO paaBLix Teopañ, Toare AOKaaareabCTBO TeopeM coaepKaw H x cporpaM M U. CBepx toto
bo3mo;khw AOKaaaxe/ihCTaa BbxpaaceHHH He hbjuqowhxck TeopeMajwna, 3ac/noaaiom HecH
b Haxoajee h npanoarefloaa AoSaBOHHbix aacHOM AeaaKmxHX bo3moschejm AQKa3aTe.ro>ctbo. 3 r a
CHCTeMa AW iaer B03M0x h íjm Toare AO KasaTeaŁcrao npaBHjrbHOcra nporpaMM, pemenne
(JtyHKHHoaajaaLix ypaBHeaHH, KOTOpux (JjyHKAKH onpeAeneaw c domoiubio nporpaMM, T o s e
KccjieAOBasHe onpeAeaeH&hix CBJ53eñ c homoeamo npoueAyp a Tarase HcaieAOBaftae
CaMOCTOHTeAŁHOCTH BACHOM.

IJ[ejiBto npeAcraBAeHHH reopeTHHecKm paccyagreHHH 3Ta cacreM a 3aHM iiiieM eKr oaana Ha
aaHKe J IO r J IA H a 3aTeM IIA S C A J I h c ero noMomtno cAem oa paa 3KcnepHM esroB.
H e xo ro p íJe E3 hhx 6hah npeAcraBJieHU b rnaae 5.6.

TaK tcaa B03M0xaa fiama Apyraa MeroAa AOKaaaTejiBCTB nps HcnoabaoBasHM moacah
apH^MeTHKH, D03T0My b rjtase 6 coAepXHTca onHcame sro ro MeroAa, 3aKJnonaK)merocR

1 2 1

I

9 pacrmcaaHB npcrpaníM, IlpcACTaaneHM tsm slkceomw pacnHcaHHK h TeopeMa
rapasTupyiomaa npascAemse aa»KOK nporpaMMu co cbohctbom S T O P -a b paocyameHHoS
Moflean k noflcr anease «aasKmieScs pesyjararoM ax oro paecrmcamm. T sm caiwuM
npasajia paccyacflaeMosi noEcaabiuaiomeH chctcmli noJiLayicTca pcavatraTOM, HBAKiomHMCg
(JOflcrraHOBKOH, a ne cämoh nporpaMMoS, tto anawreatHo cospamaer A0¡ta3aTejn>ciB0.

