Andrzej Biela

Algorithmic structural
completeness

and a retrieval system

for proving theorems

In algorithmic theories

Wydawnictwo Uniwersytetu Slaskiego

Katowice 2000

Redaktor serii: Matematyka
Tomasz Dtotko

Recenzenci
Andrzej Salwicki
Andrzej Skowron

Contents

Chapter 1 Introduction

PART |
Chapter 2 Basic definitions

21 The 1anguage Of AL .
2.2 Realization of an algorithmic language.......cccvvieierreicieriereeiennnnns
2.3 A deductive system Of A L .o

Chapter 3 The substitution rule

31 The notion of (g, A-function and K* program ...
3.2 Program-subStitution ..o s
3.3 Basic properties of program-substitution.......ccoceeeeeniciciiiinenen,
3.4 Program-substitution in AL with generalized terms................

35 Program-substitution in the language if" and

Chapter 4 Algorithmic structural completeness

4.1 The problem of completeness of CK ...
4.2 The algorithmic structural completeness of CRcccoivnicnne

PART Il
Chapter 5 Automated theorem proving

51 Axioms and Gentzen’s rules of inference.......n
5.2 Functions and procedures defined by programs..............
53 Diagram of @ fOrmula....iiicc e
5.4 Retrieval algorithm for functional equations and relations

5

23
25
29

32
37
42
45
49

55
61

67
70
72
76

55 The data structures and implementation of a retrieval system 86

56 Results of eXPeriments ... 88
Chapter 6 Theorem proving by decomposition

6.1 Axiomatization and decoOMPOSItION . .cccieiiierieeree e 92

6.2 Decomposing ProvingsSy STEM .o 96

B.3 N0 HAG FTAM i 99

6.4 Algorithm for provingth@oremMS. ... 100

6.5 EXAMPIES ..o 103
Chapter 7 Summary and concluding remarks

T CONCIUSION ettt 108
REFEIEINCES bbbt 113
ST SZCZENIE ottt 119

PEBICSIMIE. ...ttt he et ae e b beebe et e be et et b be et e eaeaaeenean 121

Chapter 1

Introduction

The paper presents the proofs of algorithmic formulas. These formulas, as
a part of the language of algorithmic logic, make it possible to express:

e the properties of programs e.g. correctness,
the definitions of semantics of language of programming,
the data structures e.g. the structures of trees, stacks, etc.

Only the proof of formula expressing the correctness of the program in
relation to the proper specification can assure the user of error-free application
of the program.

However, some advanced tools and programming languages the correctness
of programs is not always easy to verify. Therefore, in this paper we use the
method of proving called abduction. In consequence it is possible to obtain the
value of function by means of the proof. This technique was first mentioned by
Herbrand in his definition of recursive function.

This paper consists of two parts:

 research on algorithmic structural completeness of algorithmic logic,
 description of the retrieval system RS providing comprehensive tools in
automated theorem proving theorems of algorithmic theories i.e. theories
based on algorithmic logic,
description of the RETRPROV system which enables us to prove theorems
of algorithmic theories by using the decomposition rules.

In the first part of our paper (cf. Chapter 3) we present a possibility of
introducing the notion of program-substitution as a special mapping from the
set of all formulas of AL into the same set.

Let Jf be the set of non-negative integers. In AL we have some kind of
substitution i.e. an assignment instruction s of the form:

IXAi»-» ai/ai> alxJ

for n, m e/, where xv ...,xn (respectively au...,aw denote pairwise different
individual (respectively propositional) variables, are classical terms,

are classical open formulas and for example x jx | means the standard
assignment instruction x1 zl.

Unfortunately this form of substitution s in the formula sp(xLI...,xj
transforms the formula only into the formula p(rl5 +t,) but
not for example into the formula of the form a a /? where a denotes the
conjunction.

Our substitution called program-substitution has not this restriction so it is
more general.

Various attempts have been done to introduce the substitution rule in
any logical systems by A. Church [18], H. Hermes [42], D. Hilbert [43]
and W. A Pogorzelski and T. Prucnal [71] but our key idea slightly differs
from the methods developed up to now because contrary to the previous
substitution rules it does preserve the properties of programs.

In Chapters 2, 3, 4 we define the notions of the consequence operation,
the admissible, finitary and derivable rules which enable us to introduce the
notion ofalgorithmic structural completeness and to prove that the consequen-
ce operation of algorithmic logic strengthened by the substitution rule is
algorithmically structurally complete i.e. that every structural finitary and
admissible rule is derivable in this consequence operation. This result gives us
the useful class of rules.

The notion of structural completeness of a logical system was intro-
duced by W. A. Pogorzelski [70] and thoroughly studied in propositional
logics as well as in the systems with quantifiers by A Biela [4], A. Biela
and W. Dziobiak [6], M. Dummet [25], G. Mine [57], W. A. Pogorzelski
and T. Prucnal [71], J. Porte [72], T. Prucnal [76], A. I. Tsitkin [98] and
P. Wojtylak [104].

In the first part of this paper we shall prove that the consequence operation
CR of algorithmic logic strengthened by the substitution rule is algorithmically
structurally complete though it is not complete.

Here we explain the notion of algorithmic structural completeness of a logic
of programs which plays an important role in this paper.

In our paper the definition of the consequence operation CR* of algorith-
mic logic strengthened by the substitution rule will be based on the set of
axioms Ax and on the set of rules R of algorithmic logic. Thus Rt = Pu{r,}.

8

The purpose of this work is to show a point of view upon the notions of
program-substitution and admissibility of rules which are the tools for proving
properties of programs in algorithmic logic and in the so-called extended
algorithmic logic with quantifiers and with non-deterministic programs, We
shall prove that these logics are closed under each program-substitution i.e.
P(Cr,(0) ¢ Cr (0) for every program-substitution p.

As we mentioned above the consequence operation CR of algorithmic
logic is not complete, so it is not true that each admissible rule of C* is
derivable in Therefore we looked for a weaker kind of the notion* of
completeness. We tried strengthening the notion of the substitution rule r. to
get the following property: each structural, Unitary and admissible rule in CR
is derivable in it

This property called algorithmical structural completeness means that
every consequence operation which has this property is intuitively quasi-
complete i.e. it is complete because of structural, finitary and admissible rules.
Since AL is algorithmically structurally complete thus we can use every
structural and admissible rule in CR while proving theorems of AL which
simplifies the proof.

Chapter 2 begins with the definition of the language of AL. There we
develop a formal model theory of AL. This Chapter contains a formal
system for AL and the consequence operation of this system. In Chapter 3 we
define the set of the program-substitutions and we proof that AL is dosed
under program-substitution. Moreover Chapter 3 contains a proof that any
program-substitution preserves the logical connectives. In Chapter 4 we proved
the algorithmic structural completeness of the consequence operation of
algorithmic logic strengthened by the substitution rule as well as its incom-
pleteness. This chapter contains some remarks about program-substitution in
AL with generalized terms and with quantifiers and with non-deterministic
programs.

The second part of this paper Le. Chapter 5 and Chapter 6 presents
a retrieval system (RS-algorithm) investigated by A. Biela [5] and a decom-
position system described by A. Biela and J. Borowczyk [7] in which the
properties of programs are expressed.

Further in this paper we shall describe a formal system which enables us to
prove theorems from the following theories: propositional calculus, logic of
quantifiers and the first-order theories. However, the theories of algorithmic
logic including theorems containing programs are the most important ones.
Its main feature relies on generating an additional set of assumptions needed to
prove a considered formula. Thus we are able to consider expressions which
can become theorems by adding the special set of assumptions (axioms) to the
standard set of axioms. RS-algorithm is looking for a special set of axioms to
prove the considered formula.

We shall try to show some methods and procedures investigated by A Biela
[5] for constructing formal proofs of theorems of algorithmic logic containing
programs.

Our methods concern proving by means of programming. They are an
essential extension of methods used by P. Gburzynski [28], [29]. The
considered retrieval system is able to solve or to prove:

1 the properties of programs and terms formulated in the language of

arithmetic,

2. the correctness of some programs with STOP property,

3. the functional equations with the recursive functions defined by pro-

grams. This system solves them in a dynamic way by looking for
a special set of axioms during the execution of algorithm,

4. the relations defined by programs and recursive functions,

5. the equivalence of programs.

Therefore we can answer whether some relations hold and we are able to
compare programs and get an answer, whether the execution of different
programs gives the same result. At the end of this section we present some
experimental results.

Though the solution to considered problems are very ineffective, the
options and methods used by us are satisfactory in practice (see Table 1 of
experimental results).

Our proposal has in view:

1 to provide the tools for didactics, which enable us to demonstrate on the
monitor the proofs of theorems of the caicuius of quantifiers, algorithmic
logic, algorithmic theories, propositional calculus, geometry, set theory,
theory of lattice, boolean algebra...,

. to enable us to undertake a trial of proving hypotheses,

to secure the specific results for example the independence of axioms,
. to verify the correctness of definitions,

. to verify some hypothesis.

The retrieval system can be used for giving an expert appraisement becau-
se it works in a broad area and can solve different problems, so it is an expert
system.

We believe, that it is reasonable to use in our considerations some
formalism of the language of algorithmic logic described by L. Banachowski
[1], G. Mirkowska [58], [59], G. Mirkowska and A. Saiwicki [64], A. Salwicki
[87] and H. Rasiowa [82]. The language of algorithmic logic contains all
classical formulas and generalized formulas describing properties of algorithms
which can be interpreted in our considerations in a model of arithmetic or in

a model of integers.

adwN

10

The properties of algorithms from the point of view of recursion theory and
degree of undecidability of algorithmic properties were settled by W. Danko
[20], [21] and A Kreczmar [48].

The main idea depends on handling the expressions of the forms Kr-
generalized term and iCa-generalized formula where K is a program, t is
a generalized term or a classical term and a is a classical or a generalized
formula. These expressions enable us to describe functions or relations
defined by programs and recursive functions. For example the factorial n!
can be defined in algorithmic logic by a generalized term of the form K{z
where:

Ki:if n = 0 then z\—1 else z: = n*f(n —1);,

for /(n) = K"z, while the order relation between natural numbers can be
expressed in algorithmic logic by generalized formula of the form K za, where

K2:ifx =y then a: = FALSE else
begin u:= 0;
while Xu=1y) v (U= X))
dou:=u+
ifu=xthena:—TRUE elseaFALSE;
end;

Readers accustomed to formalism of Hoare should observe certain differen-
ce in semantics. We can show this difference by giving a typicai example. For
example the expression Kx —u can be sensibly considered even when u does
not occur in z

Now we explain a technique which by means of a proof enables us to get
information about the value of function. The considered function will be
defined by a program. The pioneer of this method (called ABDUCTION)
mentioned in the definition of recursive functions was J. J. Herbrand.

Let us consider the definition of factorial f(n) = Klz. If we consider the
expression /(3) = u availing itself of the definition of function f given by the
program Kv then the equality u = 6 is the result of our system. This obtained
equality may be interpreted as a question whether/(3) = uis a theorem under
the assumption u= 6. Our system will find the equality u—=6 and it will use
it to prove the equality/{3) = u. On the one hand the number 6 in the equality
u = 6, may be interpreted as a result of calculation of Kyz, on the other hand
the equality u = 6 may be interpreted as a special axiom in the proof of the
equality /(3) = u.

In our considerations only the second interpretation is suitable. To show
the difference between the proof of u —/(3) and the calculation of K zz, which

11

is used for changing /(3) by the result of this calculation, we consider the
program defining the addition:

K2:ify = 0 then z: —x else z:= k(x,y —1) + 1, where
k(x)y) - K2z

If we want to prove the equality k(x, 1) = u, the retrieval system needs the
equality u—x + 1 during the proof. Obviously, the calculation of every
program realizing the addition function in the set of integers gives us as the
result the number and not the expression of the form x + I.

In the same way our system gives us the answer whether some relation
holds or not. Let us consider the relation p(x,y) = K2a If we want to get the
answer whether p(l,2) holds or not, our system will attempt to prove the
expression of the form p(x,y) = b. During the proof it gets the answer that
b= TRUE.

We shall give the main idea of this algorithm. If we want to prove a classical
formula without functions and relations defined by programs then our
algorithm gives us the proof in a standard way. It uses the rules to decompose
sequents i.e. the expressions of the form X jj- Y, where X and Tare two sequents
of generalized formulas. If the constructed diagram of the considered classical
formula is finite and all leaves are axioms then we get the proof of this formula.
But when we want to prove an expression containing a function or relation
defined by program then to explain this algorithm we take for example the
formula (p(tl,...,tn) = Mt. Thus Mi can be treated as the definition of the
function (pity,...,tn). Our algorithm starts with the sequent of the form:

—u- Next we change the function by its definition Mi, so we get
the sequent of the form |(- Mt = u. After that we move the program M outside
the equality and we get jj- M{t = u). Next we use the rules to decompose the
program M and we do it up to the moment, when we get the sequent composed
only of the classical formulas from At. If such obtained sequent has on the right
side of the symbol [j- only one classical formula of the form r —u (where,
intuitively saying z is the result of the execution of the program M on the
term t) then we extend the set of axioms by adding the set of special axioms Le.
sequents containing u—x on the right side of the symbol jj— Such an
operation enables us to get the proof of the classical formula ||— tn=u
by our system.

We explained the idea of the execution of the considered system and
we showed how during the proof we ought to choose the special set of
axioms.

Now we explain the activity and the usage of the retrieval system. The idea
of working of this system avails itself of conception of resolution and Gentzen’s

12

method. To realize our conception of looking for the axioms we introduce
many options. Moreover the decomposition of the program while a do K
requires a special treatment.

Let us consider the following definitions:

I(n) = Kyz

p(xy) = Kza,

k(x,y) = Kzz,

g(x) —Kxz, where is of the form begin i:=i+ 3; z:= x end,
h(x,y) = K5, where K5 is of the form if x —0 then z:= 2 else

z:= h(x~ 1 /z(x,y)).

By the above definitions our system will try to prove the following
properties:

/(1) = u, p(l,2) = b, k(x, D - ubg{rf) =u2 h(l,2) =

The environment of our system consists of two sets DEF and DAT. In DEF
we write the definitions which are needed during the proof of considered
expression. In DAT we put the formula which our system will try to prove.
Using the above mentioned classical formulas we shail give the graphic
illustration of execution of our system:

ENVIRONMENT ENVIRONMENT ENVIRONMENT
DEF DAT DEF DAT DEF DAT
o= fliy=u p(xy)s K,a p(,2ssb Y)=K3z k(x,])=ui

After using the definition the retrieval system will try to prove the following expressions:
| | |
n:=I1(fC)2-u) x:=l(y:=2(iC2ash)) y:= 1(JC3xz - Uj)
| | |

Further execution of the retrieval system:

| 1 |
Paragraph 5.3 Paragraph 5.4 Paragraph 5.4
Example 7 Example 10(/u) Example 10(«i)

Our system finds the additional premises which enable us to prove the above properties:

u=1 b - TRUE u=x+1
Fig. 1

13

ENVIRONMENT ENVIRONMENT
DEF DAT DEF DAT
ox) = Kxz g{nA = u2 h(xy) = Ksz *(1,2) = «3

After using the definition the retrieval system will try to prove the following expressions:

| |
x:—ni{Kdz=u?2) x\—I(y: = 2(Ksz —u3))

Further execution of the retrieval system:

I I
Paragraph 5.4 Paragraph 5.4

Example 10(i) Example 10(ii)
| |

Our system finds the additional premises which enable us to prove the above properties:

u3=2
Fig. 2
We have to mention that by the retrieval system we can verify the
correctness of programs. To explain it let us consider the program defining the
factorial i.e. f{n) = Kxz (instead of we can consider another program
defining the factorial). If we want to get the answer whether Kt is well written

i.e. whether the program Ky really defines the factorial (for every natural
number n), we need to prove the expression of the form:

/0) = 1 aV*(—=<x = 0)-*/(*) = x*f(x - 1))
because only the factorial fulfils this recursive condition. So a program defining
a recursive function can be verified in such a manner.

The graphic illustration of the proof of correctness of program defining the
factorial is as follows:

ENVIRONMENT
DEF DAT

m =k,z y(0) = 1LAVX(—(x = 0) -+J[x) = x*JI[x~ 1)

After using the definition the retrieval system will try to prove the following expression:
n:—0 (&) = LAVI(->(X = 0)->(n:= x{Ktz) = x*{n: = (X- DtKj2))))

The retrieval system will prove the above generalized formula.
Fig. 3

14

The above considered example as well as the others were tested and we
present the time of execution (see paragraph 5.6, Table 1)

The above presented examples show that the constructed algorithm
computes even such generalized formulas for which the standard computation
is helpless since it cannot compile the program defining the function h(x,y).
However the retrieval system will be able to get the result.

In this paper we shall provide the major structures of the implementation.
The generalized terms, formulas and programs are represented by the object
TNODE consisting of four fields. Two fields are for the name of individual
or propositional variable, logical constant, generalized quantifier, iteration
quantifier, logical connectives and program connectives. The next two fields are
the pointers of the same type as the considered object. The sequent is
represented by the object consisting of two fields of the type TNODE and one
field being a pointer to the object of the type of SEQUENT. These objects
enable us to program the algorithm of retrieval system (RS-algorithm).

When we consider the correctness of the program defining the factorial we
can see that our system is able not only to prove the equalities of the form
(p(tu ..., i) = u or to verify the relations, but also it can prove the generalized
formula from algorithmic logic. As an example we can prove the expression of
the form:

x>2-> if{x) = {x*(x - 1)*/(x - 2)).

All these possibilities are expressed in the language of algorithmic logic
where the expressions <p(ix (i.e. recursive functions) can be defined by
generalized terms of the form Kz. Moreover we can prove or verify by
RS-aigorithm the expressions from many theories. For example we shall
formulate some of them:

1 If x is a finite set and y ¢ x then the power of the set y is less than the
power of the set x, for every set x and y (it is a theorem of set theory),

2. If T(x,y,z,v) is a trapezium then the angles zyv and zvy are equal (it is
a theorem of geometry),

3 (P(X) -» VxQ(X)) = W(P(x) -» {y)) (it is a theorem of the calculus of
quantifiers),

4. -‘(3xP(x) v3y<2y)) v3.(P{z) vg(r)) (it is not a theorem of the calculus
of quantifiers),

5 @*@=>9))-*{p»q-»(pP-*9) (it is a theorem of propositional
logic),

6. {)g(]u)Y)\Z = (X\Z)u(T\Z) (it is a theorem of boolean algebra),

7. Vri(MKul/ =)f-»x=0a Mxny=y-*x= 1) (it is a theorem of
lattice).

15

We shall construct an expert system which will be able to solve problems in
a similar way to the human brain. The procedures and functions may occur in
the considered theorems while the program is being executed.

In the last section we shall study the decomposition of programs by using
the model and we shall describe two rules which play an essential role in our
considerations. In this section we shall formulate the RETRPROV-algorithm
which enable us to prove theorems as well as to find a special set of axioms for
expressions containing procedures and functions defined by programs. Some
Gentzen method was considered by G. Mirkowska [61] and by A. Kolany in
his manuscript. We shall not use the Gentzen’s method but by a special kind of
decomposition we shall get the result in an evidently shorter and speedier way
than by using RS-algorithm. We shall present a few examples of using
RETRPROV-algorithm for proving properties of programs. RETRPROV-
-algorithm enables us to determine whether a relation defined by program
holds. Moreover it can be applied to Hoare’s method for proving partial
correctness of programs. If M is a program, a is a generalized formula,
and /? is an output generalized formula then the problem of partial correctness
of program M can be reduced to the question of whether the formula
@a M TRUE) -* Mp) is true.

Chapter 7 contains the concluding remarks and the summary of the
author’s contribution to automatic proving system.

Historical remarks

The starting-point of our considerations was an idea connected with functions
defined by programs which was mentioned by A. Salwicki [89].

Today there exist many systems formalizing the mathematical semantics of
programming languages. In the presented paper we consider a logical system in
which the properties of programs are expressed. This logical system called
algorithmic logic AL was initiated by A. Salwicki [88] in 1970. It includes
expressions called programs and generalized formulas describing properties of
programs. Programs are expressions built by means of substitutions as primitive
programs being interpreted as assignment statements'and by means of
operations of composition, branching and iteration. These correspond to basic
operations in programs written in high level languages such as FORTRAN,
ALGOL or PASCAL. In that way an algebra of programs was obtained.
This was not the aim in itself but an auxiliary step in the development of
theory.

At first the axiomatizability of algorithmic logic was established by
L. Banachowski [1], W. Danko [21] and G. Mirkowska [58], [59], [60], [62],
next the questions of effectivity problems of AL were studied by B. Chlebus

16

[17] and A Kreczmar [48], [49]. Moreover many-valued algorithmic logic
were considered by E. Perkowska [68] and H. Rasiowa [80]. Applications of
algorithmic logic to procedures have been discussed by S. Radziszewski [77],
H. Rasiowa [82] and others. Some logical systems enable us to examine
non-deterministic algorithms. They are related to the dynamic logic formulated
by V. Pratt [73] and investigated in several papers by D. Harel and V. Pratt
[39] and K. Segerberg [90] as well as by G. Mirkowska [60], [61] in
algorithmic logic with non-deterministic programs.

H. Thiele [96] and E. Engeler [27] were that first who were looking for
formalized logical systems dealing with programs and their properties.

The history of automated deduction described in the literature is very
extensive. Nowadays there are two methods often applied in automated
theorem proving i.e. resolution which was studied by J. Robinson [83] and
C. Green [33] and G. Gentzen’s method [30].

Robinson used resolution for the first-order logic and showed its practical
use. In fact, it is correct to say that all details connected with resolution were
known before J. Robinson [83]. Resolution as a propositional rule was defined
as a function and studied by A Blake [9],

Next it became weii-known as Quine’s consensus rule [79] of the form:

IKk pH

IN

which in turn is just a variant of Gentzen’s cut rule [30]

x\\-Y,riPtz\\-w
X,z\\-xw

and is the generalized version of the modus ponens. Gentzen’s method is
competitive to all methods using resolution as a main rule (see M. Davis [23]).

B. Dunham and J. North [26] used the consensus rule in a version of
W. V. Quine as a recognition-type rule for theorem proving. Unification,
however, was first discovered by J. J. Herbrand [41] and used by D. Prawitz
74].
[]Robinson’s achievements consisted in putting all these results together into
a uniform and elegant calculus [84].

The linear refinement of resolution was introduced independently by
D. W. Loveland ([52], [61]) and by D. Luckham [54].

Detailed comparisons of different proof procedures in the linear strategy
were carried out by G. V. Davydov [24], D. W. Loveland [53], W. Bibel [3],
W. ChaQg and L. Lee [16] and by D. W. Loveland [50].

2 Algorithmic.. 17

The first implementation of a proof procedure for the first-order logic was
done by D. Prawitz, H. Prawitz and N. Voghera in 1958/59 [75] and the first
implementations of mathematical theorem proofs were done in the midfifties.
For instance, in 1954 M. Davis [23] implemented Presburger’s decision
procedure for the arithmetic addition.

In 1956 A. Newell, J. Show and H. Simon [65] constructed a program
called the logic theorist for proving theorems in propositional logic in a way
which simulated the human problem solver.

In the world literature we can fmd a review of various proving systems e.g.
R. S. Boyer and J. S. Moore [12] present one of them, which verifies the
properties of recursive functions. This system employs the reduction and
induction. Some lemmas in Boyer and Moore’s interactive proving system are
specified to be proved before their using in the main theorem.

Several heuristics make the proving theorems more general. This is an
incomplete system. The heuristics enhance its effectiveness. This system verifies
programs and theorems of mathematics and metamathematics (A. Bundy [14]),
as well as Wilson’s theorem (D. Rusmoff [86]).

JL M. Hines’s system of proving theorems [45], [44] transforms several
simple conclusions into more general ones which simplifies concluding due to
elimination of auxiliary results.

In consequence the usage of these rules is bounded which, however, does
not detract from the value of the results or accelerates the proving process.

The next proving system constructed by S. A Miller and L. K. Schubert
[56] recognizes natural language. It is a hybrid system namely a resolution
proving system equipped with the specialized concluding modules concent-
rating on the fixed data structure which accelerates concluding. In this system
there are modules calculating in the arithmetic theory and the set theory. This
module was described by J. Haan and L. K. Schubert [38], The theorems
which are proved by this system are formulated in the language of the
first-order predicate calculus.

H. S. Jonsohn, R. Landwehr, G. Writson [46], [47] present an interactive
proving system based on J. A. Robinson’s solution [85]. This system accepts
expressions of lambda calculus. This system applies semantic approach in
generating proofs by contradiction.

The next system constructed by S. Greenbaum [34], [35] uses various
variants of the resolution method. Complex data structures make it possible to
avoid redundancy which results from storing a lot of copies of the same objects
and to accelerate the search of required information from a data base.

M. E. Shekel’s system [94], [93], [92], [91] is based on the resolution
method represented by graph. The formulas including the equality symbol are
simplified by means of a reduction system. One element of this system is
a prologlike proving system.

18

M. Gordon, A Milner and C. Wadsworth [32] and M. J. C. Gordon [31]
tested LCF program which verifies the properties of calculable functions
defined in the language of the first-order predicate calculus and lambda
calculus. The strategies of theorem proving were formulated by L. Cardeili in
user-friendly programming language ML [15]. This system was applied in
testing several standard mathematical theorems. It was also tested by
L. Paulson [67],

E. L. Lusk, W. W. McCune and R. A Overbeek [55] constructed programs
which enable the user to apply many functions from different proving systems.
These programs are convenient to use. The elements of this system are grouped
into five levels.

e In the first level there are several implementations of primitive types
nonexistent in Pascal.

« In the second level the type “object” was implemented. On the elements of
the type “object” we can use the unification and the substitution rule. In this
level there are mechanisms allowing to represent and to use logical formulas
and then substitution. Moreover each object can have some attributes.

* On the third level we can use functions allowing to conclude by resolution
and to absorb clausules.

» On the fourth level it is possible to do a configuration of the whole proving
systems. The systems on this level are represented by independent processes.

e On the fifth level the modules are able to manage the processes from the
fourth level. The tools in this system are general enough to construct the
proving theorem system in lambda calculus, the system of natural deduction,
Gentzen's system and the system based on the resolution rule.

K. M. G. Raph [78], K. Blasius, N. Eisinger, J. Siekmann, G. Smolka,
A. Herold, C. Walter [10], A Bundy [14] and H. J. Olbach [66] constructed
the system in Kaiserslautern and Karlsruhe which belongs to the greatest
projects of this type. This system assumes that proving theorems requires
extensive, specific knowledge which is used to formulate theorems. It consists
of two levels:

e The aim of the first level is to gather information (axioms, definitions etc.)
which is specific for the considered problem and to decide about the way of
proving. Moreover this level chooses the proper strategy and makes the
suitable modules active.

e The second level is based on the structure of graph in which each edge is
a potential step in concluding in the set of clausules e.g. the edge of the graph
means using resolution or factorization. Concluding is possible because of
special modules. One of them transforms formulas into clausules. Later they
are grouped to form the edges of the graph. Then the graph is reduced by
absorption of clausules. Next module includes the unification algorithm for
the formulas with identity. Another module chooses various strategies of

r 19

proving theorems. Next module contains adopting procedures of division

and simplification of the diagram of the graph. By means of this module it is

possible to discover the loops caused by frequent usage of the same lemma.

The clausules derived from the considered theorem have priority. Useless

edges of the graph resulted from tautologies are reduced. Using this module

we often lose completeness of this strategy of proving. All these modules
improve effectiveness of this system.

Next system constructed by T. C. Wang [99] is based on resolution.
Additionally in each constructed clausule there is.information about “history”
of clausules. It makes possible to limit the form of the generated proofs. This
method finds some special cases of absorption.

In this system there exists a semantical approach to proving theorems. The
system will consider only these clausules which are accepted in the model. In
[99] we can find examples of proved theorems.

The proving theorem system constructed by S. Wolfram and Ch. Cole and
described by A. Bundy in [14] is an interactive system which facilitates
manipulation of mathematical expressions. This system can perform the
following operations:

Decomposition of mathematical expressions,

Operations on polynomials,

Solution of linear and not linear equations of several variables,
Differentation and integration of the wide class of expressions,

. Operations on matrices,

. Operations on finite and infinite series (limitation, addition, multipli-
cation).

This system enables the user access to various mathematical environment:
» numerical calculations,
 graphic representation of mathematical expressions,

» advanced programming language,
interactive communication.

W. Bledsone and M. Tyson [11] constructed Gentzen’s interactive system
for proving theorems of the first-order predicate calculus. The key idea of the
system is based on dividing the problem into many subproblems. It is possible
to use mathematical induction. The user can influence the process of searching
the proof and indicate the optional rule of conclusion. This system was
described by A Bundy in [14].

Some aspects on automatic theorem proving were described by A.' Biela
and M. Wojtylak in [8].

A. Trybulec [97] developed the well-known MIZAR proof-checking system
based on the resolution method.

11th International Conference, TPHOLs98, Canberra, Australia, Septem-
ber 27—October 1 was dedicated to current aspects of theorem proving in

OUTE WN R

20

higher order logics and formal verification and program analysis. Besides the
HOL system, the theorem provers Coq, Isabelle, Lambda, Lego, Nuprl and
PVS were discussed and published in Proceedings [36],

J. Harrison in [40] combines traditional lines of research in theorem
proving and shows the usefulness of real numbers in verification.

This analysis of literature on automatic theorem proving points out that
there are many interesting systems.

Our considerations strongly vary from the above-mentioned studies, since
our logic contains a built-in notion of program and because these con-
siderations enable us to prove theorems which include programs. Our
constructed system enables us to find assumptions which are necessary for the
proof of expressions which are not theorems. Then this system looks for the
special assumptions during the execution of program and tries to finish the
proof. After finishing the proof this system shows us all the adopted
assumptions. Using this system the partial correctness and equivalence of
programs can be determined.

PART |

Chapter 2

Basic definitions

2.1

The language of AL

To construct a language of algorithmic logic we have to distinguish a set of

signs
admi

called the alphabet and to give some syntax rules of creating syntactically
ssible expressions in the language.

The alphabet L of algorithmic logic AL consists of the union of disjoint and

at m

ost denumerable sets:

1. V the infinite set of individual variables,

2

NS ok w

©

. V0 the infinite set of propositional variables, we assume that the set

VOu V is linearly ordered by a certain ordering relation,
. Jf the set of non-negative integers and N = jV \{0},

[JmeNPm where Pm is the set of m-argument predicates,

where denotes the set of m-argument function symbols,

{TRUE, FALSE} the set of logical constants,
{—= a, v,—} the set of logical connectives: ->(negation), a (conjunc-
tion), v (disjunction) and -» (implication),
. {V} the set of general quantifier /3 means --V ->/,
{(@, P} the set of existential iteration quantifier and the universal
iteration quantifier respectively,

10. {begin - ; - end, if - then - else - , while - do -} the set of program

connectives called composition, branching and iteration respectively,

11 {()./.[.1} the set of auxiliary signs. O

The standard definitions of the sets T0, FO, SO, S F of classical terms,

class

ical open formulas, substitutions as assignment Instructions, programs,

and generalized formulas sometimes called formulas may be found in L. Bana-

23

chowski [1], G. Mirkowska and A. Salwicki [64] and A Biela [5]. We recall
these definitions.

By the set TO all classical terms we shall understand the least set of
expressions closed under the following two formation rules:

tl. If xeV then xeTd
t2. If for some mel™ and TL....rmero are classical terms then

(p{r1t...xmeT0QQ

By the set FOof all classical openformulas we shall understand the least set
of expressions closed under the formation rules:

fl. WOu{TRUE, FALSE} ¢ FQ
f2. li pePm for some meN and rl,...,rmeTO then p (t15-.,tJ gFQ,
f3. If g, fisFO then ->(a), (aa/?), (avj5), (@a-*/J)eF0.00

The set (denote it by At and call atomicformulas) is created by usage of fl, 2
formation rules only. By an elementary formula we shall understand any
classical open formula of the form p(r-x, Let E be the set of all elementary
formulas.

The set Sa of assignment instructions is the set of all expressions of
the form:

(@) [XiAi xjrrme ...ajalJ for nmeN,
where xu..7x,, (respectively av ...,aj are pairwise different individual
(respectively propositional) variables, xIs...,.zn are classical terms and
av are classical open formulas. O

The set S of programs is the least set containing all elements of SO closed
under the formation rule:

si. IfagF0and K, Me S then begin K;M end, if a then K else M, while a do K
eS. O

Sometimes the programs begin K; M end, if a then K else M, while a do K
will be denoted by [K M], jvi[a K M], *[aK] respectively. Let us denote
..J11 by for m>2

The set Tof all generalized terms is the least set containing TOclosed under
the following formation rules of construction:

LIfTiar e generalized terms then (p{rl,..fTeTt

2. If KeS and re T then KreT. O

24

The set F of generalized formulas is the least set satisfying the following
conditions:
1 FOc F,
2. If a,fieF then »(a), (aafi), (av/?), (@a-> F,
3. If KgS$S and cteF then Kcc, {JKa, f*KaeF, where (J and p] denote the
existential and universal iterational quantifiers respectively. O

The set Fv of generalized formulas with quantifiers is the least set satisfying
the following conditions:

gl. FOc Fw»

g2. If a, feFvthen- (@), (aaf), (avE), (a->ideFy,

g3. If KeS and ae f¥then Ktx, [JKoc, piCaeFv, where (J and p| denote the
existential and universal iterational quantifiers respectively,

g4. If agFv and xeV then 3xa, VaeFv. O

By the language of AL we shall mean the system SF= <L, TQ FO, SO,
S, F> and by the language with generalized terms we shall mean the system
S'= <L, TAFCSaS, T, F'>, where F' additionally is dosed under the
following formation rule:

@iy If are generalized terms then p(Tj,,...,i:neF', where p is an
n-argument predicate symbol. O

By the language of the extended algorithmic logic of the first order, with
classical quantifiers introduced by L. Banachowski [1] we shall mean the
system SF'= <L, TQ FD Sa S,FV>. O

We shall denote by &§) the set of all individual and propositional variables
of the expression (. Let 0 denotes the empty set and P(X) denotes the set of ail

subset of the set X.
If seS is ofthe form (a) then the expression obtained from the expression C

by simultaneously replacing all occurrences of the variables xif a”e (xI 5 xn,
a a m| by the expressions ajfor 1< i<n, | <j < mwill be denoted by s(.

2.2 Realization of an algorithmic language

Let U be a non-empty set and let 0= <5,,, u, o,j®»—/\ ,\J0> be a two-

element boolean algebra with the unit element \/ and the zero-element f\ and

BO—{/\ ,\/ }, where — is a complementation and u, n, i-+ are binary

operations on Ba such that x n y is the infimum, x u y is the supremum and

Xy = —xuy. Let Un—JJ x . x X be a Cartesian product of the set U.
n—trres

25

By a valuation v in the set U and the algebra &0 we shall understand any
mapping of the set of individual variables and propositional variables into U or
¢respectively. The set of all valuations will be denoted by W. O

By a realization (see L. Banachowski [1], G. Mirkowska and A. Saiwicki
[64], A. Biela [5]) of the language L£' in a non-empty set U and in the boolean
algebra ¢$0 we shall understand any mapping 02 assigning to each functor <
a function (p#:Un->U and to each predicate p, a function pg:Un—BO0. Any
realization 02 induces mappings :Wu{LOOP} Uu {LOOP} for tg™
s*:Wu {LOOP} -> Wu {LOOP} for seSaam:Wv{LOOP} BOfor aeF *and
mappings K# = Wu {LOOP} x Wu {LOOP} for KeS. LOOP differs from any
other element of AL and intuitively means that the value of a program in
a realization and a valuation is not defined. We give the precise definitions of
these functions.

Let veW then

@i MU= yw), xLOOP)= LOOP and p"LOOP) —f\ for every in-
dividual and propositional variable w and for every individual variable x
and for every propositional variable p,

f PH(xL3I(Vmezrt(v)) if xix(v) are defined
< for every 1< i<n
ILOOP in the opposite case

(i) AT

f Pa(Ti»(0))-,TrH()) if xux(v) are defined
for every 1<i<n
'_, A in the opposite case
@)
(iv) ~(u) = v' and s"LOOP) = LOOP for every assignment instruction s of
the form (a), where

(i) p(rl5... Ty (b)

fvz) for z${xi f xnal a j
V() = <xi(v) ifz= for some 1<i<n
[ajgi(v) if z=aj for some 1<j <m

Obviously [Ja() = v,

(v TRUEa{y) = FALSER) = AG
(vi) (-a™)(u) = -a*(w),

(@ a flgiv) - dafv)n pm),

(av 0)*(0) = a*@Wu fia{v\

(a > P)jv) = aa(y)»»/"*(»), for every classical open formulas a, e FQ,
(vii) If aeFOand K, MeS then

26

M&iKgiv)) if Kg(v) and M~K"v)) are defined

IKMIsiv) = . .
LOOP in the opposite case

if aa(y) = \Jo and Ka(v) is defined
y.[aiCAIJg(Y) = i Ma@) if ct™v) —/\oand Ma(v) is defined
LOOP in the opposite case

where i is the natural number such that
(~a)f(y) = f\Q Kgf(v) is defined and
(Ktyaiv) - \/o for every j <'i

LOOP if such i does not exist

(viii) ff KeS and zeT then

(zgiKgiiv)) if is defined

K -
(KMY) [LOOP otherwise

(ix) If as?' and Ke S then
MK iv)) if Kgf{v) is defined
\o otherwise
(U.Ka)a@ = sup{(Kia)ijf(y):ie./f",}>
(fi*q*() =

where K°ct = a and Kl+la —K(Kla) for every a, psF.
(x) The equalities from (vi) for every a, {le F'.

If we consider the language FE" then we omit the point (viii) and we
change F' into Fv and we add a new point:

(xi) If oce Fv and x eV then (xa)*(u) = sup{ a a n d (Va)\y) = inf
{agf(vj):jeU}, where Uj(x) =j and Vj{z) = v(z) for any veW and O

To illustrate the meaning of the generalized formula of the form Ka for
ae \Olet us consider the language of arithmetic system in the set of nonnegative
integers using s as successor function, 0 as the number zero and = as the
identity relation. For the sequel considerations we shall use alpha a = ft
instead of (a-»/?) a (/?->a). It is easy to see that for K of the form:

A[(x = y)[a/FALSE][[u/0]; [*H(u - y) v (u- x))[u/s(u)]];
i*[(u= x)[fl/rRU £][a/F ALSE]]I]

27

the relation < less than is definable by using the generalized formula Ka in the
following way: x <y = Ka. In other words we can say that in the language
with the separate symbol < the above mentioned formula may be an axiom
for the relation less than in the arithmetic system. We illustrate the generalized
formulas of the form (JXa and f)Kct:

[x/0JU O/x + 1](x=y), [x/1]ft[xfx + 1] -(jc= 0O).

We shall say that a generalized formula aeF' is valid in the model
J(~ <U, @&> jJ{\= < iff a™u) = \Jo for every ve W O

We shall say that v is the valuation in a model if it is the valuation in the
set U and the algebra 330 of this model. O

A mapping C defined on the set of all subsets of formulas is a consequence
operation if for every sets X, Y of formulas the following conditions hold:

1 X a C(X),
2. C(C(X)) ¢ C(X),
3. C(X) ¢ C{Y) whenever X e Y n

We define the semantic consequence operation in the language SE'.

A generalized formula a e f is said to be a semantic consequence operation of
the set X ¢ F' (in symbols aeC~Cl)) iff for every model < U, &0, Ot~> the
following condition holds: if every generalized formula fie X is valid in the
model <U, &,,,&>, then a is valid in the same model. O

A generalized formula aeF is called a tautology iff aeC~(0). O

Obviously for the other languages the definitions are analogous. G. Mir-
kowska [58] proved that the semantic consequence operation is not finitistic
so there exist a generalized formula aeF and X &=F' such ae (X) but
a” (XJfor any finite subset X0 cz X . Therefore any axiomatization of (0)
needs at least one rule with an infinite set of premises.

By a rule we mean the set of sequents of the form <X, a>, where X is a set
of formulas called premises and a is a formula called conclusion. O

For any subset D of the set of programs we say that the rule r is
D-admissible rule of the consequence operation C iff for every sequent
<X,a> er and for every K<=D:

if KX ¢z C(0) then KaeC{%

28

If D is the set of all primitive programs (i.e. assignment instructions) then
instead of saying that the rule r is D-admissible we say that the rule r is an
admissible rule. O

Arule r is said to be a derivable rule of the consequence operation C iff for
every sequent <X,a> er we get aeC{X). O

We shall say that a generalized formula a is an element of the set $ iff there
exists a classical formula /? (i.e. the formula without programs) such that
a and ft are egivalent.

A rule risfinitary iff for every sequent <X,cc> er the set X is finite and

V/e say that a conseauence operation C is complete iff C(a) —F for every
a$cm.n

23 A deductive system for AL

For a fi, Ae F, 3e FQse S0and K, M e S we define the notion of an axiom of
algorithmic logic which will be understood as any generalized formula of one
of the following forms:

Al (an/?)-»(("A)-(a”A))

A2 a-»(@av/h)

A3 ?-»(@ Vv P)

A4 (- - (@B 9- (@av >X)
A5 (a a ft) -» ft

A6 (@ aft)-*a

AT (a—=/) —=((a—»A—>(a—>(5a 2))
A8 (a—={ft =A)—=(%a H—uA

A9 ((a a ft) »A) —=(a pfft ~*'O)

Al0 (a a->a) ft

All (@a—»(a a-ia) -«a

Al2 av ->a

Al13 7RI/E£ a"FALSE

Ald 6= i5’

A15 X (avffl = (JCa v 109

Al6 K{aa $ = (Ka a 200)

Al7 X -a - ->Ka

Al18 K TRUE -> (—>Ka-* K -a)

Al19 K(a->P)" (Kec ft)

29

A20 KTRUE ((Ka- Kp)-=>K(a-» p)
A21 M U Ka =[Ma v M 0 K{Ka))

A22 M pl Ka = (Ma a M f] K(K<x))

A23 [K M]a = K(Ma)

A24 MM KMjoi = (ba Xa) v (5 a Ma))
A25 *[<5iTla= (J _N<BK [1](-nba @
A26 []la = a

Let /jc denotes the set of all axioms and let R be the set of rules of in-
ference:

a, a—> a,KTRUE

r’ P ri:" Ka
{X*"MKV-.iejV} {Mfra-* X:iexT}
Tz' X-"Mf*Ka Tz* MV Kct X

Since two rules have infinite sets of premises, so we define the consequence
operation by using ordinal numbers.

Definition 1. Let y, p be any ordinal numbers less than the smallest
uncountable ordinal number Q. The consequence operation of algorithmic logic is
defined for X ¢ F as follows:

(1) CR(X) = Ax u X,

(2) Ck+1(*) = Cli(X) w [<xeF:<Z,a> er for some reR and Z < Cj"\(X)},
(3) CNY) —M {Cr(X) :p. <y}, when is a limit ordinal.

(4) CRX) = U [CRX) :y<Q). O

The following theorem was proved by G. Mirkowska [58].
Theorem 1. (X) = CR{X) for every X ¢ F. O

We shall write X [- a instead of ae CR(X) and |- a when X is empty. Any
two generalized formulas a and p are equivalent iff |~ as p.

Let and 89 = <B,git...,gn> be two similar algebras,
ie. algebras of the same type. A mapping h:A ->B such that
h[ffiav ..., &) = HaKy>f°r all i < nand aA..,a*e A is called a homo-
morphism.

A homomorphism h is an endomorphism if 8 —sd. Any propositional
language can be treated as a special algebra # = <C,FIJ..iFn>, where
Fj (1 < i <n) denotes the operator of forming ~-propositions. Such alge-
braic treatment of propositional connectives appeared to be very useful.

The rule r1(as it can be easily seen, reminds of the substitution rule,
but really it is not the substitution rule, since a substitution rule ought
to be defined as a function i.e. an endomorphism defined on set of atomic
formulas with values in the set of all formulas. Unfortunately we can see that
this rule transforms any formula p(zl,...,xn) only into the formula of the form
p (r\,t,)but not for example into the conjunction of two formulas. Our aim,
however, is to get, maybe under certain restrictions, a standard definition of the
rule of substitution.

Chapter 3

The substitution rule

3.1 The notion of (e, ~-function and g program

In this chapter we shall introduce the notion of program-substitution in AL
and we shall prove that it is in accordance with the basic intuitional notion of
the standard substitution.

In this paragraph we shall try to separate from all endomorphisms such of
them that preserve the main properties of programs.

Let e:At->F0 be a mapping such that e(7RUE) = TRUE and
e(FAINSE) ~ FALSE. Let he:FO0-*Fo be an extension of e fulfilling the
following conditions:

1 he(a) = e(a) for aeAt,

2 A-0)= -Am

3. he(fie A = heffi)s 2(A for AeFO0and *e{a,v,-*}

It is easily seen that he : Fa-* FOis an endomorphism and that it is the only
extension of e : At “mFa fulfilling (1), (2), and (3).

From all endomorphisms he defined on FOwe shall try separating the ones,
whose special extensions p to the set F, which will be called the program-
substitution, satisfy the following meta-condition:

() pCRM <C M

The condition (b) guarantees that the set of all algorithmic theses of AL will
be closed under these functions. Now we present two examples showing the
difficulties which we will have to overcome.

32

Example 1. Observe that it is impossible to define p : F —»F for the generalized formula of the
form Ka by the equality p(Ka) = JT(/j(@)), simultaneously maintaining the properties of homomor-
phism. To visualize this, assume that e{p(x)) = p(x) a p{y) and let x, y, z denote different individual
variables. As an immediate consequence we get

p([y/z] PM) = [y/z](p(x) A p(y)) and pifylz] P(xj) = p(x) a p(y)

since p[p(x)) - h({p{¥) = e{p{x)). According to the axiom Al4 and (b) we get
[-(p(x) a p{y)) = (p(x) a p{z)) which is impossible. m

Example 2. It can be easily seen that an endomorphism hcon FOcannot be extended to the function
p : F “mF if p satisfies the condition p(Ka) — K'p(oc) where Ka. is the generalized formula and K' is
a program.
For this purpose let

e(a) —a a FALSE for ae \0

Then
p([a/(a ->a)]a) = [a/« “ma]'(a a FALSE)

and

p([a/(a > a)] a) = p(a) -> pfa).
Hence, by (b) and Al4 it follows that |- FALSE = TRUE, which is false. M

At first we shall introduce a few definitions to illustrate the aim we set at the
beginning of the point (b).

Definition 2. For the further considerations we shall use the symbol g,
sometimes witk indices, for any one-one mapping of the set Fu FOinto FuF 0
such that g(V) c: V and g(VO ¢ V0. We denote by G the set of all of these
mappings. Any such mappings can be extended to the function g' defined on
TOu FO by putting:

1 g°@@ = g(z) for every zeFuF,,

2. g'(TRUE) = TRUE and g'(FALSE) = FALSE,

3. -*)) = for any (pe\, neN and for any
™ ~

4.9(@ = sfrany se
5. for any p(xv t,)gE, neN,

6. g{a*P) = gfa)+ g(§) for e {a,v,->} and g'(->u) = >g,(@). O

If s is of the form (a) and/is a mapping from TOinto TOand from FOinto FO
such that f[V) c: V,J[VO ¢ W and if/ is one-one on Vkj\0 then by f(s) we
denote the assignment instruction obtained from s by exchanging all expres-

3 Algorithmic... 33

sions of the form xit a}, o for /(x®),/(<(, i(aj), <=9), where 1< i< n and
1<j<m respectively. Obviously if s = [], then f(s) = [].

We can notice that the function g' allows us to change the variables inside
any classical term and any classical formula. Now we consider an example to
explain the connection between the mapping g defined on Tau Fa and
a certain endomorphism.

Example 3. Let geG be a mapping such that g{Vv V,) <[Vv \)\S(a) for some aeF,, and let
e:Al -*F, be defined in the following wayr

e@ = g[a) a a,
e{TRUE) = TRUE and e[FALSE) = FALSE,

ep Xy, .rj) = p{g{xd)....g'(xn) a a

for every aeVB peP,,, neN and x1...,x,,eTQ
Since g'(sx) = g'(s)g'(r) for every re 7, and every seSa and moreover = a, we get

e (sp{xrj) = efpWu
= p(0'(3«D,-,0/(s")) a a = p{g'{s)g'{xi},... a g'(sja
= aTsHo(0'(T,).....0'ftj) a a) = g'(s)e{p (xtj).

By Al4 we get

i-ff(s)eCp(-rL..,Tj) = g'(s)e(p{xL, ...xn).
Thus

l-e("(TA-,Tj) = g{s)efp(xi,...1xB). m
Examples 1 and 2 show that the definition of program-substitution on the
axiom AX4 ought to be very sophisticated. Example 3 shows a way how
to do it. Moreover Example 1 shows that if $(e(a))\$(a) » 0 then we have

difficulties with fulfilling the axiom Al4 and we overcome them here by using
the function g\ which enables us to separate variables and which fulfills the

equality
e(sp(Ti7.., t,)) = gl(s)e(p(ri,

For further considerations we assume that geG and ¢ is the extension
of g from Definition 2.

Definition 3. Let geG.

eefqg iff (1) e: At™ FO,
(2 9(TRUE) = TRUE and ejFALSE) = FALSE,

) e(sp(x1 7 Tjf) = g'{s)e(p(q , ... rn)
for any elementary formula p{xl,...yxf). O

34

It is easy to observe that for such a mapping that ee gg e:At -» FO there
exists an endomorphism he:Fa~* FQ

Lemma 1. For every geG and for every ee£g we get

() g(VOr.9(e(E)) = &
(ii) g(V\S(a)) n 9(he(«)) = Ofor every aeF 0 such that 9@ n W- 0. O

Proof, (i) Assume to the contrary that there exist ae Wand p(xv rj £ E such
that gf(fh£S(e(p(TL...,TH)). By virtue of Definition 3 we get

e([a/fc]p(Ti,..., T,,jj = 9'(W])e(p(xi>..x,)) for beVaand a # b
Hence
e(p(xl> W) = [?@@)/g(h)]c(p(tl5..5Tj.
Since g(a) £<%6) then

g(2)& ({g(@)/gb)]e(p(rl > x.).

Thus g(@) "9(e(p(zu t)) which is impossible.
(i) Let yeV\S(a). If ae{TRUE, FALSE} then 5(e(a)) = 0.
If a is of the form p(xv ~,T) for p(rp x”"eF then

lyfalpbi,-»0 = p(Ti,rj.

For from Definition 2 we get j(y) * s(2) and

9(y) 49 (fign)/g(@)2 e(p(xl y).

Hence and from Definition 3 (3) we get (AY)£9(e(p(xl t tn)).

Let us assume inductively that (ii) holds for every subformula of a. If a is
of the form or >f$ for some #£{a, v, -»} then by the inductive
hypothesis we get g(y) $9(he(fl)) u9 (he(Xf) in the first case or g(y) £9(he(fi)) in
the second case. Since he is an endomorphism, g(y)f9(he(@). m

It is easy to see that for every g from Definition 2 there exists a function
e:At-+FO0 such that ee”™r Obviously if e(TRUE) —'IRUE, e(FALSE) =
= FALSE and e(p(xly..yt,)) = p(g'(xA,g'(tj) then ee£gfor a given g from
Definition 2. However, it is not true that for every function e: At -> FOthere
exists a function g from Definition 2 such that ee&g

35

We would like to explain the underlying idea of the definition of
a program-substitution p :F -> F. Look at Example 2 and consider a generali-

zed formula a = [a/a -» a]a = [a/a —ma]a. From (b) and Al4 the generalized
formula p(a) should be a theorem of AL, but Example 2 shows that it depends

on the value of p([a/a a]a).
The above considerations allow us to define the program-substitution

p:F -»F by putting the restriction p(FO= he for some mapping geG and
some Now we have to decide how to define p(@) for ae F\F O
By using a mapping geG and eef£g we put

P{v) = ig(a)fe(a)] (Ig(f)/g(a) “m9(a)] g(a) = [ofa) g(@).
By (b) we should get \ p(cc). By Al4 we get

h 19(a)/g(a) -> ~(a)] O(a) = (cfa) -* O(@))).

Since the rule r of the scheme a for any oceF and seSnis a derivable

rule in the consequence operation of AL, we get
(" l9@)/e(@)] ([9(a)/g(a) >0 (a)] o{a) = (9(a) > o (@).
Thus p(a).

Look at p(a) once more. Wc introduce and explain some abbreviations
which will be defined later. Obviously 5(a) = {a}, so we put s* = [g(a)/e(a)]
and we changed K = [a/a ->a] for Kg= [g{a)fg{a) -> g(a)]. Later we shall see
that in general if an elementary formula occurs in a program K then K greally
depends on a function ee£g and any propositional variable ae Va will be

changed by g(a). Therefore p{a) = *(K gg(a) = {g(a)-+ g(@)).
Now let us consider the generalized formula

B = la/p'(x), y/z] p(x) = [a/p'(x\'y/z] p(x)
for different individual variables x, y, eV. Let geG and eegg We put
PiB) = ig(a)fe(a)] (e(p(x)) = La{a)/e(p'(x)), 9(¥)/a(@)] e(pC)\
By Lemma 1
_g{a)/e{p{¥). 9()'9(2)2 e(p(x)) = e(p(x))-
Hence and by ris Al4 we get \- p(B).

36

Look at p{l?) once more. Since S(&) nV 0= {a}, we put sp= [g(u)/e(d)] and
we change

K = la/p'{x\y/£] for K% = Ig{a)le{p'{x)),a{y)lg{zf]
and

p{x) for e(p(x)).
Thus
Pifl)= sf (e[p(x)) =

These examples show us that for any generalized formula cceF\Fa the
notion p{R) needs the following expressions: the assignment instruction sB and
the program K%for every KeF. But Kg may be defined by using the function
which transforms xeV, aeVQ p{xi 7 &) eE into g{x), ofa), e{p{xu ...xi)
respectively.

Definition 4. Let geG and ee 8qg Thefunction u:At-> FQis (e, g)-function iff
u{a) = g{a) for aeVO0 and u(@) —e(a) for ae At\ V0. O

If uis (g ¢¢i-function then there exists an endomorphism hu defined on FO.

Definition 5. For any program KeS and anyfunction geG and ee£gifu is
(e, g)-function then we define Kg as follows:

- If K= [], then Kg= [],
2. If K is of the form (a) ie. K is an assignment instruction then
Kt = 1g(x1)/g{T),-,g(xn/g,(t)1g(@D/hufdi)....,,g(aj/hu@ml,
3. If K is of the form [MW], wvi[®* MN] or *<5 M], then Kg equals
X[hub) MgNg] or M*] respectively. O

Definition 6. Let H be an endomorphism on F such that the restriction
H/F0= hifor some geG, eeSgand (e, gyfunction u. Moreover we assume that
for every aeF and KeS the function H satisfies the following conditions:

H(Ka) = KgH{0), H(U Ka) = JJ KgH(a), H (f| Ka) - f) K'gH(x). O

3.2 Program-substitution

In this paragraph we shall introduce the notion of program-substitution. This
definition needs the above defined endomorphism H and a special assignment
instruction s* for every aeF. Now we define the notion of s*

37

For every generalized formula aeF such that 5(a) n W= {al3.., am] and
for a couple of functionsf f such thatf:TOu FO-> TOu FOQf restricted to W
is a one-one mapping from \ainto \Q f :FO-* FO, we introduce the following
abbreviation:

If 5@n W= 0 then we put = []. Further we shall say that if is
designated by </,/'>.

Definition 7. LetgeG ,eefgandp:F F. We shall say that a mapping p is
defined by using g and e ifffor (e, g)-function u and an endomorphism H defined
on F such that H/FO= hu the following properties hold:

(1) H fulfils all conditions from Definition 6,

he@@ for xeF
o) = o X
s‘H(a) for xeF\F O

where if is designated by the couple <g, e>. U

Definition s. Let p:F —»F. We shall say that a mapping p is a program-
substitution (p g Sb) ifffor some geG and ee £ gp is defined by using g and e. O

Let us observe that the last condition (3) in Definition 3 is essential in
such a meaning that if we define the notion of program-substitution changing
only the definition of the set ggfor geG by missing in Definition 3 the point (3)
then we can show that for some gGG, and e from Sg without the point (3),
there exists a program-substitution for which the property (b) does not
hold. Let x, y, z, denote some different individual variables and geG
such that g(y) » x. Then for e:At-f-FO such that e(TRUE) = TRUE,
e(FALSE) —FALSE and e{p(x)) = p'(x, g(yj) we can show that for an axiom
a of the form

ly/zlp(x) = [y/z] p{x)
the following property holds:

e[(y/z]p(x)) =* fI([y/z])e(p(x))

and that the generalized formula p(a) is not a thesis. Hence (3) from Defi-
nition 3 and (b) are false.

38

Lemma 2.1fgeG, ee Sg seS0and u is (g g)-function then for any aeFa and
feF we get

(i) s‘/ia) = h"(sa),
(ii) / fiu@ = ho(@), for \Bn 9(a) = 9/?), where sp is designated by the couple
<g,e>. 0

Proof, (i) Let seSO0 be of the form (a). If aeVOand ae { a a n} then a —a;
for some ie{l,..,m}. Thus sghafa) =
S (O M al] ?(ai) = ~(«j)= husa).

Since g is a one-one function, we get ¢fa) €{ff(xj,.., g(@n,..,g(@l} for
a"{als am). Hence s|/iua) = g(@) = hu(sa). Obviously if a is of the form

TRUE or FALSE then (i) holds.
Assume that a is of the form p(tv .., t,) and p(Ts,...JNeE. First we shall

prove that sgg = g'{s)g for every ge o (e(p(Tt, t,)).

T% fVip case *ttiIn(-r \ n(y1ln(n t n(n ‘Il \u= o*l — n — n'(i\n Tf
g —g(xj) for some ;e n} then = p'M) = pfd*> Let us observe that
9 = p(.) for some zefi,...,?«} does not hold for in the opposite case using
the assumption we get ge&(e(p(xI7..,t)))n Va Hence and by Lemma 1
g£g{V0 which is impossible.

Since %@ = g'{s)g for every ge He{p(TY, ...,.zn)), we get

sge(p{xv) = g'(s)efp(zv W)

Note that ee<f, so by Definition 3 we conclude that
4 e(P(Ti...td) = e(sp(xl f rj) = u(sp(ti s)

Consequently sghu@) = husa).

If the theorem holds for fi,XeF0then from the property of endomorphism
it also holds for ae{? a X pv X P-mX ->/?}

(ii) Obviously for a.£ {TRUE, FALSE} the theorem holds. If aeVO0 then

by assumption ae S(/?). As a result //i“(@) = spg{a) -me(a). Now suppose
that a is of the form p(tizs t,) for some p{xit..,tje£. By Definition 4

we get
AiUp(Ti,.xd) = sIB((T1,...,xT).

39

Let
N o= \9{bl)le{bi),...,g{b"e{b,)].

By Lemma 1 (i) we conclude that {g(bD,g{b,)} n "e{p{zv .»tQ)) = p.

Therefore sfie(p(TID..+Tj) = e{p{xu ..,,z*). Hence sph(a) = he{@. Since
hu:Fa->FO0 is an endomorphism, by inductive hypothesis for X 5e Fa we
get the equality sVi“(a) = he(a) for ae {Aa §Xv §X 5 -A} such that

Now we present an example to explain the effect of program-substitutions.

Example 4. Let ae \0 x, ye Vand x ~ y. It can be easily seen that for the program-substitution
peSb defined by using geG and ee&}and for the generalized formula a = a a [x/y]p(x) we get

p(a) = sf(or) = [g(a)/e(@)[{H(a) a tf ([x/y]p(x)))
= fo{a)/e{a)-1{hufa) a [x/y] °tf(p(x)))

= [2(«)/<«)] 0(«) a [9(x)/g(y)] e(p(x)).
By Al4 we get

HsW/s(y)] eln(x)) = ig{x)/gfy)7] e(p(x)).
Since hu{p(x)) = e(p(x)), Lemma 2 (i) allows us to conclude that
[0(x)/s(y)] e(pfx)) = e{p(y)).

Hence

b CfiM/ilO)] eO(x)) = e(p(x)).
Therefore we conclude that

b 5(a) a [ff(x)/p(y)] e{p{x)) = [g{a) a e(p(y)))-

Since for any 8, XeF and KeS the rule r' of the scheme K))((BKS is a derivable rule
of the consequence operation of AL, we get
b [p(fiy/e(a)] Ola) a tg{x)/g{y)] e{p{x)) = [fi()/e(®] (g{a) a e(P))
By Al4 we get
b\ gla)lefa)1 (ofa) a e(p(y)) = (€(C) a [o(@)/e@)] epi)-
Since h*(a) = g(a) and hufp(x)) = e(p(x)), we get [p(a)/e(a)] e(p(y)) = e(p(y)) by Lemma 2 (ii).

By the above considerations we get b P(a) —(e(a) a e(p(y))). Moreover by Ald b « = (a a p(y)).
Therefore we can say intuitively that p transforms a, p[y) into e(@); e(p(y)) respectively. m

40

We can find in Chapter 4 in Theorem 9 other examples of program-
substitution.

We shall prove that any program-substitution pe Sb is in accordance
with our intuition. Now we consider the condition (b).

Theorem 2. Algorithmic logic is closed under program-substitutions. O

Proof. Let geG, ee£gand let the mapping peSbh be defined by using g and e.
Moreover let u be (g, A-function and let H:F—F be an endomorphism
such that the restriction H/F = hu and

he(@ for ueF g
sFH{a) for aeF\F 0.

It suffices to prove by induction on the iength of the formula a that the
following inclusion holds:

p(CM0)) = CR(fi) for any ordinal number y < 0.

At first we assume that y—0. If aeAxn FO then hea)e Ax. Since
pjF0—he [- p(u). In the case a e Ax\ Fawe get p(a) = saH(a). Since | saTRUE,
it suffices to prove that f-H(a) using rv It can be easily seen that for a
being one of the axioms of the form A1-Al3 or A15-A26 we get \ H(a)
because if is a homomorphism. Let a= sb = s5 for some classical open
formula 5eFQ By Lemma 2 (i) and by applying Al4 we get

1s*hy<5)= f(s5), so h H(a).

We assume inductively that p(CE(P)) cz CR(fl) for every ordinal number
fi such that p<y.

In the first case suppose that y —p0 - 1 for some ordinal number /ia and
let a e p(C&(0)). Hence and by Definition 1 we get aep(Cfr(R)) and then by
the inductive hypothesis (-p(tx), or there exist X cz Cfc(B), ReF and reR such

that <X, B> er and a = p(B). Since H(Ax) cz CR(?) and H(X)> e / for
every r'eR and for every <Y, X> er, we get H(CR(fi)) cz CR($). Thus we get
H(X) zCM

Moreover <H{X), H{R)> er, so { H(B). Applying the rule rx we conclude
that \-sBH{R) for sB designated by <g,e>. Therefore if R$FO, then (- p(R)

and simultaneously J-a, or if 8 e FO, then a = hc(8) and by A14 \- s*H[R), which
by Lemma 2 (ii) gives }tx

41

In the second case for y being a limit ordinal number and by the inductive

hypothesis we get U{p(Q(P))" <y} <CM-
Hence p(CW))c CM =

3.3 Basic properties of program-substitution

The aim of this chapter is to prove that any program-substitution maintains
the properties of an endomorphism without being an endomorphism.

Definition 9. Let us consider the set X ofpairs <al a2>, whereav az e F and
where al is equal to a- or <ai,a2> is one of the following forms:

(1) <sslk, ssia> for aeVQ

(2) <sslp{xLf.fzn), ssrfiTy,..., X,,)> for p(ry,...,T,)e£f,
(3) <sa,s-'a>,

(4) <sa,s(@vf>,

(5) <sf,s(av f)>,

(6) <sa, s(a a /?)>,

rn <sR sin a /?w

() <sa s(a-ml))>,

9) <sp,s(a->$>,

(10) <s(fC(Ma)), s([iCM]a)>,

(11) <s(a a Kji), s"L[a.KM']fi)>,

(12) <s(->a a Mfi), sjvi[alCM]")>]

(13) <s™_[ocli[]]1°GS a-), s(*[alC) > for every ieJi,
(14) <s{Kioc),s\JKa> for every izJf,

(15) <s(Kf%), sP|Ka> for every ie Jf,

where K, M eS are programs, a, fief and where s is either a sequence of
assignment instructions st ..s# Ice N or an empty sequence. O

We introduce (cf. G. Mirkowska [59]) the binary relation < in F for any a,
oeF :a < [iff there exist ai y aneF such that at —a, an= /? and for every
ie (1, ..,n —1} the pair <af,ai+i> is an element of X.

Let us notice that the binary relation < is an ordering on F such that any
non-empty subset Z c¢: F contains a minimal element.

Now we shall prove that the logical value of the formula a does not depend
on the propositional variables which do not belong to the set of propositional
variables of the formula a

Lemma 3. For any generalized formulas a, fieF and any geG, eefg,
(e, g)-function u and for an endomorphism H :F -» F fulfilling the conditions

42

from Definition 6, the following property holds: if 3@)n Vaa 3(f), then
h spH{oc) ~ saH(a) where sp and sa are designated by <g,e>. O

Proof. The proof is by induction on the relation < from Definition 9.

Case 1 If a is a minimal element of thejelation < then aeFa Hence by
Lemma 2 (ii) we get s*huf@) = he(a) and d*hu@) = he(@). Obviously the restric-
tion H/F = hu Hence and by Al4 the induction basis is proved.

Case 2. Let aeF and suppose that the thesis holds for every generalized
formula a'eF such that a' <a. Moreover assume that 3(a) n V0 <= 3(f).

Case 21. If aeFO0 then Lemma 2 (ii) ends the proof of this case.

Case 22 If a is of the form si..snb for some <&e FO then we use the
abbreviation 2= ..stn_i smh. Since tf(Cn(P)) e 07(0), we get h s*#(a) =
A(2) and JsaH(x) = s“H(2) according to the scheme Al4 and by rl and r'
from Example 4. Since 2 < a, 3(2) n Vaa 3(a) n 3(f), we get by the inductive
assumption f s*H(2) = sxH(X) and j- spH(X) = sxH(X). As an immediate con-
sequence we get \-spH(a) = "¢/(a).

Case 2.3. Let a be of the form sl ..sm KM~\A, at = §j .. sm(>5 a M2)
and a2 —§ ...sm® a KX). We can observe that ax< a, az < a,3(a¥n \,,cr
3(a) n 3(f). Therefore using the inductive argument we get \-saH(al) =
salH(ax) and (- = s<gH(ai). In an analogous way we infer that
|- saH(a2) = s“2H(a2) and spH(a2 = sa*H(a2. Hence, by A24 and r1 we get

spH(a) s fH{az v at) which by A24 proves the thesis for this case.

Case 24. If a is of the form sx...sm[it M]2 then we use the abbreviation
aA= Si..smKM)L Similarly by the inductive hypothesis, A23 and rx we
obtain the thesis for this case.

Case 25. Let us assume that a is of the form sx..sm KX. We denote

2f= Si..smK2 for any ieJf.

Obviously 3(2)nVO0c 3(f) n 3(a). Observe that Xx< a for every ie Ji.
Consequently, by assumption f /if (2-) = sXH(Xi) and (- s“H(2¢) = sXH (Xf for
every ieJf. Since (-f]JK6 » KI5 for any ;ei7 ieJf and every ICeS,
we get }s“ii(a) -» saH(2l) and \- spH(a) -> spH (Xf for every ie Ji using rl and
r' from Example 4. Hence and by A23 for every ie / it follows:

b B [si

and
hs5~(a)M[s«[s1...sJ*]W H(2).

Using rz2 and A23 we conclude that j-spH(a) = sAH(a).

43

Case 2.6. If a is of the form sA..sm(J KA then by analogous considerations
the thesis holds for this case, since f- K'6 “m1J K5 for any 5eF, ieJf and
every KeS.

Case 2.7. Let a be of the form sl ...sm* [GK]A. We use the abbreviations
&= sx..sm(v_[BK[]]'(-m£ a 2)forevery ie J/'. Since 5(5,)n W0<-3(a) n 3(1)
and & < a for every iejV, we get by the inductive hypothesis j- fH{5" ~
s"H{b™ and |- H(3)) = for every iejV.

Hence and by A23 we get

h - [m> . Jja (N XTHgH (-i AX)
and moreover
hs“H(S) [s'[s,.sJ3 M SK[J];m OAX.

Clearly [|-sl..smM®' -*sl..sm\JMR" for any B’eF, MeS and ie/.
Hence, by A25 and A23 it follows that

J sBH(6-) -> saH(a) and f- s“ii(<5) -» sBH<¥) for every ie Jf_

Transforming for every ie Jf the antecedents in the above two theses
according to the schema A23 and using the rule rs and A25 we get

sBH{a) - saH{a) and \-fH(a) -* sRH(a),

which ends the proof for this case.
Case 2.8. If a is of the form

Si-sm2a<d .sm2v<H §.sm2-»<H ..sm(-n2)
then by the inductive hypothesis, the thesis of the above lemma holds. m
Applying Lemma 3 we get the basic properties of program-substitution.

Theorem 3. For every program-substitution peSb and for. all generalized
formulas a, R:

(i) Fp@-*R) = (p(a)-* PR)
(i) |-p@@af)= @) app))
(ii)) f-p(a v) = (p() v p(h)),
(iv) f-p(-.a) = "p(a)- O

44

Proof. We shall prove only the point (i) since the proofs of the other points are
analogous. Let us assume that p e Sb is defined by using somege Gand ee £g

Moreover let
— /\ -b'
() =he aeF°
A for <xeF\FO

where sais designated by a couple <g,e> and H fulfills the conditions from
Definition 6. If a, R tF 0 then (i) holds, since e is an endomorphism on FO.

Now suppose that a”FO0 and B$ FO. Thus p(a ™ B) = sa"(H(a) H{R)).
Since (- sa-'pTRUE, we get

pa-*g) = a)->" RH(R)) by Al19 and A20.

Hence and by Lemma 3 we conclude that (- p(a -* B) =(saH(a) sRBH(R)),
which ends the proof for this case.

Now we consider the case a£Fo and BeFO Then p(a) = saH<x) and
p(a-*R) =safH(@ R)= -> By Al19 and A20 we get
FsAR{H{a)"H(R)) = (~ BH(ci)~>"RH{R)). By Lemma 3 |-s~tf(a)s
saH(ct) and sa*BH(R) ~ sBH(R). Hence we conclude that \-p(a->R) =
(s*H(X) sRH(R)). Sine ;$FAp(a) = saH(ct). Moreover by Lemma 2 (ii) we get
sBH(R) = he®) = p(R). By Al4 j-sBH(B) = sBH(B) so saR(H(oi) H{R)) =
(p(a) -> p(R)). The case R£Fo and cce FO is analogous. m

Corollary 1. As an immediate consequence of Theorem 3 and Theorem 2 we
conclude that for any generalized formulas a, Be F and for every program-
substitution p:F F, if a=R then |-p(@) = p®). O

The next two subsections introduce the notion of program-substitution in
algorithmic logic with generalized terms, quantifiers and with non-determinis-
tic programs. We can omit them while reading the paper for the first time.
Therefore these two subsections will be printed in italics.

3.4 Program-substitution in AJO with generalized terms

In this chapter we shall to repeat the main results which were proved in earlier
paragraphsfor the case ofgeneralizedformulas. To illustrate the intuitive meaning
of the generalized terms of the form Kx for K gS and xeV let us consider the
language of integers with s as succesor and 0, = as well-known symbols.
We consider the generalized formula of the form xL+ x2 + xs = Ky where K
is of the form

[0/0, /1] *[i < 3Hy/y + xj [i/s(O]I]]-

45

Obviously in the intuitive meaning the term Ky may be understood as
a definition ofthe sum of three elements, where xt means a term oftheform (p{x, i)
for some pe Oz, xyieVys€ Cl0,1,3 € This example shows that the notion of
generalized terms is natural. In the introduced language we shall give two
examples of generalized terms.

Example s.

L [x/x+ (y-2)](z - (%))
2. FX <y [XIx+ 1]l x+y)+y [x=y[ux- 1] [z/2]] (x+ u) - 2. O

By t(xi/t2) for tA xz, xe T' we denote the expression obtained from x
by simultaneously replacing all occurrences of the generalized term xx in x
by x2.

For further considerations we need the notion of the length of programs,
generalized terms and generalized formulas.

Definition 10. The length len of the expression will be defined as follows:

(i) len{th) = 1for any ge Vu Vau SQu 0Ou {TRUE, FALSE}.

(ii) If 9 is an n-argument function symbol or p is an n-argument predicate
symbol and tx xn are generalized terms then len((p(xv .., xn) =
len(p(xt) = len(xj + .. + len{x,) + 1.

(iii) If the generalized formula 1j is of the form: a a /2, av or a-»/? then
len(>]) = len{a) + lenlfi) + 1, if j = ->a then len{R\) = len(a) - 1, if A = \fxa
then len(]) = len(a) + 1.

(iv) If the expression is of the form Krj where 1j is a generalized term or
a generalized formula then ien(Kr}) —len{K) + len{rj).

(v) Ifri{JKa or 2= 0 Ka then lenfti) = len(K) + len{a) + 1

(vi) If K, M are programs and a is a classical open formula then:
len{_ KM~) = len(K) + len(M) + 1,
len(xL[a K M]) = len(a) + len(K) + len(M) + 1,

M *[a K] = len(@) + len{K) + 1. O
Moreover we define the set of all subterms of the term x for any xe T.

Definition 11. The function q:T =>P{T) is defined as follows:

(i) c®= {e}for tg K

(ii) = q(xD\j...Kjg{xDu{(p{xL...,xrj} for any neN and
Ti,, T ,er,

(i) g(Kx) = qx)u {Kx} for KeS and xeT. O

46

Now we introduce the operation x defined on T'kj F which enables us to
reduce any generalized term of the form (pix"..7x)e T'\TO where (pe”r>
neT' and any generalized formula of the form p(xi7...,xn), where pePn,
neN, xI7..7tne T to theform Kx.. Km(p(tu X,)or KI .. Kmp(x\, Xn) respec-
tively where K17...,KmeS and x \, t,g Ta Therefore the operation x changes
generalized terms (generalized formulas) of the form (pfxl 7 (p(t¥ €J)
by transporting all programs inside xi7...xn to the left side of the expres-
sion (p or p.

Definition 12. For every generalized term and every generalized formula the
operation x is defined as follows:

(1) for geTouF O

(2) x(Kx) = Kx(r) for Kb S and xe T.

(3) If xeF\TO is of the form (p(xl,....xf] where <p&£* keN, xi,...,xke T\
5(t) = {xls....xn al,...,ant and i is the smallest of the numbers j < k such
that XjfT0and Kx' is an element of the set {Mx"€ T :Mx" e c(t;) and there
is no element g’\(t) such that len(Mx") < len(M1t) and Mx" * Mfi]
and moreover if Kx' is the earliest element of the set T, ordered linearly by
a certain ordering relation, then we put

z(t) = Is~IsKIxiwlti.....*I-I> xfKx'/sx'l Xi+1>...,xK),

where s = [xJyLt.,Xjy,,, ajbx,a jb j andylt..,yrvbl t bmdenote the
first, different individual and propositional variables not belonging to
{xv ...xn al7..,an} in the linearly ordered set V(j iy The assignment
instruction s~x is inverse to s.

(4) 1f aeF'\FO0is of the form p{xi 7 xf then

Z(«) = [s_ X(pfri> eo>Ti-1» Tj(KX#s?), ri+i,..,x*))

wherep ePkke N,xv xte T, 9% = {x*, x,,av anj ands, i, Kx" are
defined analogously as in (3).
(5) lfoteF' andKeS then z(Kcc) = Kx(a), X ({JKci) = U ~a) and. x(C\Kai) =
*) .-
(6) S‘(a*o)): XWAXW) and *(-«) = ~Xpc) for any aJeF and »e{A,
v,-»}. D

Using this function x we add a new axiom to the set of axioms Ax
A27 p(xL=..x,,) = xipiy

and we denote this new extended set of axioms by Ar

47

We add in Definition 6 the new condition of the form;
© H(p{T f tj) = ifCc(p(Ti, ... T.))

for every p{xu...xnE F'\F 0 where p<=P,, neN and xI f t,e T"
Moreover we have to change in Definition 7the notion of program-substi-

tution p:F' F' as follows:

the(a) for <xeF0
@ (s"Hia) for aeF c Fn

This new set of program-substitutions will be denoted by Sb
Now we present an example to explain the effects of program-substitution
from Sbx.

Example 6. Let z, u denote the first, different individual variables oi the set V\ {x, y}
where ae 1Mand x # y. It can be easily seen that for and for p e Sb,, such that p is defined

as in (0) we get

a p([x/y]x))
[9(g)/e(f](g(@) a HCe(p(Iy]:X))) -
[9(@)/e(@)] (9@ a w crrerx, uly] [x/z, ylu]l [xIy]] p ([x/z, y/u]x)))
[ff@)/e(c)](5(@) a [[ff(2)/if(x),s(u)/?0]] [9(2)/3(u)]le(p(2)).

pla a p([x/y]x))

By Lemma 1 (i) and by applying Al4, A23 we conclude that the generalized formula
ig{a)le{a)l (gfa) a [[a(2)IMx), g{u)lgW)] [9(2)/= (U)]le(p(2))
is equivalent to the formula of the form
e@) a ig{z)/g(x), g(u)/s(y)] {\o {2)lg{u)\ e{p{2)).
Since eeip then two classical open formulas
efa) a [9{2)/9{x), gfu)fo®)T {[e{2)/glw)] e{p{z))) and e(c) a e(p(y))

are equivalent.
So we can say intuitively that p transforms a; p[y) into e(a); e(p(y)) respectively. m

One can observe that if we change the symbols s* sp Sb in the proof of
Theorem 2 for sx{@& sz*\ Sbz respectively and if we extend the meaning of the
symbol H by (c) and the meaning of the notion of program-substitution p by (d)
then we get

Theorem 4. Algorithmic logic with generalized terms is closed under program-
substitution from Shx. O

48

In the sequel we extend Definition 9 assuming that

(16) ™), sp(zl,...,.TN> e X for s being a sequence of assignment
instructions sy..sk keN, peP,, neN, xL..xneT' and for
p(ti,xneF'\FO

Therefore we obtain the relation < defined on the set of generalized formulas
of the language with generalized terms. These new definitions enable us to
formulate some version of Lemma 3.

Lemma 4. For any generalized formulas a, Re F and any geG, eefg
(e, g)-function u and an endomorphism H :F'->F' such that H/FO= hy, if

Hx(a) n K ¢ HR)> then h sfH(a) = sZdH(a) = sx@H(a), where s} and sz@ are
designated by <g,e>. O

By applying Lemma 4 we can prove the theorem analogous to the Theorem 3:

For every program-substitution pe Sb and for all generalized formulas a,
ReF':

) p@-*B) = (p(a) -»p(R)7
(ii) hp{aaB)=(pU) a p{B)\
(i) (-p@ v R)- ip@) v p®),
oM hP(«)--?(«)eO

3.5 Program-substitution in the language j£?' and «5fQ

The above considerations can be generalizedfor the language of the extended
algorithmic logic of thefirst order with classical quantifiers if" (L Banachowski
il11) and for the language of algorithmic logic with non-deterministic programs

(G. Mirkowska [60], [61]).
To get the set of axioms of if" we add some newforms of axioms to the set of

axioms AX:

Q27 s(3xa) = 3ys([x/y]a) for y #9(sa),
Q28 [x/t]"m3xa where aeFv, xeV and xeTa
Q29 Wa s -,3x(->a).

We admit rQ, rz as the rules of inference and two rules of the scheme:

a-»h [x/y]la-» R
UiKa->Kf Ts' 3aa->7~’

where a, BeFv, KeS, x, yeV and y££(a a R).

4 Algorithmic... 49

Let CEbe the consequence operation of the extended algorithmic logic with
quantifiers based on the set of rules {rp r3, r4, r5} and defined by Definition 1
Any formula of the set CEP) will be called a thesis of algorithmic logic with
quantifiers and a e CE{% will be denoted by \=a. O

Now we shall introduce the language of algorithmic logic with non-
deterministic programs. There are many reasons, that motivate and justify studies
of algorithmic properties of non-deterministic programs, cf. D. Harel and V Pratt
[39], G. Mirkowska [60], [si], S. Radziszowski [77], We have auxiliary
symbols: u, O, O- Non-deterministic programs are constructed with the new
program connective u (non-deterministic choice) and are denoted by [iC1 u KzZ].
The programs without the symbol u will be called deterministic. In this language
the set of programs will be denoted by Sa. We have new generalized formulas
in the language of non-deterministic programs jS?a. To the formation rules
describing the set Fy we add newformation rules and we change the symbol of the
set of generalized formulas and denote it by Fa:

(1) If aeFa and KeSn is a deterministic program then Kae FO,
(2) i/aejFo and K is a non-deterministic program then DXa, 0 » a>O0 U Ka,

O fiifcz, O U Ka>0 ftK aeF -.

By a configuration in the realization ¥ we shall mean any ordered pair
<v, Kt; where veW is a valuation and K1,...,.KneSa. O

Let be the least binary relation in the set of all configurations such that
the following conditions hold:

(1) Ifs is of theform (a) then < v,s;rest > -*#< 0, rest> where V' is a valuation
such that v{X;) = xig for 1<i<n and Vv'(z) = v(z) for ze(V\j PY\
{xI 3 xn}

@ <u,[iCuM]; rest >-*m*<v,K; rest>,

(3) <vffK uM]; rest >->a<v,M; rest>,

(4) <v,sL[otKM)] rest >->a<v,K; rest> iff aa(v) = \Jqg

6) <v,s1[dKM”™ rest >-+a<v,M; rest> iffaa(v) = f\g

(6) <v,[KMT; rest >-+gt<v,K,M\ rest>,

(?) <u,*[aiC]; rest rest> iff aa(v) = /\qg

() <y,*[aK]; rest >-*a<v,K; *[aK]; rest> iff aa(v) —\Jo. O

Letic / andfor any n, m e/, the following condition holds: if n <m

and me I, then nel.

The sequence (c)iel of configurations is called a computation of the program
Ke Sn in the realization & and at the valuation v ifffor any i, je | : if
;= i+ 1 thencf-+ag and 0= <v,K>. O

50

I f the sequence (c)iel isfinite, i.e. ifit is a sequence clt ...,cnand cn= <v\ p>,
then the valuation V' is called the result of the computation of the program K in
the realization at the valuation ue W O

The set of all results of the computation of the program Ke SD in the
realization 3% at the valuation veW will be denoted by K*v). So if Ke Sa is
a deterministic program, then K”v) is at most a one-element set.

Let K'e Sa be a deterministic program and K e SD. We put

a*(») iff VeK'stiv)
A" in the opposite case

(@™a)™(i;) = Vo tff oil computations of K in the realization & and at the
valuation veW are finite and for all veW, if v'E KAv) then dM\(v) —\/
(OKa)gf(v) —\foiff K has afinite computation in the realization & and at the
valuation ve W and there exist v’e Km{y) such that 2 (/) = \/ ,

(O U Ka)dp) = sup {((@if)ia)st@>

(o U Ka)x(v) = sup {((OK)'a)*(iO:i £

(U KcLtdy) = sup {(X'a)e(™):ie

(Pi K'«),,(3) = inf{(iC"*)»:ie Jf},

(O Pi*«)«(») = inf{ « O J :ieJIT),

(o n **)(m>) = inf e JT),

where (O&)*« {and analogously {0K)la) denotes the formula:

DKinKUUKa)...)), (OK(OKUOKa)..))). O

Hence for example we get
[T = fy'eW - g0 Vo <isal?] =
[<5iCla(y) = {v'eW: 3% aYie K#{v) and vO=v and
- Aoand vn= %}

[IMT,(1)= {v'eW :30{v, eK g{y) and i/

[KuM]>)=K>)uM ».

A 51

Now we present the axioms and rules of the algorithmic logic with
non-deterministic programs from (G. Mirkowska [61]): AX-Al4, AZ26,
Q27Q29 and A15-A24 for deterministic programs and moreover for

®e {O0<>}:

N: OK{a a $) = (Difa a [JKP)

N2 0~rv”r)=(0"rvON)

N3 ®[ifM> = OK(®Ma)

N4 = (b a ®Ka) v (5 a ®Moc))
N5 *<5Kfas ((-<baa v Gat'(*[5if]a))
Nse ®*[<5K]a = ((-<5 a a) v (®if(®*[<5if]a)))
N7 OiKuAQa = «>Ka v OMa)

Ns O[ifu M]a = (Difa a DMa)

N9 @(Qlifa=(av ®Jif (®ifa))

N10 ¢¢f)Kus (av ®

Nil ©if'a = 2fa.

\He adopt the following rules:
rQ r5 and r2, r3, ra for deterministic programs and moreover

a-*PpP {(s"SKfiy*"06 aK)->p:iejv}
™ ®Ka-*®Kf f7' (s*[51f']a)-»j3
{c®ji[<5K[]]'M aa)-+0:iejV} {(s®ifl) f:ierV)
78 (s®*[51f]a)->0 r9' (s®lJifa)-»£

{?->s®ifiaiEM™}
TI°: p-+s®f)Koc =
where ® e {0, <=

These ruies and axioms define the consequence operation of the algo-
rithmic logic with non-deterministic programs denoted by CD (G. Mirkow-

ska [61)).
The set of program-substitutions ShY is defined in the extended algorithmic
logic with quantifiers analogously as in AL though defining the function H (see

Definition 6) we put
H(3X%) = 3eWi*(a) and H(V,a) = VAWT(a)
where xeV and ae FY.

52

Moreover in the algorithmic logic with non-deterministic programs the set
Sbn is defined analogously as in but we put additionally

H(DKa) = DKgH{a)
for any De{0> OU> Of|, @> OU» dfl} and aeFn.

Lemma 5.

(i) g(V\S(ct)) n S(huf@) = 0 for every ae FQ

(i) g(V\S(K)) n &Kg) = 0 for every K e Su,

(iii) For euery generalized formula « and for every individual variable y&V,
if y $&(«a), then g(y) where geG and esgg O.

Theorem 5. The extended algorithmic logic with quantifiers and the algorithmic
logic with non-deterministic programs are closed under program-substitutions i.e.
P(CH®) ¢ CHf) and p(CD(0)) ¢ Cn(0)for every program-substitution peSbv or
peSbD respectively. O

Let us consider the set X' of pairs <at,a2> in algorithmic logic with
quantifiers such that is equal to d2 or <asi,a2> is one of the form from
Definition 9 or additionally of the form
(16) <si...s,[x/T]a,s1...5,3Ta> for ais a2 aeFv, sv..,sneS0 neN, xeV
and xe TO.

We define the binary relation <' on Fv in the extended algorithmic logic with
quantifiers for any a, fie Fv:

a <'ft iff there exist ai)...,ane Fv such that al —a, a, —/? atul for every
z€ n —1} the pair <<*,@i+I> is an element of X'

Let us notice that the relation <" is an ordering in Fv such that any nonempty
subset Z cz Fv contains a minimal element. The above binary relation can be
defined on Fa. For further considerations we shall need.

Lemma s . For any generalizedformulas a, fie FMFD); if 9(a) \ VO ¢ <9(J) then
s"H(a) **saH(a) is a thesis of C£($) (Co(0). O

Proof For simplicity we shall prove this lemma only for the language of the
extended algorithmic logic with quantifiers. The proof is by induction on the
relation <' defined on Fv. Since the proofis analogous to the proofofLemma 3,
we consider only the case ot—3xXfor some xeV and for some generalized
formula X

Since [x/¢] X<'3yi and 92)nFo = 9([x/g2)n Fo —9(@) n F for every
xeTa we get

53

(1) (/7 HQ xjx] X <=s“H ([x/t] X) by the equality = saand by the inductive
hypothesis for every xeTOQ. o

The inclusion H(CH(fi)) ¢ CHfi) holds and the rule of the scheme — is

s

a derivable rule of the consequence operation CE so by the axiom [x/t] A—=3>A
we conclude that
(2) ff #([x/t]JA) -»saH(0.) for every zeTO.

According to (1) and (2) we obtain
(3) hsflg(x)/g,(T)JHZ) -* fH(a) for every xe TQ

We shall use the abbreviation 2 = g(V)\S{sfidl TRUE). 2 is an infinite and
enumerable set whereas g{9(X)u {x}) is a finite set, so there exists
ze 2\ g(T(X) u {x}). Hence and by the definition of2 there exists ye V such that
z - g(y) and g{y) $S(sfi) u 5(s*). Since g{y)£ <A5A) u {x}), we get y $5(A) and

* g{x).
g(y)AccgE'ol)ing to the Lemma 5 (iii) we get g(y) $9[H(X)). Hence g(y)f
9(H(X)Kj{g(x)Nj9(j)uov

Putting in (3) x =y and using the rule of the scheme {13) > 6

conclude that
(4) s™H(a) “ms?H(a) for y £5(a w?).

By the same argumentation as used in (2) we get f-s™ _g(x)!g'{x)"\H{X) “m
s?H{a). Hence and by (I) we obtain
0)Vnoix)lg'{x)JH{X)"s<iH{a). '

Simultaneously by similar argumentation as before we find a special element
ye Vand then putting in (5) v =y and using the above-mentioned rule we get
(6) j-s“tf(a) =>spH(a).

On the other hand by (4) and (6) we conclude that
(7) 2%s“H(a) <tsaH(ot). m

Chapter 4

Algorithmic structural completeness

4.1 The problem of completeness of CR

In this chapter we introduce the notion of the algorithmic structural comp-
leteness and we shall prove property for the consequence operation of AL.
At first we shall consider the substitution rule and the structural rules. Next we
shall study interrelation between all structural, Unitary and admissible rules on
one hand and derivable rules on the other hand.

By a substitution rule r+ we mean the rule of the form: o(2) where p is
a program-substitution. Assume the following abbreviation: Rt =U u {r*}. O

It will appear that the substitution rule allows us to examine deeply
algorithmic properties of formulas and programs of AL.

We shall say that a rule r is structural iff <p(H), p(a)> e r for every sequent
< X,a>er and for every program-substitution peSbh. O
We recall two definitions:

A generalized formula a is an element of the set £ iff there exists a classical
formula /? (i.e. a formula without programs) such that a and /? are equivalent.

A rule r is Unitary iff for every sequent <X, a> er the set X is finite
and X u {a} c: /.

The consequence operation C is algorithmically structurally complete iff
every structural, limitary and admissible rule is derivable in C. O

Theorem 2 allows us to strengthen the consequence operation CR by
substitution rule and to examine the CR — consequence operation. Obvio-
usly CR (P) = CXP). At first we shall solve the problem of completeness of CR"
and next we shall prove that the consequence operation of algorithmic

55

logic strengthened by the substitution rule is algorithmically structurally
complete.

Definition 13. Let xae V For any one-one mapping hOofthe set Vinto F\ {x0}
we define a function h on Tau Su F as follows:

(1) h(x) = hO(x) for every xEV,
2 hi<p{x"4g) = (p({zy) , for any (pe<b,, neN and t2>..rlieTQ
(3) heP) = pfor any <pe<t0,
(4) hct) = afor every aeVOvj {TRUE, FALSE},
(5) h(p(xv ...,z,,)) = p(x0...,x0) for any formula p{xl,..yx"e E,
(6) h(ae B) = h(@) « h(B) and h(~Ct) —«=i(@@) for any generalized formulas a,
R and » e {a, v, 4}
1 if s is of the form [x ~ |, x,/u
(NS = Girricaiy. ajh(aj] if s is of the form ()
(8) h&KAf]) = Ih(K)h(M)I
9) /i(v_[<BKM]) = ¢¢lh(6) h{K) h{Mf\,
(10) h(*15K}) = *Ih(5)h{IQ],
(11) h(Ka) = h(K)h(a),
(x2) ft(U Xa) = U h{K)h{a) and /i(D"a) = flh(K)h(a) O.

Theorem 6. The consequence operation CR is incomplete. O

Proof At first we shall prove the following inclusion:

(€) h(CR({p(x) -»p(y)})) & CRP).

By Definition i. we know that CR{X) = (J {C"X):y < i2}. We shall prove
that h(Cif{p(x) -»p(y)})) ¢ CR($) for every y. _

Let y be the least ordinal number ie. y = 0. Since h(s)h(S) = h(sS) for
every seSa and for every 5e FQ the value resulted from applying h to the
axiom Al4 is the thesis. Hence

h(CI({p() PRP) ¢ c m

We assume inductively that /i(CM{p(x) “mp(y)})) c: CRP) for every ordinal

number p <y.
If y is a limit ordinal number, then by the inductive hypothesis we

get

HCkS{p(x) -* p(y)}))c c RP).

56

Now suppose that y = po + i for some ordinal number pO. Let
ae h(CRt({p{x) -> p(y)})). Hence and by Definition 1 we get

ae/j(Co({p(x) -> p(y)})-
Then according to the inductive hypothesis \-a or there exist X c
(Cro(H(X) > p>>)}, ReF and reR, such that a —h(?) and <X, B> er.

If r~r. then <h(X), hiR)> er and by the inductive hypothesis
h(X) ¢ CR(fi. Using the rule r we get (-a. Hence

() h(CM <cm

Ifr=r, then X — for some Xe F and by the inductive hypothesis
h h{X). Since <{A}J> er, there exists peSb such that B —p{X). Thus
a —h(p(X). As we know for any Ae F

het) for rjeFO
for rje F\ Fa

where ge G, ee£g and H fulfills the conditions from Definition s, so
H/F0= hu for (g, g)~fu7iction u.

For further considerations some functions will be defined and their
properties will be thoroughly analysed.

Let he’ be an endomorphism on FO such that for any 5eAt

h(p{5t)) if 5 —Nh<GA for some Oy eAt
h(p(5)) otherwise

The above definition is correct, since it is enough to show that for any
classical open formula Xy, X2eFO0:

if h{xy) = h[X2, then = h(p(12).

For Xu X2eFOu {TRUE, FALSE) by assumption and Definition 13 we get
Xi = X2, which gives the thesis. If XIlt X2eE then

O i/u > pxy..xn
and

X2 = [xjlti...xjx'"™] p(xy,....xn

57

for some classical terms and for some «-argument predicate letter. Therefore by
the definition of the set Sg and by Definition 13 we get

i) = li(e([x/T1,...x,,/Trp(jCi,...,xn))
= hWit*i/ti, xjrj e(p(xl f xj)).

Obviously for any sL, seS0 and any tjeFOif (S(sJu 3(s\)) n VO=P then

h(stf) = h(stf). Since g'(s)eS0O for every seSo and e(p(xs,...,xl))eF0, we
get

= h{e(ixjx\,..xjz,,] p(xI t x.))) = h(p(X2).
Let fiei be an endomorphism on FO such that for every 5eAt

(hm)«SeVO0
(e(<5) otherwise.

For any program XeS we define a program K! as follows:

(i) If K is of the form (a) then we put
K' = [higixjyhig'izj),..., h(g{x,.))/h{g'{xn), ...>g{ajhei{a.j].
Obviously if K =[], then K' = [],

(i) If K is one of the form o[MW], jv [GMIN~\ or then K" is of the
form o [M'N'~\, wvi[hei(r5)M (V] or *[/iei(<5)M] respectively.

Now we define a mapping Hx on F in the same way as it was done for the
function H : F -» F from Definition 6, i.e. instead of the (g, g)-function u and

Kg we put there et and K' respectively.
Now assume that ss is determined by a couple <hog, e,> for every 5eF.

Let g be a mapping defined on F as follows:

o - et if 6eFO
A8 = ans) if 5eFAF 0.

58

Since he*{sp(xl, = h(g,(s))e.(p(z1=..,8]) for every elementary formuta
p (r and for every seSQO we get h(g(V0)n = 0. Of course

9(e,(<5))n V< {x0} for any elementary formula 5 Hence s'z = %'(s))z for
every seS and every ze ~(eJF)). Thus

@) sft*r(5) = hci(ss) for every 5eFaand seSa
Moreover we get
(3) saH1(a) = heX@) for every § < gFo such that Kkn% ') ¢ 9(S).

By (2) we obtain the inclusion HI(Ax) cz CRA Simultaneously <ffi(X),
Bx(«) > er for every reR and every <X, a'> er. According to these
considerations we get

@HHNCM zCM
By (3), (4) and by the inductive hypothesis we get

) q(CM ¢ CM

Using (3) and {4) we can prove by an analogous argument as used in
Lemma 3 the following property:

(6) For any generalized formulas, < T eF if .90)n Wz 9(T), then
\-s"HM)

Similarly as in Theorem 3 by virtue of (3) and (s) we can prove that for
every O, T gF:

™ h o N0 **({®) » 9(D) f°r any ¢ e {a, v, ->} and f-g(~>0)
Now we are going to prove the following equivalence:
(8) F afh(O)) <» (h(p(<D)) for every Oe F.

If O is a minimal element of the relation < introduced in Definition 9 then

the thesis holds in this case.

Suppose that (s) holds for every generalized formula O'eF such that
O <o.

Let O be of the form su ...,srb for some <5eFo and for some s1,...,s,,eS0.
By Al4, r, and (1) we get

h Kh - 55 <ph(st ...s,_1s,.9).

59

Hence, by (5) and (7) we conclude that

[- q(h(si ...s D" qQiiSi...sn_Ls,5).

Using the inductive hypothesis it follows that

h g{h(sl..s,, | stB)) «+h{p(si.. xsM-

Moreover Al4, rl and (1) allow us to get

b h(p(st ...s,,_i8:5) <>h{p(sl ...sj9).

Therefore the thesis holds in this case.

If O is either of the form sA.s,,0 [KM~\ ¥, ..s, V. [5KM] 'T or of the
form ..s,*[¢(K] *F, then by A23, A24 and A25 respectively and quite
similiar argumentation as used before we get the thesis.

Moreover for ® being of the form Sji « 7Y or ..sn(-mi) for some
<e{A, v, ->} the proof is analogous as before by using the axioms
Al6, Al5, Al19, A20, Al7, Al8 respectively, which ends the proof of (s).

Now we return to the proof of (e). Since |- /i(®), we get (- q(h(X)) by (5).
Hence, by (s) and ro we conclude that f h(p(X)), so (- a which ends the proof
of (e).

Let x, y be two different individual variables. Obviously p(x) “mp(y) $
cKm-

Moreover CA({p(x) “mp(y)}) » F. Since in the opposite case a, -.a e
CR({p(*) -» p(y)}) for every formula a, so h(ac), ->h(a) e h(CR ({p(x) ->p(y)}))
and by (e), we get (- h(a) and |- ~'h(a), which is impossible. Therefore CR is
incomplete. m

According to the Theorem 5 we can introduce the rule of substitution
analogously as in AL. We shall use the abbreviations CE, Ch for the con-
sequence operation CE and Cn strengthened by the substitution rule. The
problem of completeness of the extended algorithmic logic strengthened by the
substitution rule can be solved in a way similar to the one preserved above.

In the next theorem we shall consider the consequence operations CE and
Co, so we can omit it while reading the paper for the first time.

Theorem 7. The consequence operations CE and CD are incomplete. O

Proof. A sketch of the proof will be presented. We shall prove this theorem only
for the consequence operation CE First we define the function h analogically to

60

the Definition 13 but we add the condition h(3xa) = h(cc) for every x e Vandfor
every generalized formula a. The inclusion

(1) KCe{p(x) py}) c: CM

is proved similarly as in Theorem 6, though we must add the equality H 1(3Xa) =
3fie(Q)i/1(a) in the definition of the function H1. Moreover to proof the above .
inclusion we need two properties:

(2) For every generalized formula ae Fv: ifye V\ 9(a), then h(g(y)) $ 9(Hf a)),
(3) For every program Ke S: if y e VAS(K), then h(g(y)) £ 9(K").

Thefunction q in this proofis definedfor every generalized formula e Fv as
follows:

The condition (S) in Theorem 6 is checked upfor a' of the form 3xX in the
following way: q(h(@)) = q(h(_x/x]X)), while by the inductive hypothesis

hq(KI
moreover
h(>([¥z-]1X)) = Kfitx/xTsHm.
h h(f(Lx/xYtH m <>h(s*)h(H(X))
and

h(s*-)h(H(X)) = fos*> (3gWH(A)) = htf'Hia")) = h(p(a%

thus |- q(h(a)) m»h(p(@)).
These remarks enable us to prove (1) and the incompleteness of the extended
algorithmic logic with quantifiers strengthened by the substitution rule. m

4.2 The algorithmic structural completeness of

In the sequel we shall separate a special class of derivable rules of the
consequence operation CR. To do that we start with making some remarks
about structural and admissible rules. It is easy to see that the rule r2 is not
structural, but instead of it, we can consider a structural rule of the form:
[Ef(X -» MK Q): ie JT)
3F(X"M ("Ka)

where Sf denotes any finite sequence of substitutions.

61

The following remark concerns admissibility of rules. Observe that ro is
an admissible rule but rAis not an admissible one, since for s = [a/TRt/£],
K = [afFALSE] where aeV0 we get

< {a, KTRUE], Ka> erL and s{a, KTRUE] ¢ CR(® but
s(Ka)iCRm-
In order to introduce the notion of algorithmic structural completeness we
need the special set of generalized formulas J. For example lemma 7 in

G. Mirkowska [58] and theorem in G. Mirkowska [59], p. 158, exemplity
some forms of the formulas of the set

Lemma 7 For every generalized formula a without symbols *, f], [J we can
find in an effective way a classical open formula ao e FO such that for every
realization 9t and every valuation veW, da(v) = aosf(l). O

Theorem s. Let K(M"S, ig(0/1,.,n} be programs in which the sign
*does not appear and let a eFa Any generalized formula ft of the form:

MO\JKO0..Mn{JKm

is a tautology of algorithmic logic iff there exists a natural number m such that
the formula

m m
MO\fjK 0..M,, \f/K{a is a tautology of algorithmic logic where

i=o y=o0
m
MAf/KIX=MQ2 v KxXv ..vKnmX)for any MeS, KeS, XeF. O
j=o

It is easily seen that for any result of Theorem & we can apply Lemma 7
to find a formula s0eF o which is equivalent to the formula fi from Theo-

rem s.
Since the consequence operation is incomplete, it accounts for

theoretical investigation of algorithmic structural completeness which although
weaker, in accordance with our intuition.

Theorem 9. The consequence operation CR* of algorithmic logic is algorith-
mically structurally complete. O

Proof. Suppose that there exists a structural, finitary and admissible rule r of
the consequence operation CR, which is not derivable in this consequence

62

operation. Thus there exist a finite set X =$ and a generalized formula R e #
such that <X,B8> er and B$CR(X). Let us assume that X = (Aa > In}
According to the definition of the set # there exist two classical open formulas
a>AeFasuch that F(Xxa..aX) Xand fB «t+a Hence a4 CR({/l}). By
structurally and admissibility of the rule r we get for every program-
substitution peSh and every seS;

if s(oppO) CCR(P), then s(p(R)).

Since by Corollary 1 [-p(Xx a .. aXn) «»p(X) and J p(R) <»p(a) for every
p e Sh, we conclude by Theorem 3 (ii) that

(D If sp(X) then | sp(a) for every pe Sb and every seSQO.

Let g e G be a mapping from Definition 2 such that g{Vvj W) <= (J/u VO)\
9(a aa. For further considerations we shall need an endomorphism he on FO
such that:

e(@ = g@ ax for every ae W,

e(TRUE) = TRUE and e{FALSE) = FALSE,

e((Tx ... £) = PP, .. <M a2

for every elementary formula p(ta t) Of.

Since g'(si) = ¢'(s)g'(x) for every te TO and for every seSa and since
O\S)X = X we get e(sp(zx...,t,)) = g'(S)e(p{r, T.)j for every seSc and any
elementary formula pfrj,..,t] gE. Thus eg¢’g Let us take (e, g)-function u,
u:At -» FOand a mapping hu being an extension of u to an endomorphism
defined on FQ By Definition ¢ we get an endomorphism H on F. By Defi-
nition 7 we get a mapping p : F F which is defined by usingge Gand ee £g
Hence we get peSb.

Moreover let e0 be an endomorphism on FO such that:
e)(TRUE) = TRUE and eO(FALSE) = FALSE,
e =5a>5 for every 5e At\{7TRUE, FALSE}.

It can be easily seen that eoe for g0 being an identity function on

Moreover Jheo(5) TRUE or \-heo(5) FALSE for every classical
open formula 5e FQ

63

Let Y ~ {xIs x,, Q j,ant} then by symbol sy we denote the substitution
of the form

ajg(ajl.
By induction on the length of the classical open formula dsF 0 we get

(2) f- /gl <+((s"5 a A v (heo(5) a A) for every 5e Fuand every sYsuch that
m c 7

First we consider the case |- hod<b) <»-FALSE. Then by (2) we get
(- he{5) ->m(*5 a A), so f-/ig5) -> (A-» §2) for sy defined as in (2).
Let us assume that (- heo(s) <>TRUE. By (2) we get

(3 h he[->(A-»~5) for every classical open formula %e FO and for sY
defined as in (2).

If \- heo(X) <>TRUE, then by (2) for such Y that 9(a a A = 7 we get
j- he(<>(spA v - °A.

Using ra we conclude that (-syhgA) <>(sys"Av -is"A). Since 5(A) ¢
Qni}, we get 9(s™A) ¢ g(Fu FO). Therefore by the definition of
the fuction g it follows that 5s"A) n 5(a a A = Obviously

{x;,..%,al 5 aj =5@ah,so (xt,x,, al 5ajnbdv0=0

and moreover sr%A = s"A By Al4 we get
|- srhdA) <» (SMA v --SyA).

Since p(&) = heA from Definition 7 then |- sr p(A). By (1) we conclude that

h sy(n(a)). _
On the ground of (3) and by using rt j-sYp{a) (syA-> sysya). By modus

ponens rule ro we get)- sYX->sySya. Moreover by Al4, Al and rQwe get
)- syA-> sYsYa.

*Simultaneously sYJ"a = sya, so |- sYX->sya. Moreover by =j, ro we can
observe that sYae CM{A}). Using the rule rx we obtain that sY Asya e CN{A}).

64

Since 5@) ¢ {xXA..X,av .,aj, {xt, xrralL.,aj ng(Vu FO)=p and
since ge G is a one-one mapping, we get Sy 1sra = a. Hence by Al4 and ro
we get ag “({A}), which is impossible.

If (- heo(X) *mFALSE, then by the rule of substitution we get CK({A}) = F,
which is impossible. =

After defining the standard substitution rule by using the set of program-
substitutions Sbx we can prove the incompleteness of algorithmic logic
strengthened by the substitution rule in the language with generalized terms.
For this purpose we need to extend Definition 13 by adding a new condition:

(13) h((pzL, W) = hixivitt,) for every non-classical terra such that
<pe<i>n neN and tis..., The F'.

Moreover we can prove (in the same way as Theorem 9) that the
consequence operation of algorithmic logic strengthened by the rule of
substitution is algorithmically structurally complete in the language with
generalized terms.

S Algorithmic..

PART Il

Chapter 5

Automated theorem proving

5.1 Axioms and Gentzen’s rules of inference

In this chapter we shall describe another system of algorithmic logic. It enables
us to formulate some problems connected with a retrieval system. It provides
a comprehensive tool in automated theorem proving including programs,
procedures and functions. We can get an answer whether some relations
defined by programs hold and we can prove functional equations in a dynamic
way by looking for a special set of axioms (assumptions) and then adding it to
the standard set of axioms. We formulate the RS-algorithm which enables us to
construct a set of axioms for proving some properties of functions and relations
defined by programs. By RS-algorithm we get the dynamic process of proving
functional equations and we can answer the question whether some relations
defined by programs hold. It enables us to solve some problems concerning the
correctness of programs. The system can be used for giving an expert
appraisement. We shall provide the major structures and a sketch of implemen-
tation of the above formal system.

We shall say that s is a sequent if it is a pair of sequences of generalized
formulas. O

We shall write a sequent s in the form X J-Y. The symbol ae X means
that a is an element of the sequence X and the symbol a es means that ae X
or aeY The set of all sequents will be denoted by Seq.

Let ID be a family of sets of equations of the form t = x, where t, x are

terms.

Definition 14. If X elD thenfor any classical terms t, u we shall say that t
and u are X equivalent iff one of the following conditions holds:

5 67

(1) there exists a sequence tl t tnof classical terms such that t isequal to t1
and u is equal to t,,andfor every ie {1,..., n — 1} either £ is equal to ti+lor one
of the classical open formulas ti —ti+1, ti+l = tvis in X,

(2) there exist neN and n-ary functor @ and a sequence of classical terms
L, tnui t u,suchthatfor everyl <i <n,tiand areX equivalentand tis
equal to t) and u is equal to pw u,). O

Definition 15. The sequent s theform X |3 Yis called an axiom ifand only if the
sequent s fulfils one of the following conditions:

(1) There exists a classical term t such that t = t belongs to Y,

(2) FALSEeX or TRUEeY or X n Y*

(3) There exists X | cID such that X t <=X and for some n-ary predicate letter
p andfor some classical terms tv .., t,, ul,.., u, the following property holds: £f
and are Xt equivalent and p(tiy.., £)eX and p(ut, uneY, for every
1<i<n 0O

We shall denote the set of all axioms by Ax=. Now we shall introduce the
main tool for proving theorems. Let s be a sequence of elements of the set SO Le.
the sequence of elements of the form: begin «4 = wt; ...un=w,, end, for some
neN such that for 1 <i<n we get if u eV, then w{e T0 and if u{ is
a propositional variable then wfeF 0.

Definition 16. Ifs is understood as it was defined above Le. as a sequence
of the assignment instructions, then k(sw) means the execution of s on the
expression wfrom FOu TO. In other words we replace all u; by wf (1 < i < n)
respectively. Sometimes this operation will be done simultaneously, but in this
case we shall say that we count the function k in such a way.

IfaeFQpEFv, K, M e S and at least one of the programs K, M is not an
assignment instruction then:

k(s begin K\ M end fi) = s(JC(M;S)),

k(s if a then K else Mfi) —g(<xa Kfi) v (»a a Mfi)),

k(s while a do Kfi) —s(p:= TRUE) Q beginp:=p aa;K end (p a->a a f),
where p is the least element of the set VO\ S(s while a do K p). O

UK is a program and ie Jf, then K® —Id and Kl is a sequence of i-times

written the program K.

For any F, Q, U being the sets of finite sequences of generalized formulas,
U <=At, U ¢ %s being the sequences of elements defined as in Definition 16,
Keb, & Fv\ At, £e At, a, e Fv, xe Vwe define the schemes of the rules of

inference as follows:

68

k{sKka), I|-G

) e ©) r,sKa|H2
P "Ngsw ® o

© Mhoray @ A%
(N S ™ rs—-«H2

(1 rﬁﬂ%’_’%) riNa,Q;sftr|t-e
) flede) o Sl
W) o D tukqro
(1) HlkQ sOKu 0 R
@ o O "G
v T

where y is the least element of the set V such that y £({r, Q, s}.

(-Vv) = (Jtér (—V)f where for every te TO

sVia, (y: = 9) (s((x:=)eo)). F 1-Q

and y is the least element of the set
F>svxa |[-Q

(-V)
V\ S(sa).

Let Rl be the set of all of the above mentioned rules.
The deductive system <J5f, Ax= RSeg> will be called the system of ALQ
with identity. We divide all the rules into two groups: (R+) and (-R).

69

In the next paragraph we shall try to generalize the language if on the case
of the set of generalized terms T.

It is known that for every generalized formula a of the language with
generalized terms there exists a classical open formula x(a) of the language if
such that (a -> y(a)) a (yfa) “ma) is a tautology in this language. The definition
of the mapping x was introduced by G. Mirkowska [58]. To get a complete
characterization it is necessary to add to the previous rules, two rules of the
form:

(,x nhx(pfri,~,Q),g . V. x(p(*u->"n)Ir \-Q

5.2 Functions and procedures defined by programs

The idea of defining some properties of functions and relations by programs
played an important role in our considerations. It can be found in
G. Mirkowska and E. Orlowska [63], G. Mirkowska and A. Salwicki [64],
[89], A. Szalas [95], Some problems of elimination of defined symbols were
considered by W. Danko [22] where the halting problem was considered as
well.

Let gp and pv ...,pr be symbols not belonging to the language if.
We assume that the functor q)j is m-ary and the predicate letter ptis n-ary, for
anyje {1,.,p) and ie {1,.. r}. By if* we denote the extension of if obtained
by adding the functors <ds.., gp and the predicates pv ..,pTto the alphabet

of <
Let KI7..,Kr, M| 5 Afp be some programs from if and let <Li..,are FO
and tl5..,t e TO be some classical open formulas and some classical terms

respectively such that:
for every ie{l,...,r},
HMjtj) = {yL>-,ymj} for every ze{l,."p}.

Now we introduce the following set of equations and equivalences which
will be called the system of functions and procedures defining the notions

<Py 0 and pv .., pr:

Pi(*i, ...,xni) = Kial

<Piyv ym) Mpap Pi(Xi,-xJ = Krar

where a = f is the generalized formula of the form (a -> P) a (fi ->a).

70

In the language if* the sets TO, At’, ft, ft ft, ft, ft Seq’and (Ax=)" are
defined analogously to the sets Ta At, ft, F, ft, ft, 5, Seq and Ax=. To define
the set RSeq analogously to the set R Sq we change using of the rules (P +) and
(-P). The rules (P’+) and (-P?) i.e. the rules (P+) and (-P) in the language
can be used even if the classical open formula $eAt’ contains (pj{tl7..., tm) for
some 1 <j < p where (pj is from (*). Obviously we get the set (R’+) ancT(-R’)
in the language SF' instead of (R+) and (-R) respectively.

We extend the set of the rules of inference RSqg. We shall consider (see
G. Mirkowska and A. Salwicki [64]) two new rules:

+) —) T Yhegiii = endMjt),Q
¢, , ft)/begin xx:=Tt; .. X,,.:=2z, endK"*Q

where XA x rj do not belong to >{tls.., t,}) for ie {1,.... r} and yx, .., ym.do
not belong to <pifzl t xm}) for j e (I, and OeAI\

Obviously the rules (-ra) and (-ft) are analogous. Only the assignment
instructions from these rules ie for example the program begin

XA:~ tx; x ,..~ t, end will be executed simultaneously on each classical
open formula from At ie. it will be executed as a function of substitution
e:AT -> TO such that e(x)= xi and ie r}.

If s is as in Definition 16 then E(s) = {zv z}. After using one of the
above mentioned rules we shall need the rule of the form:

rlysmx\Q
1; mYQJisKx)

where 7e At’and every element from ftft) u E(s) is not an element of any term

and formula in /? except sKx.
If it is possible, we shall use the rule (B) instead of Cf+) or (-ft Now we

define the set W of rules:

rit-Q(t = t/TRUE) r, FALSE, r "\-Q
} TtQ M T, = &T"\-Q

where colt §2eO0 and in the data structure of integers, the realizations cpL
and (p2 are not equal,

mg(tA)

fre+) ril'g

71

where t is a classical term built from constants, the standard functors *, +,~
(multiplication, addition, substraction) or the functors (pj from (*) for some
j < p and where x is a classical term, the value of which is equal to the
value of the realization of t in the data structure of integers.
Now we describe some rules which change the right side of the symbol J-

(rG+) — It replaces all occurrences {TRUE a a) or (a a TRUE) by a
(rj41+) — It replaces all occurrences (TRUE v a) or{fa v TRUE) by TRUE.

(rao+) — It replaces all occurrences (FALSE v a) or (a v FALSE) by a.

(rri+) — It replaces all occurrences (TRUE ->a) by a and (a-» TRUE) by
TRUE.

(rro+) — It replaces all occurrences (FALSE-* a) by TRUE and (a->

FALSE) by >
(rco+) — It replaces all occurrences (FALSE a a) and (a a FALSE) by

FALSE.

(n+) — Itreplaces all occurrences (->->a) by a
(NI +) — Itreplaces all occurrences (->TRUE) by FALSE.
(rNO+) — Itreplaces all occurrences (-FALSE) by TRUE.

Moreover the analogous rules: (-rcl), (-rj, (~rA0), (~rn), (-ri0),
(~roopm (- r NOp (~ rNtl (“ riX (“ r=) belong to the set W.

By 31 we denote the set containing the rules from W and the rules: (x+),
i'll (reut). (~rj, (B), (P’+), (-P), (Fout), 3i is the union of two kinds of

sets: (31+) and (-31).

53 Diagram of a formula

In this section we shall consider an extension of the well-known Gentzen’s
ideas [30], described by G. Mirkowska [58]. At first we recall some auxiliary

notions.
The following notions are standard: tree, root, leaf, level ofa tree, height of

a tree, path and branch.
IfD — < D, <> and D is a tree then by P(x, D) we denote the set of all

immediate successors of an element x in D. O

Definition 17. <S, <> isa tree ofsequents ifand only ifScz Seq’and it has
exactly one root. O

If S is a tree of sequents <S, <> and se S is a sequent, then by r(s) we
P(s,<5) T
shall understand the rule of the form ——g-é———). It means that s < s for everv
sequent s’e P(s, <.

72

We shall say that the tree of sequents <S, < > is wellformedfor (-V") if the
following property holds:
if the rule (-V'){was used, then earlier we had to use the same rule for each t
ealier than t in the ordered set TO. O

The set of all generalized formulas on the left side (right side) of the
symbol \f of the sequent s will be denoted by left(s) (right(s)).

Definition 18. A sequent s is called indecomposable in *£ if and only if
left(s) u right(s) c: At s contains neither symbol ¢ nor pjl <j <p,
1 <i <r/from (*) and if it contains at most classical terms. The other sequents
are decomposable. O

Definition 19. By a diagram ofa sequent se Seq' with a special set of axioms
si ¢ Seq and the rules we shall mean the tree of sequents Ss = <S, < > |f
and only if it fulfils the following conditions:

(1) The sequent s is a root of <.

(2) If s'e S and s' is indecomposable or if s is an axiom or a special axiom
then s' is a leaf.

(3) Ifs'6S is on the even level of the tree 3 and ifs’ is a conclusion of a rule
from X where X = (9?+)\ (rau+), (r* +), (P'+)} then r{s) is an element ofX.
It means that the order < has the following property: for every sequent s,

P(s, ®)

the expression is a rulefrom 92. We assume that if s’ is decomposable

then we consider the first generalized formula on the right side of the
considered sequent s’ to construct r(s).
Ifs”is not a conclusion ofa rulefrom (9i+)\ {(re,+), (*",+). (P’+)} then:
(i) If left(s") u right(s) c At' then the following condition holds:
(il) Ifs"is a conclusion of some rulefrom {(rcit+), (r'y+), (P’+)} then
r(s) is the same element of this set. Otherwise r(s) e
However if it is one of the rules (~to), (-t'®) or (~P9) then such
r(s) is used as the last of all of these rules.
@iy If right(s) n ((F u Fv\At") ~ 0 then r(s) e (R'+).
(in) Ifright(s") c: At' and left(s) n {(F u Fv\At) # pthen r(s) e (-R).
(4) Ifs’e Sison the odd level of the tree Band ifs’is a conclusion of a rulefrom
(-5R)\ {(—r0y), (Ya)>(~P)} thenr(s) anclementfrom this set. We assume
that ifs’is decomposable then we consider thefirst generalizedformula on the
right side of the considered sequent s’ to construct r(s’.
Ifs'is not a conclusion of a rule from {(—Q, (-9, (-P")} then:
(i) If left(s) Kjright(s') <=At' then the following condition holds:
(il) Ifs"is a conclusion of some rule from {(—ro), (-ra), (-P")} then
r(s') is the same element of this set. Otherwise r(s) e (SR+).

73

However if it is one of the rules (-ra), (a) or (~P) then r(s) is
used as the last of all of these rules.
(i) If left(s) n ((F u Ffi\At) * p then r(s') e (-R.
(iii) If left(s) ¢ At' and right(s) n ((Fu FW\ At) ~ p then r(s) e (R ’+).
(5) < is well formed for f-V). O

The deductive system <£?7* (Ax=)"u si, jJRE?u 91> will be called the
retrieval system where si is a special set of axioms. O

Using retrieval system we shall change the standard notion of proof which
enables us to prove some properties which are not tautologies but which hold
in a data structure. Moreover this system enables us to study some notions
defined by programs.

We shall say that is a diagram of generalized formula a if <S, <> is
a diagram of the sequent P ||-a with a special set of axioms si and the
rules R O

Definition 20. We shall say that aformula a has the proof in the retrieval
system (a e proof< (Ax=)'u si, RSsgqu 9i>j if and only if the height of the
diagram of the generalized formula a is finite and each leaf is an axiom
or a special axiom.

However it arises a problem how to choose the set si of the special axioms.
Obviously this problem will be considered in a data structure (in a standard
model of arithmetic) in which the functors and predicates are realized and
where + ()mare interpreted as addition, substraction, multiplication,
m-th power respectively.

To explain an algorithm which is looking for the special set of axioms si,
first we shall study the example of the function f defined in the introduction:

/(n) = if n = 0 then zz = 1 else z = n*f(n —1); z

We assume that the realization is in the set of integers with the obvious

meaning of used symbols.

For further considerations we assume that Axf = (Ax2'u (se Seq”
1 = u e right(s)} and/(n) does not contain the individual variable u and u is the
least element of the set V\5(f(n)) (we assume that V is well-ordered).

Example 7. The diagram of the sequent |-/(I) = u in i f with a special set of axioms {se Seq”
1= ue rights)} and the rules isfinite and each leafis an axiom in S " i.e./(I) = ue proof <Ax",

91> -

Proof First we construct the diagram of the sequent

@ Ihfl) = v

74

Using the rule (/m,,+) and (B+) we get
@) I[-(n: = 1(if n = 0 then 2:= 1 else z:=n*f(n —1) @) = u.
By (B) we get
@) |IF-R:=1(f n —O0 then z:= 1 else z:—n*f(n —1) (z = u)).
By (ic+) and (A4-) we get
@ hn:=1(*=0a(z:= (z=0), n:= 1(—z= 0 a (z:= n*f(n - I)(z = W)).
Using (C-f) we get two sequents of the form:
@41 |f-fl:=1(—=n=0), n:=I(n =0 a (z:= 1(z- w)),
@4.2) |[[-f:=1(z:=n*f(n - Dz =u), n:=1(r=0 a (z:= 1(z = W)).
Case (4.1). By (C+) in (41) we get two sequents:
(4.11) |h«:=1(r = 0),n:= 1(-(r = 0)),
@412 ||-r:=1(z:= I(z =u)), n:= I(-<n = D).
Case (4.2). Using (C+) we get two sequents:
@421) |j-n:=1I(n = 0), n:= I(z:= r*/(r —1)(z = u)).
(4.22) lh«:=12:= I(z = u), n:= 1(z:=n*/(n - 1)(z = u),
Case (4.1.1). By (N+-) we get an axiom.
Case (4.1.2). Using (N4-), (-s), (s+) we get 1 = 0 [f-] = u, which by (rj is an axiom.
Case (4.2.1). Using (s4-), (r_4-) and (s-f) we get
(%) |hl =0,/0) = u.
By (m>+). (p’+) (B) we get
(6) |[f-n:=0(iin = 0 then z:= 1 else (z:= n*/(n —1)(z = w)), 1= 0.
By (P’+), (fc+), (P’4-), (A4-) and (P'4-) we get
7) 1=0, r:=0(r=0 a (z:= 1(z=wuw)), n:= 0—(n=0) a (z:= n*/(n —I)(z = u)).
Using (C4-) we get two sequents:
71 JR=0—n=0); 1=0 «=0n=0a(z:= 1(@z=u).
@72) |I-n:=0@z:=n*/(n- D)(z=u),1=0n:=0n=0a(z:= 1(=u)).
Case (7.1) By (C4-) we get two sequents:
(7.1.1) ||-r:=0(n = 0), r:= 0(--(n = 0)), 1 =0,
(7.1.2) ||-n :=0(z := I(z =u)), n:= 0(in =0), 1 =0
Case (7.1.1). By (P'4-) and (N4-) we get
n:=o(= 0)[]]-1=0, n:= o(r = 0) which is an axiom.
Case (7.1.2). By (P’4-), (N4), (4-s) and (s4-) we get the sequent
0=0]-1=u 1=0, which is a special axiom and which belongs toAXx".
Case (7.2). By (C4) we get two sequents:
(721) fFA:=Q(n = X n:= 0(z:= n*/(n —1)(z=u), 1= 0,
(7.22) ||-r:=0(z:= 1(z = u)), n:= 0(z:= rt*f(n —N)(z = u), 1 =0
Case (7.2.1). By (P’-f), (s4*X (r,, 4-) and (s4-) we get
8) |-0 = 0,0 = u, 1= 0, which by Definition 15 is an axiom in ST since 0 = 0 and TRUE are
equivalent.
Case (1.22). Using (P’4-) and (s4-) we get
(9 HO */(0 - 1)) =u, 1 =0, r:= 0(z:= 1(z —u)).
Thus by (r_4-) and (54) we get the sequent [|-1=u, 0= u, 1 = 0 from Ax".
Case (4.2.2). Using (s4-X (r,, 4-) and (s4-) we get the sequent |-1= u,/(0) = u from Ax~. m

It can be seen that the construction of the diagram enables us to find the
special set of axioms which are necessary to prove of the above mentioned
classical formula/(I) = u. In Lemma 8 we shall explain how to eliminate the
case 0 = u, 1 = u. The interpretation of the functor/and the other functors in
a data structure, for example in the set of integers, allows us to choose a special
set of axioms to prove the needed properties.

75

5.4 Retrieval algorithm for functional equations
and relations

In this paragraph we shall try to formulate the algorithm which enables us to
find a special set of axioms using the premise of function or procedure defining
some notions.

Definition 21. By the premise of function defining the notion <j from
(™)1 <j < pffor the classical terms tlt..,teT'0 we mean the classical open
formula x = ufor some xe VO and for u being the least individual variable not
belonging to the expression defining (pj in (*). The formula x = u enables us to
prove (Pj(tl}..., i") = u in the language by the special set of axioms {se Seq™
t = ue right(s)) and the rules RSeq vj 9L

By the premise of procedure defining p{from (*)/1 < i < r/for the classical
terms xv xne Ta we mean either the expression b, when we can prove
p,(x1}.., x) = b in the language TE£* by the special set of axioms {se Seq
be right(s)} and the rules RSeg u 91 or the expression -*b when we can prove
pi(x4, .., v,) = b by the special set of axioms {seSeq": be left(s)} and the same
set of rules.

The premise offunction defining the notion ¢ will be called the premise of
functional equation and the premise of procedure defining p will be called the
premise of relation defined by programs. O

It can be easily seen thatfor pfx) = p a --p, where pe VQand xg T0and
for -ib as the only premise we can prove the classical open formula pfx) = b
in the retrieval system by the special set of axioms ~ = {se Seq’: b e left(s)}
and the set of rules RSq u 9L In this case b can be realized as a logical
constant FALSE.

We shall give an algorithm which will be able to decide during the
execution whether the starting definition of relation p{from (*)/I < i <rjis
correct. It means that the definition of relation p{is not of the form:

Pit*» xn = .y XNJ).

This loop will be eliminated by the following procedure: if during
the construction of the proof of p;(ii,.»t") = in the retrieval system
we met fg and p, on the same side of the symbol |- then STOP — we have
to do with the case of the loop in the definition of pfand the proof does not

exist.

Example 8.
Let p be defined by the following procedure:

pP(x) = ->p(x).

76

We shall try to prove p(x) = b in the retrieval system, with the empty set of special axioms.
Therefore we consider the sequent:

1) IbP(X) = b
By (C+) and (1+) we get two sequents:
(2 PX)If-b,

(3 bf]-p(4).
Using the rule (-rcJ) to (2) and (r#+) to (3) we get
@ -p{x)Ihb,
©) bit->p(x).
Using (-N) and (N+) for (4) and (5) respectively, we get
®) lI-p(4 b,
? P{4 b|K
If we do not use the above mentioned procedure we shall gel the loop, using (r™ +) to (6), (-r\J
to (7) and next using (-N) and (N-f). m

The notion of the premise will be explained in the algorithm which will be
able to guess for which xe TO we shall get %—u and whether b or->b is
a premise.

RS-algorithm looking for the premises of functions and procedures defining the notions
<Au-> (P Pi, -,P, of the form:

/1 <j <Pand 1< i< r/and constructing the special set of axioms in a dynamic process, runs as

follows:

(If the main idea is clear to the reader, we suggest omitting the details).

Lij:= 1 i:= 1

Read(k); (k is a natural number helpful for “while")
J (\— an empty file; (It preserves some kind of sequents)

2. n:= 0; X:= an empty file, which represents the premises of functional equations and relations
defined by programs;
We put the sequent tM — Y as the root in the j-diagram and we put the sequent
Ib Pj(tj, .., t*) = b, as the root in the j-diagram, where U is the least element of the lineary
ordered set VA3({<pj(t(,.... tj), Mt}}) such that Y £ {ul3..., forj > 1and where the element
bt is the least element or the lineary ordered set VO\3 ({pj(ti, .., tM, iC-a}), such that

fori> 1

3. If a sequent s on the n-th level is indecomposable or if it is an axiom or a special axiom /i.e. an
element of the set s4 of the form: (s e Seq™ a e rights) for some a from X and a # ~bmfor each
m :£1i, orb,,e lelt($) for some ~tome X, m < i < r}/, then s is a leaf. Ifs has more than one the
same element on the left or right side of the symbol ||- then we omit the rest We check this point
after using any rule. If all sequents on the n-th level are leaves then STOP — the proof exists
and the set of axioms and special axioms is of the form {Ax") u si.

4. n:=n+ 1

We construct the n-th level of the j-diagram of the sequent [F< pj (t\, —U and the

n-th level of the i-diagram of the sequent ||- p,(rj , t') = b, in S?' with the rules 9t and the
special set of axioms, which was defined above.

77

If it is possible we use, as in Definition 19, the rule from (91 u RSei-)\ {(-(J)} to construct
the n-th ievel in the h-diagram where h6 (ijj by the premises of the considered rule.

If we need use in the construction of the n-th level in the h-diagram the rule (-(J) for
a sequent s of the form:
W, s'(p:= TRUE) (J begin p:= pa a K end (pa—=a /)|-Y, ¢i, Z, then for further
considerations we denote by Ai,(Q the expression of the form:
begin s"p := TRUE end [begin p:= p a b; K end]. We mean that | is a natural number.

It is known that we get the following set of sequents as the result of using the rule (-(J):
M, a 'aap),Wij—Y, bhZ: lelr}, but in practice we do not construct all of these
elements. We denote Y, bb Z by T.

Now we consider the following condition for the sequent of the form a —xa a /f),
W []-r: we use RS-algorithm from the point 3 to the sequents: k{M, (K)p) |(Af,(fc)—=a |+
MnK)p |- and if RS-algorithm gives us the proof of one of the generalized formulas:
~'k(Afn(k)p), a, then we assume that the n-th level contains only k-1
elements of the form: Mn()(p a —a a /3, IF||-r for 1< 1< ft— 1-
In the opposite case the n-th level contains the sequent

/(p := TRUE) (J begin p:= pa K end (pa->aab0), WIT

and additionally it contains either k elements of the form: M, (){p a -i« a /), W ||-T for
1< i< k when the rule (-(J) is used for the first time for the sequent with regard to
s'[p:= TRUE) (J begin p:= paa K end (p a->a a /7 or one element M,,(k)(p a ~>a a ff),
WA\- F when the rule (-(J) is used for the sequent more than once with regard to the above
mentioned, generalized formula. (In fact it means that on the n-th level instead ofinfinite set of
sequents {M,()(p a—aa /7, W ||-T:le Jr) we shall consider only a finite number of
sequents).
(To have on the n-th level only finite number of sequents we do nearly the same with the rules
(f) +) and (-V). However instead of the classical term t we put a temporary pointer of dummy
d /see P. Gborzynski [29], [28]/. Moreover on each level we have to decide whether some sequents
are axioms. To do that we shall use the well-known unification algorithm on the both sides of the
sign B -
k:= k + 1;
5. We revise the n-th level of the h-diagram and for every sequent s which does not belong to
siy (Ax“) we consider two cases:
(i) We look for the classical open formula of the form t = u} in the sequent s such that
t = U £ right(s), t does not contain the functor 4@ and t was obtained by none of the rules:
(r, +), (-r.) applied to a generalized term t containing the functor 43 and built by the functors:
+>*./. O™ for some /e.g. if in some sequent, the classical term t which is equal to 0 was
obtained from 0 *ip~(t{,...,ti) by (r_ +) then the decomposable sequent was changed into the
indecomposable sequent ana we lost the essential property/.
If we find such a sequent s which fulfils two conditions:
(1) ae At’, for every aes,
(2) sis not a conclusion of any of the mles from the set 9 = {(r, -f), (-rj), (r_+X (-r,X (rj,
(rn+), (-ij, (P’+X (-n (B), (C+X K J. (X+X (-*)},
then we consider two cases:

Case 1. If there is another classical open formula of the form t' = Uj (we consider this case even
if the restriction concerning the rule (r. +) in the point 5 (i) is not satisfied), then we put this
sequent to the file Ji unless sis in M. We call this sequent the special leafand we assume
that s has no immediate successor.

78

Hovever, if sis in M then STOP — if h = j then the proof of the classical open formula
<Fj(li, = “J in the retrieval system does not exist and if h = i then the proof of the
classical open formula ..TiJ & b; in the retrieval system does not exist.

Case 2. If r = u} is the only classical open formula for some x which fulfils the condition (i),
then we putr = in the file X and the sequent s becomes a leaf. Then we remove all special
leaves from Ji containing t = on the right of the sign)(- and we call them leaves.

(i) We look for the element btin the sequent s. If we find such a sequent containing p, and bton
the same side of the symbol |[- then STOP — we have to do with the case of the form:
Piixi, -j *,,.) = .., X,,) and the proofdoes notexist. If sis not a conclusion of any of the

rules from © we consider three cases:

Case 1. If for every a e lefl(s) we get a e At'’\ {FALSE, (} and a does not contain the predicate
letter pLand if for every fterights) we get fie At'\{TRUE} and 0 does not contain the
predicate letter pL and bte right(s), then we put into the file X.

Case 2. If for every aeleft(s) we get ae At\ {FALSE} and a does not contain the predicate
letter p, and b, e left(s) and if for every erights) we get /e Af\ {TRUE} and does not
contain the predicate letter p{ then we put —bl into the file X.

Case 3. If there is b, and —*6, in X then STOP — the proof of thegeneralized formula
Pi(Tj, ...t'j = btin the retrieval system does not exist.

. If sis an indecomposable sequent on the n-th level of the h-diagram which is not an element of
sd u(Ax")" then STOP — the proof of the classical open formula tn) = ti} or
Pjfx'p) = b, for the case h = j or h = i respectirely in the retrieval system does/not exist.

. If each indecomposable sequent from the n-th level of the h-diagram is an element of the set
sd u {A.O and if there is no other sequent on the n-th level then STOP — if h = j then the set
{s eSeq’: a e right(s) for some classical open formula a from X and a ~bdand x » —d for
1< d < /} is the special set of axioms for the proof of the classical open formulas:

Pifri» £,)) - “i. x\>M-> = up
and the file of the premises of the above functional equations exists and contains all the elements
from X which are neither bd nor —ebdfor any d e {],.... i). However if h = ithen the set {s e Seq":

bde right{s) for some bd from the file X where 1 <, d < i or bde ieft(s) for some —<bi from the
file X where 1 < d < i} is the special set of axioms for the proof of the generalized formulas:

-» TN) = bu m>Pfc\> ». = K

and the file of the premises of the above relations defined by programs exists and contains ail
the elements from X which are of the form bd or ~'bJ for any de {1, .., i}.

Ifj = pand i = ¢ then STOP — sd is the special set of axioms for the proofofall generalized
formulas from (FP) and X is the file of the premises of functional equations and relations defined
by programs from (FP). If {{ < pand i< r)ax(j< pand i=r)or (i <randj = p) then we
change i and j respectively and we go to the point 2. O

Now we want to pay attention to a special case, which was mentioned in
Case 1 of the point 5 (i). We want to prove in the retrieval system f(2) = u
by RS-algorithm.

Example 9.
We start with the sequent:

@ |hfl2) = u

79

Alter using some rules we get among other things two sequents:
) I6{n:= 2fn =0), (n:= 2)(z:= n*f{n - I)(z = u)\
@) Ih{n:=2)(z:= 1@z=u),(n:=2)Z:= n*/(n —1)(z = u)).

The continuation of the proof depends on which sequent will be decomposed.

We shall show both of them:
Case 1. If we continue our considerations with the sequent (2), we shall get at last the sequent of
the form:
4)0=0JH2=0,1«ft 2= u

By Case 2 of the point 5 (i) of RS-algorithm we get 2 = u as the premise. Therefore each
sequent containing this premise on the left side of the symbol ||-is a special axiom. It allows us to
end the whole proof.
Case 2. If we continue our proof with the sequent (3) we get at last the sequent of the form:
G)IF0=u,1=u2=u

Moreover 0 in (5) was got from the classical term 2* (0*/(0 — 1)) by (r,, +). Since we shall not
be able to choose only one premise, we call this sequent in the Case | of the point 5 (i) of
RS-algorithm the special leaf and put it into the file M. At that moment we consider other
sequents, for example the sequent (2), which allows us to get the premise 2 = u. By Case 2 of the
point 5 (i) of RS-algorithm we remove the special leaf from J(and we call it a leaf. It allows us to
end the whole proof even in this case. 1

Case 1in the point 5 (i) is based on the standard model of arithmetic with
standard realization.

If there exist only terms without individual variables in the considered
programs and formulas, except individual variables of the form x in the
expressions x: = z and if we use only recursive functions and the computations
of all programs in (FP) stop then the following lemma holds:

Lemma 8. Let W= <S,<> be the diagram of the generalized formula a
of the form g{yv —ym* = Mitj from (FP). If during the execution of
RS-algorithm for the premise of function defining the notion gy we get an
indecomposable sequent s of the form Fu= u—xn T2 then there
exist two sequents sk and s2 in S such that s < sv s2 < s1?s and s2 are not
compared by < and s2 contains exactly one classical open formula from
{u=t u=t,} on the right of the symbol |~

We want to pay attention to one important matter. The diagram <Gausually
has an infinite path (see the diagram for /(2) = u) but using RS-algorithm,
we get a finite subtree <S’, <'> of the tree Saie a finite S"’< S and
<' = < /g where </gmeans the restriction of the relation < to the set S’
Since the computation of the program Mj stops and gives us the result of this
computation, this computation points out the path to the sequent s2.
Obviously there is only one sequent s2 with the above mentioned property.

The main idea of this lemma is the following: if during the execution of
RS-algorithm we get the path with the indecomposable sequent s of the form
if|-u=tP.,u=rt,r2 (in this case we do not know which x} is the
calculation of M f), then by the assumption (the computation of all programs

80

in (FP) stops), there exists another path containing the indecomposable
sequent s2 with the only formula of the form u = x for somej e { 1 , n} where
X is the result of the computation of Mjtj. Therefore during the execution of
RS-algorithm we stop the calculation along the path with the sequent s
and we continue the calculation on the other branch constructed up this
moment and we look for the sequent s2. The sequent s2 enables us to get the
premise of the considered function of the form u = t-and to extend the set of
special axioms.

Further we shall give some examples showing that the idea presented in the
above algorithm allows us to fmd the special set of axioms for functions and
relations defined by programs.

Using the rules from RSq u 9? we will be able to fmd the premises and
a special set of axioms to solve the equality of the form <p (U, tj = ufor the
Function defining the notion ¢ such that cptt tJ = Mi is from (*) and
u$ &epltv iJ) u S(Mt). Let = {se Seq": ae right{s) for some a from the
file Zj for ie {0, 1, 2, 3) and for the set of premises Xt

Example 10. There exist thefiles X a X v, X 2, X 2 of the premises and the special sets of axioms
sd0, jdt, sd2 sd3l which are found by using RS-algorithm during the proof of the following
expressions:
(1) g(*) = ke proof < (Ax-)'Yy sdO RSeq u!R>,
(i) h(l, 2) = «jeproof< (Ax-)u jdItRStq-u 91>,
(iii) k(x, 1) = u2e proof < (Ax-) u sd2, RSqu 3t>,
(iv) p(l, 20 —beproof < (Ax-)\ sd2, RSq \j 5R>,

Obviously sdg= {se Seq’:r& = uerights)}, sdy={se Seq:2 = Yerights)}, sd2-=
[seSeq:x + 1 —u2eright{s)} and sd3 —(s e Seq":be right(s)}.

Proof, (i) To find X 0 an sd0 we make them empty and construct the diagram of sequent

W IF S("*) = «
by RS-algorithm in the language SC" with the special set of rules St and the special set of axioms

sdg. By (r~+J and (B+) we get the sequent

(2) IF begin x := n* i:= n end(begin i:»«+ 3;z:= X end(2 = «)).
Thus by (s+) we get
(@) IFM - a

Next by Case 2 of the point 5 of RS-algorithm we put n* = uinto X0 and therefore the
sequent (3) belongs to the set sdO.
(i) To find the needed X t and sdy we make them empty and construct the diagram of the
sequent
(1) M (1,2)=«x
by RS-algorithm in the language If* with the special set of rules 91 and the special set of axiom's
sdy. Using (>1,+) and (B+) we get
(2) |Fbegin X := 1; y:= 2 end if X —0 then z:= 2 else z:= h[x - 1, h(X,y)) (z= ut).
Hence and by (k+), (A+) and (C+) we get two sequents of the form:
(2.1) jF begin x := 1; y:= 2 end(->(x = 0)), begin x:= 1;y:= 2 end(x - 0) a z:= 2(z=«j)),
(2.2) |- beginx := 1;y:= 2endz:= h{x - 1,/i(x,y))(z = Uj), beginx := 1;y:= 2end((x =0) a
(z:= 2(z = uj)).

81

6 Algorithmic.,.

Case (2.1). Using (C+) we get two sequents of the form:

(2.1.1) |(-begin x := 1; y:= 2 end (x = 0), begin x:= 1;y 2 end (—$x = 0)),

(2.12) ||-begin x:= 1; y:=1 end (z = 2(z = uj), begin x:= 1;y := 2 end (->(x = 0)),
Case (2.1.1). By (N +) we get an axiom.

Case (2.1.2). By (N +), (-s), (s+) and (ra) we get an axiom.

Case (2.2). Using (C+) we get two sequents of the form:

(22.1) . |¢-begin x:=1; y:=2 end (x = 0), begin x:=1; y:= 2end {z:= h(x —1, h(x,y))
@ = “Ix

(2.2.2) |(-begin x:- 1;y:= 2end 2 = 2(z = uj), begin x := 1;y 2end 2:= /z(x - 1, h{X, y))
(z=uiX

Case (2.2.1). Using the rule (s+), (r_+) and (s+) we get
3) IM = 0,/i(0, h(l, 2)) «=«,.

Using the rule (r,+X (P'+), (B+), (P’-HX (k+) and (P'+) we get
(4) 11-1=0, begin x:=0; vy:= h{1,2) end((x=0)a (z:=2@2= «))V (-(x =0)a (z:=
h(x - 1, k(x, y)) (z = u)).
By (A+) and (P'+) we get
(5) |f-1= 0, begin x\—(X y:—A(1,2) end((x = 0) a (z:= 2(z = Uj))), begin x:= 0; y := h(l,2)
end(—(x = 0) a (z:= h{x - 1,h(x,y))(z = uj)).

For sim plicity let us denote by H the second generalized formula on the right-hand side of the
above sequent. Let us introduce the following abbreviations:

a = begin x:—0y:= h(l, 2) end(—[x —0)),

b = begin x :=0yy:= h(l,2) end (z:= h[x— Lh(x,y))(z —u)),
c = begin X =0y ;= /i(l, 2) end(x = OX

d = begin x:—0y:= h(l,2) end (z:= 2 (z= u,).

Using in (5) the rule (C+) we get two sequents:
(5.1) |fFa, 1= 0, H,
(5.2) Ib, 1= 0, H.
Case (5.1). Using (C4-) and (P'+) we get two sequents:
(511) I-1= 0, ¢, a,
(65.1.2) |f-1=0,d,a.
Case (5.1.1). By (N +) we get an axiom.
Case (5.1.2). By the same rule asused in Case (5.1.1) and by (-rj) we get
6) 1|2 =u, 1= 0.Then by Case 2 of the point 5 of RS-algorithm we put2 = u, into X 2and
therefore the sequent (6) belongs to the set sdv
Case (5.2). Using (C+) and (P’+) we get two sequents;
(5.21) -1 =0, c, b,
(5.22) If-1= 0, d, b,
Case (5.2.1). Using twice the rule(s+)and (rj+) weget anaxiom.
Case (5.2.2). Using twice the rule(s-F) and (r, +) we get
™) 12 = « A(=1,h(l,2)) —uu\ =0
The sequent (7) is an element of the set stv The case (2-2.2) is similar, so we
omit it.
(i) To find the needed X 2and si2we make them empty and construct the diagram ofthe sequent
|f-/c(x, 1) = u2by RS-algorithm. The proofis similar to (i). After using many rules we getat last two
sequents of the form:
(1) [ffe(x,0) + 1= u2,1=0,
@) |-fe(x,0) + 1 = u2,x = u2.
First we consider (1). By (P'+), (r,+) and (B+) we get
() fl-y;= 0o(ify = 0 then z:= x else 2:- k(x,y - 1)+ 1(z + 1= u2X1= 0.

82

Hence by (P'+), {&+), (A+) and (C+) we get two sequents of the form:
2.1) |Fy:= 0(=0 ~ 0),y1=0(y =0a (2:= x)(z+ 1=u2),1=0,
(22) I[Y\~ 0(z:= k(x,y- 1)+ I)(z + 1= Ww),y:=0(y=0a(z:=x)@z+ 1=u2),1= 0.
Case (2.1). Using (P’-f-), (C-f) and (N+) we get an axiom and the sequent of the form:
y Gly = 0) |[(-y:= 0((z:= x)(z + 1= u2), 1=0. After using (+s), (P'+) and (s+) we get
0=01Jfz+ 1= «2,1= 0.Then by Case 2 ofthe point 50fRS-algorithm we putz + 1= u2into
X 2 and therefore the sequent (6) belongs to the set sd2.
Case (2.2). By (P'+), (C+), (s+), (/~, +) and (rj +) we get, after some steps, the axiom of the form

—1)+ 2= u2 TRUE, 1= 0 and the special axiom of the form

Ick(x, =) + 2 =u2,x +1=u21 =Q

The case (19 is similar to the case (1), so we omit jL It is worth to mention, that if we first
consider the case (T) we shall get the proof by the Case 1 in the point 5 (i) in RS-algorithm.
(iv) To find X 3 and s/3 we make them empty and construct the diagram of the sequent
@ Ibp@.2)= b,
by RS-algorithm for i= 1, b2= b and k —2

Obviously by (C+) we get two sequents. Next by (I+) we get:

@) p (1,2)|bb,
(3) b [bp(l, 2).
Using the rule (—r'J to (2) and (r*-I-) to (3) we get
() begin x:= 1;y:- 2 end K2a |bb,
(5) b |bbegin x :—1; y:= 2 end K2a.
At first we consider the point (4). By (-k) and (-A) we get two sequents:
(4.1) begin x:= 1; y:= 2 end ((x = y) a(a:= FALSE) a)lb b,
(4.2) beginx := 1;y:= 2end (—(x = y) a begin u:= 0;while—(u =v)v (uU—x))dou:= u -1
ifu= x then a TRUE else a:= FALSE; end a)|bh.
Case (4.1). By (-C) and (-s) we get the sequent
FALSE, begin x:—1;y:= 2 end(x = y) |bb which is an axiom.
Case (4.2). By (-C), (/c) and (-N) we gel

begin x:= 1;y:= 2 end («:= D(begin while —((u=y)v (W= x)) do u:= u+ 1;if u= x then
a:= TRUE else a:= FALSE; end a))|b begin x:= 1; y:= 2 end (x = y), b

By (P'+), (k), (s+), (i) and (-r,) we get
(7) begin x:= I;y := 2end(u;= 0(p:= TRUE (J beginp:= pA-"ftu=y)v W= Xx));u:=u+ 1
end (pa (U= y)Vv (U= x)) aifu=x thena:= TRUE ese aFALSE (a)|bl= 2 h, where
p is a special element from \O (see Definition 16).

Since we need to use the rule (—(J)> by point 4 of RS-algorithm we denote by n the level of the
considered diagram and by M, (0 the expression of the form:
beginx:= 1,y 2 u:= 0;p:= TRUE ead(beginpi-p a ->(u=vy) v (u =x))j

Next we verify whether the sequent k(M,,(k)p) |b has the proof in theretrieval system
for k = 2.

Since k{Mn(2)p) is of the form TRUE a->((0=2)v (0= 1) a->((0+ 1=2)v 0+ 1= 1)),
using the rules (-r,,), (-rj), (-r XI), (-r K1), (-rco) to the sequent k{MJ2)p) |b we get the sequent
s0 such that FALSE eleft(s0). Hence s0 is an axiom. By the point 4 of RS-algorithm we shall
consider only two sequents of the form:

8) Mn)(pa (U=y) v (Uu=x)) a(ifu—xthena:= TRUE else a:= FALSE; a)) [\-] = 2,b for
ie {0,i}.

Using twice (-C) in (8) we get for | —1 the following sequence.

9 M,(I(«=y)v u=x)Mr{) if u=x then a:(—TRUE else a.= FALSE a), Af,()p
IH - 2,b.

Using (-s), (-rcl), {-k), (-A), (-N) and (P'+) we get two sequents:

9.1) M,(M)(«=y),M,(I)((«= x)a ((@:= TRUE)a)) v (-(« = x) a ((a:= FALSE) @)) Ib 1= 2,b,
(0= 2 v (0= 1)

83

u:

u 1 end).

9.2) M ,(I)(u = y),M,(((u = x) a ((@:= TRUE)a)) v (*> = X) a ((a:= FALSE) a)) IM = 286,
0=2)v (0= 1)
Case (9.1). By (A 4-), (-A) we get two sequents. Next using (-s) and (r,,) we get axioms, since FALSE
is on the left-hand side of the sign ((-
Case (9.2). By (A+) and (-A) we get two sequents:
(92.1) M,(h((u = y) a ((a:= Fftt/BJa)), Af,(I)(« - X) |(0=2,0=1,1- 2),8,
(9.2.2) Af,(I)(—{u = Xx) a ((a:= FALSE)a)), Mn(l)(@ = x) |F0=2,0=1,1—2),h.
Case (9.2.1) Using (-s), (-r_), (-C) we get
(10) M,,(L) (@ = x),M () ((a:—TRUE)a), TRUE |h0- 2,0=1, 1= 26.
By (-P), (-s) and (-r_) we get the sequent of the form:
(11) TRUE JF0=2,0=1, 1= 2,6.

By Case 1 of the point 5 of RS-algorithm we put b into the file X 3and the sequent from (11)
is an element of the set Moreover the sequent (9.22) is the special axiom too. Obviously the
sequent (8) for /= 0 is the special axiom, since b is in it on the right-hand side of the sign |f.

Now we consider the point (5). Using (/c+), (A+) and (C+) we get two sequents:

(5.1) b [begin x:= 1; y:= 2 end—>(= y), begin x:= 1; y:= 2 end((x = y) a (a:= FAISEja),
(5.2) 6 |(- begin x := 0;y:= 2 end(begin u:= 1;while—(Uu=y)v (u= x))dou:= u+ 1;ifu=x
then a:—TRUE else a:= FALSE; end a), begin x:= 1; y:= 2 end ((x = y) a ((@a:= FALSE)a)).
Case (5.1). By (C +) we get two sequents such that using (N +) for one of them we get an axiom and
using (N 4-), (-P), (s+), (-s) we get the sequent ofthe form 1 = 2,6 |- FALSE which by (rQ becomes
an axiom.

Case (5.2). By (C+) we get two sequents:

(5.2.1) 6 | beginx:= 1;y:= 2end (x = y),beginx:= 1;y := 2 end (begin a:= 0;while- ‘((u = y) v
(U= x)) do «:=« + !I; if u= x then a:~ TRUE eke a:= FALSE-, end a),

(5.2.2) bjj-begin x :=1; y:=2 end((a:= FALSE)a\ begin x:= 1; y:=2 end (begin u:=0;
while (U = y)v (u= x)) do u:= u+ 1; if u= x then a:= TRUE else a:—FALSE; end a).

Since both cases are nearly the same, we shall consider only the case (5.2.1). For further
considerations we shall introduce the following abbreviations: ais equal to (@ = y) v (u = X)), si
denotes begin p:=(p a—>a); «:= u 4-1 end. Using {k+), (s+), (k+), (P’+) and (fc+) in (5.21)
we get
(12) 6 ||-begin x:= 1;y\—2end («:= 0[p.—TRUE \Jsi (pa->>aA ifu= x thena:= TRUE
else a:= FALSE] a))), 1 = 2, where p is a special element from VO (see Definition 16). By (r,4~),
(P'+), (U+)> (P’-b) and (C 4-) we get two sequents, but one of them, after using ((J 4-), (P4-) and
(s-t-), becomes an axiom because TRUE appeares on the right-hand side of the sign J-. Therefore
we consider only the last sequent which is of the form:

(13) 6 |(- begin x:=V, y:= 2 end {u:= O{p:= TRUE («Aif u= x then a:= TRUE else
a:- FALSE;), 1= 2,beginx:= l;y := 2end (u:= 0(p:= TRUE \Jsl(sl(pA aa if u= x then
a:—TRUE else a:= FALSE; a))).

Let us denote by 6 the sequence of generalized formulas of the form:
begin x:=1; y:=2 end (u:= 0(p:= TRUE \JsI(sI(sl(pA aa if u—x then a:= TRUE eke
a:= FALSE; a))))), begin x:=1; y:= 2 end (u:= O(p:= TftI7B(sl(pA ca if u=x then
a:—TRUE else a:= FALSE; a))).

Using ((J4-), (P4-) and (C4-) in (13) we get two sequents:

(13.1) 6 |f-begin x:= 1;y:= 2 end (u:= 0 ((p:= TRUE) a)), 1 = 2, 6,
(13.2) 6 j|-begin x:=1; y:=2 end (u:=0 ({p:=rRI7E) if u=x then a:= TRUE else
a:= FALSE; a), 1= 2, 5.

Let C be of the form: begin x:= I;y:= 2end (fz:= 0 (p:= TRUE fisl(sl(sl(pA ha ifu=x

then a:= TRUE else a:= FALSE; a))))).

84

Case (13.1). By (C +) we get two sequents:

(13.1.1) b |D begin x:= 1;y:—2 end («:= 0 (p:= TRUE (sip))), begin x:= L y:= 2 end («:= 0
((>:= TRUE)«)), 1=2, C,

(13.1.2) b |(- begin x := 1; y:= 2 end («:= 0 (p:= TRUE (st (@ aif u—x thena T R U E else
a:= FALSE; a)))), begin x:= I; y:= 2 end («:= 0((p:= TRUE @), 1= 2, (.

Case (13.1.1). By (1J+), (P+), (A+), (s+), (rc1+), (C +) we get two sequents. Using for each of
them (1J+), (P +), (s-f), (N +), (-A), (rd we get four sequents which are axioms because FALSE
belongs to the left side of the sign ((- of each of them.

Case (13.1.2), Let us consider only the generalized formula T of the form: begin x := I; y:= 2 end
(u:= O(p;= TRUE (si(« a ifu= x thena:= TRUE else a;= FALSE; @)))), which belongs to the
right side of the sign jb in (13.1,2). It is easily seen that using some rules of inference to the sequent
(13.1.2) which is of the form b |- T, F, we get the sequent of the form:

(14) bft-r, T.

Let ji be of the form begin x :—1;y:—2end (tr:= 0 (p:= TR UE (sl((a))) and k be of the form
begin x:= 1;y:= 2 end (u:—0(p:= TRUE (si(if u—x then a:—TRUE else a:= FALSE; a)))).
Using (C+) in (14) we get two sequents:

(14.1) binh ft, r,

(142) bihk, r.

Case (14.1). Using some rules of inference to the generalized formulas which belong to T’
we get at last some sequents of the form b [(-Tj, p. Next by (A 4-) we get sequents of
the form:

(15) h | I-r2) begin x:=i; y:=2 end (u:= 0(p:= TRUE (sl(u = x), r3.

Repeating this process and using in turn two rules of inference (s+), (rx -f) we get at last some

sequents of the form:

b |- TRUE, F+, which are axioms.

Case (14.2). Using some rules of inference to the generalized formulas from F we gel at last some
sequents of the form b ||-Fs, k. By (k+) we get

(16) b Ibbeginx:= I;y := 2 end (u:= 0 (p:= TRUE (si {(« = X) a ((a:- TRUE)a)) v (-(u = x) a
((«:= FALSE)*)))))), F5.

Using some rules of inference to the generalized formulas from Ts and at last using (A +) we
get the sequent of the form:

(17) b jl-begin x:= 1; y:= 2 end (u:= 0(p:= TRUE (sl((u = x) a ((a:- TRUE)a))))), Va

Now we use some rules of inference to the generalized formulas from r,,. At last we use (C +)
getting two sequents of the form:

(17.1) b |Fbegin x:= 1;y:= 2 end (u:=0(p:= TRUE (si («= x)))), F7,

(17.2) b [bbegin x:= 1; y:= 2 end (a:= 0 (p:= TRUE (si((a:= TRUE) a))), r 7.

Case (17.1). Repeating this process and at last using in turn (s+), (r,,+) and (r}+) we get some
sequents of the form b [b TRUE, r 8 which are axioms.

Case (17.2). Repeating this process and using at last (s+) we get some sequents of the form
b}b TRUE, F7 which are axioms.

Case (13.2). We shall only show how to use the rule for a special generalized formula of the sequent
because the other rules are not essential. Therefore this special generalized formula will be still
written on the right side or the considered sequent. By (C +) we get two sequents:

(132.1) b |br, begin x:= 1;y:- 2 end («:= 0(p:= TRUE (si p))).

(13.2.2) b |bF9 beginx:= 1;y:= 2end (u:= 0(p:= TRUE (si(a a ifu= x thena\~ TRUE else
a:= FALSE; a))).

It is easily seen that case (13.2.1) is analogous to the case (13.1.1) and the case (13.2.2) is
analogous to the case (13.L2).

We have proved (iv) for - {seSeq":berights)} and X 3 containing the classical

formula b. 1

85

The above examples show that the constructed algorithm computes even
such generalized formulas for which the standard computation is helpless, since
as it was mentioned in the introduction, it is impossible to compile the program
K5 defining the function h{x,y) in the case x = 1 and y = 2. The retrieval
system, however is able to find the additional premise u = 2 of function h to

prove the formula h{12) = u.

5.5 The data structures and implementation
of a retrieval system

The system is based on Gentzen’s axiomatization of algorithmic logic
G. Mirkowska [58]. The implementation needs some structures. Objects of the
type TNODE of the form:

KIN D IDENT
LEFT RIGHT

where types KIND and IDENT are INTEGER and types LEFT and RIGHT
are TNODE represent generalized formulas, generalized terms and programs.
We present some representations:

IF a THEN K ELSE M R->

Viot— >

BEGIN END ;
BEGIN K] M END a - >
K M

——————— fcj
W HILE Do
WHILE a DO K B —>
a K R
2 / | X 5
P2(/1(ie5)) - - -> r r
L L

The object of the type FORMULA is of the form:

PLEAF
LLEAF
NEXT

where PLEAF and LLEAF are of the type TNODE and where NEXT is of the
type FORMULA. The list of objects of the type FORMULA represents the
sequent X \\- Y. Let POINTER be an object of the form:

SEQUENT

"dow n

where SEQUENT is of the type FORMULA and DOWN is of the type
POINTER. Let HEAD be of the type POINTER. We can represent the list of
the sequent X, |- Yv Xk|(- Ykwhere Xt |J- t= {ft,..a'f} |h {ft,..,ftj for
1 < /< Kk in the following way:

HEAD KIND IDENT
i LEFT RIGHT —af
PLEAF 1
SEQUENT KIND IDENT
LLEAF
DOWN LEFT RIGHT _ p|
NEXT
I X, ih ¥
: KIND IDENT
r LEFT RIGHT
PLAEF
LLEAF KIND IDENT
NEXT LEFT RIGHT

SEQUENT xkitn
DOW N

We use the rule only for the last non-empty PLEAF or LLEAF in the
considered sequent. It can be seen that (A+) adds a new FORMULA and
(C+) generates a new POINTER and a new SEQUENT. Using (C+) to the
last non-empty PLEAF in the sequent X J-Y, we copy X | Y and we put
a new HEAD1 such that HEAD1. SEQUENT points to the copy of X [} Y.
Next we pull a from the last non-empty PLEAF in the sequent X |- Y. Thus

87

we change TNODE a a 0 into a. Then HEAD .DOWN; = HEAD.DOWN;
HEAD.DOWN: = HEADI. Moreover we pull from the last non-empty
PLEAF, which lies in the line pointed by HEAD LSEQUENT. Next we change
TNODE a a /f into /2 During the proof we use a lot of options to reduce the
complexity of the tree.

In the end we shall provide a sketch of implementation of the retrieval
system i.e. we shall present the main procedure PROVE showing only the area
of activity of major procedures and functions.

UNIT PROVE : PROCEDURE (M : POINTER);
< Declaration of constants, variables and objects >
BEGIN
Read a formula from a file and construct a sequent pointed by M;
Read a definition of function or relation and construct a sequent pointed by M I,
Replace a function in a sequent by its definition and move a program outside the equality predicate
or replace a relation in a sequent by its definition;
W hile possible, use some basic procedures to the last generalized formula from the right side of
M .SEQUENT:
— compute arithmetic expressions /use (1 _+)/ eg. 1+ 2— > 3,
— compute special arithmetic expressions e.g. 0 *J\x)— > 0, jc° — > 1,
— convert classical terms fj ~ t2 in a model of arithmetic into logical FALSE /use (rj/,
— convert classical terms, which are equal in the above-mentioned model into logical TRUE

Juse (rit+)/,

— simplify logical expressions eg. TRUE a a— > .

Remove a sequent including FALSE on left side or TRUE on right side;

While a tree M of sequents is not empty, execute the proof:

— while the considered sequent pointed by M contains programs, connectives, functions or
predicates defined in M |, continue the proof and look for the set of axioms:

— if in a considered sequent its antecedent exists then search for a connective or a program
in the last formula from right side of M .SEQUENT.

— If a connective or a program was found, use a proper rule from (R+) or (+ R), else either
if it is possible make substitutions and move the last formula from the antecedent to the
beginning of a sequent, or look for the first formula From the antecedent not belonging to At
and move all others formulas on the right of it to the beginning of this sequent,

— do some ordering procedure simplifying the sequent ie. remove empty Inodes, search
axioms and when found, erase the sequent,

— repeat the above-meDtioned two procedures for the premises of the sequent;

— search for a special axioms which enable us to finish the proof and update the list of them,
— continue the proof for the next sequent after removing the proved sequent.

END.{PROVE}

5.6 Results of experiments

Now we discuss some experimental results. In our experiments we use IBM PC/AT with frequency
of 50 MHz. Let us consider the following theories:

AR — arithmetic,
AL — algorithmic logic,

88

ST — set theory,

LT — lattice ; ALT — axioms of the theory of lattice,

BA — boolean algebra ; Aba — axioms of the theory of boolean algebra,
G — geometry,

CQ — calculus of quantifiers,

PL — propositional logic.

For further considerations let us define the following program:
K6 — if x = 1 then gl := FALSE else ql := TRUE;.
Now we define some sets of axioms:
ik
al - VxVI(P(x,y)"Q(x.y))
a2 - VxV,(e(x,y)-P(x,y))
a3 - WxV,(3?7(x,y) = (S(x,y) v T(x,y))).
a4 — Vx(I/(x) - W(x))
a5 - VIV/(fP (x)=-.(P (y,x) a S(X,y)))
where
P(x,y) — means that x£y,
Q(x,y) — means that x c y or x =V,
R(x, ") — means that the power of the set x is less than the power oithe set y or these sets
are equipollent,

S(x,y) — means that x and y are equipollent,

71Xy) — means that the power of the set x is less than the power of the set vy,
U(X) — means that the set x is finite,

\V(X) — means that x is Dedekind finite set;

bl — VXV,VWOT(X,y,n,V)-+ P(X,y, u,u)

b2 — VrV,VW,(P (x,y,u,u)-> E{x,y,v,u,Vv,y))

b3 — T(a,b,c,d]

where
T(x,y,u V) — means that xyuv is a trapezium,
P{x,y,ulv) — means that the segment xy is parallel to uv,
£(x,y,z,u,u, w) — means that the angles xyz and uvw are equal.

Ti - VX(VYly < x - P(y))-» P(*)) - VxP(x)

T2 - VXV7(x + y =y + X)

T3 - Vx(x + Cl- x)

T+ — WX((x * G AX™* c2 *c2< X)

Ts — UxV/(x <y)= 3z(z * ¢, ax + z=Y))

T6 — ci ~ c2

The constants ¢, and c2 can be interpreted as 0 and 1. This example shows as well that we
can use another definition of the mathematical induction.
G

G, - VxXVrvx VrVO(p1(2C Y, X', Y a) i Clp2{X, Y, X", Y,C))

g2- iy X, 1<) aPHx, y,x\ ycd ap3c!,car- pHic2 <)

g3- vEB>ar3>g3r p.(X, yr, r,*)

G4 — VCI3C2P3(C 1 C2)

Moreover the expression p2(X,Y, X\ 1",a) means intuitively that two points X, Y lie on the
first arm of the angle and two points X 1 Y1 lie on the second aim of this angle and the pairs of
segments OX, OX\ XY, X'Y1 osculate respectively.

89

The expression p2(X, T, X', £ CJ means that ihe point Cj lies on two lines XY 1and X'Y.
The expression C2) means that C2is the line OCy The expression P4(C2 a) means that
the line C2 is a bisectrix of the angle a.

If X is a set of axioms then by X we mean the conjunction of all these axioms. By L we
denote the number of used axioms in the considered theory. T denotes the duration of the proof
of theorem or the duration of the verification of an expression. We recall that theorems of
PL,CQ ,AL can be proved without axioms because retrieval system has all necessary rules of
inference. By D EF we denote the definition of a function or a relation defined by program (see
(FP))

If during the proof of an expression, which should be written in the set DAT, wc need
a special axiom, then in the column RESU LT the premise will be written to inform us about the
elements of si.

Tabic 1
The table of some experimental resides of RS-algorithm
TIME
Til DEF DAT L RESULT PC 486
50 MHz
[m] b3
AL =w si\u—2 0.33
/(«) = /(3)=u si:u—6 0.45
Ka m =ia THEOREM 0.07
(Yti- '(* = 0) -» {f[x) —x *f[x —1) -»
+ 1) = (x + i) +f{xm
k(x,y) = k(x,1) - x + 1 THEOREM 0.30
K 3(z) k(x,2) —u si\u=x+2 0.32
SM = CH =R o =x* 0.03
KM
p{x,y) = P(»2)=b si:b 227
K 2a means
b= TRUE
p'(x) = p'(l Bb si\~>b 0.30
W) means
bs FALSE
ST UA1- 5 THEOREM 0.88
V*V((/Gic) a P(y, X)) -+ TIy, x))
LT 11 att-»vx((15 THEOREM 256
_y=y—=2x = 0)a (VyXny=y-*x= 1)
BA 11Ab, - ({Xv Y)\Z = {X\Z)u (A Z)) 18 THEOREM 2.8
il Aba YxVr(X c Y-> 18 THEOREM 0.07
VZ((Z\Y)c:(Z\X)))
E[AaA-VXVr((X = T) = 18 THEOREM 0.39

VZ((Fc: Z) > ((Z\X) n(Z\7) = Z\ Y))

90

AR

cQ

cQ

PL

fl A2 -> E[a, b,d,c, d, b)

niN -((P (o)A
P(x + 1))) -> VXP(x)

W fcjO sV ,V ,P(x,y)

3,(3yPM p,.x)A3rP(fcjZ ,x))v
(By-PM y,c) a3,-"pfcM)

v.0p.M -a.xPat*.))
= 3x2(PiW = Pa(Xa)))

{x=JAa(@=2a P u)-*Py,2
(PM -*v,0W) = Vy{P(x) A Q(y))
-(3XPM v 3yOM) v 3.(P(z) v 2(a))

P(x) = P(jc) = 6

(P->(B~»S))-((P~>RB)-{P “>9))

THEOREM

THEOREM

THEOREM
THEOREM

THEOREM

THEOREM
THEOREM

IS NOT A
THEOREM

DEFINITION
INCORRECT

THEOREM

Com. Tab. 1

0.18

2.10

0.12
0.16

0.06
0.10
0.03

0.02

0.01

Chapter 6

Theorem proving by decomposition

6.1 Axiomatization and decomposition

Let us consider the language <€ = <L,ToT,FQF,S0S,FV> where Fv is
defined as Fv and additionally it is based on the language with generalized
terms T.

Definition 22. Let M be a program. We say that

(i) the program M is correctly constructed if it is not a composition,
(if) the program M is of normal form iff one of the following conditions holds:

(@ M is correctly constructed,
() M —[MA M\ for some correctly constructed programs M x > Mn

and for n> 2,
(iii) the program M is a normal assignment iff M is an assignment instruction
or M = [Mj~,M,] where Mx, M n are assignment instructions and

n> 2
A normal assignment will be denoted by £. O

Definition 23. Let 9 be a generalized term or a generalized formula and let
a, ei 5 an be assignment instructions, neN. We define the execution of LO as
follows:

(i) ifL —a then L8 is the result of execution of substitution ¢ for the expres-
sion 9,

(i) ¢fX = [ffi.-.ffj then X0.= [d y a9 O

92

Definition 24. Let K, L, M, P be the programs. We denote by symbols v, * the
operations defined as follows:

(i) vP:= P when P is correctly constructed,
v[P,.K]:= [P, v when P is correctly constructed,
V[[K,L],M]:=v[K,v[L,M]].
(i) S * K [5, K] when S is correctly constructed,
[K,.L~]*M := [OC,L*M]. O
Let J{ be a model, v - - a valuation, K, L, M — programs, Z — a normal

assignment, 5, A— classical formulas /i.e. formulas without programs and
quantifiers/ and let a be an assignment instruction.

Axioms of decomposition
If U,V} are programs, then we put

We denote by symbol < the relation defined as follows:
Al [Z,[a,iC]] <[Z\tIC],
[z,cr] -<zV,
A2 -<[Z,(vK)*L] if K is not correctly constructed,
A3 [Z,[r[<5iCL],M]] < 2Z5([Z,(VK)*M]; [Z,(VvLIM]),
[Z, [&KLB < 77507 vK]; [Z, vL]),
A4 [Z,[+[5i:],M]"< ?2Z<5([Z,(VIK, [z, A),
[Z,* [&K]] < ?Z«5([Z, VK, * [<5K]]T; 2),

K<L,L<M
K<M

We can see that these axioms give us the rules of decomposition.
Operations v and * defined in Definition 24 prepare the program for
decomposition in the case when the program is of the form [IC,M] and K is
not a normal assignment. To explain Definition 24 and the idea of axioms of
decomposition let us consider the following example [[51)s2], [s3,s4]] where
st, .., s4 are assignment instructions.

[[s¥52, [s"s]] < by Al.
[[s1s2]'s3s4] = by Definition 24 (ii).
CUi,5283],54 = by Definition 24 (ii).

[[>! [i2>S3]117J < [il,[S2S3]11% foy Al-

93

[si> s4] —Gi>[52 _ r*n "> eI Miiln —
[sifs.. s3 s4] by Definition 24 (ii).

The expression [[s1s2]}[s3>s4]] is not an assignment instruction but
using the operations v and *we get a normal assignment of the form [il s2

S3HHAJ-

Lemma 9. For any programs K, L, M and for every normal assignment
X —[ov ..of] the following conditions hold:

(i) wK = vK,

(ii) len(vK) = len(K),

(i) (v™a(y) = K#(v) for every valuation v and for every realization 31 in
a non-empty set U and in the boolean algebra 08o,

(iv) for every assignment a the program E’er is a normal assignment of the form
[cx oncr],

V) v((vK*L) = v[K, L1

(vi) (vK*({vL)*M) = (V[KyL])*M- O

Definition 25. The length of the decomposition of the expression of the form

[K, L] is equal to:

1 — if there do not exist programs K* L such that [K, L] -<[£', Ii]

a+ 1 — if there exist programs K\ L’ such that the length of [ii', L7
equals n and [i, L] < [U1 14\ is of the form of one of the axioms
Al—A4. O

It is easy to prove the following theorem:

Theorem 10. If Wt < W2 then (W " = (W2m O

Lemma 10. Let X, Xxbe the normal assignments and let K, L be the programs.
If [Z2,K] < then [L,(vK)*L] -< [XxL].

Proof (Induction on the length of the decomposition of the expression [X, !£])e
If the length of the decomposition of the expression [X, Kjj is equal to 2 then
Az was used. Because £] is a normal assignment, then [X,fC] -<2” is of the
form [X, o] -< E’er. Hence K - o, Xx = XV, thus [X,(v.K)*L] = [X,[er, L]] and
[E.[<7,111] and [E’e,L] —[£¢,1], which ends the proof of the
first step of the induction.

Now we consider all cases of decomposition of [X, IC] by the relation <.
Let us assume inductively that for any K any normal assignment X' for which
[2'3if'] -< XLand the length of the decomposition of the expression [£', K]
is less than [X,JT], we have [E',(MK)*] <[I,v L\

If Al of the form [Xr[cr,ir]] < [X'V,K'] is used then K = [*,£],
E = X. Since by Definition 24, we have [X,(viQ’L] = [X[or,(v.K)*L]] -< [X'V,

94

(VK)*L]. Using the induction assumption we get [E*0-,(vK:)*L] -< [EIfL], thus
[E,(viC)*L] < [Ez Lj, which ends the proof in this case.

Let K\ L be the programs. If A2 oi the form [£',[£", L"]] < i'L'XvKJL'] is
used then K = [K', L], E = E" In an analogous way we get [E,(v((vK)*L"))*L]
< [EXL] by the induction assumption. Since by Lemma 9 (v) V((vK)*L) =
vIK\L~] and [EAVCKMTD'L] < [St,L], we have [E,(VE)VL]-<[E~L],
which ends the proof in this case. Let K', L, M’ be the programs. If A3 of the
form L'1,M/] -<?E5([E,(viC/y*Mf]; [E,(vL")*Ai']) was used and
since ?E(5([E,(vK)*MT; [E,(vL)*MT) < Ex then we get [EAVICXM'] < E” in
the case M jj- B (the other case is similar). Thus by the induction assumption
we get < [2i, Q- Since by Lemma 9 (vi) (V{(vK)'M)*L =
(V[iC',M/])’L = (ViCX((vMXLr) and [Z,(vin*{vMT.L] <[25L], we get [E,

<[LliLldK",~ (vM)-L]] and [E, [.*.[5*7,
[VMJLf] < ?E5([E, (vX)*((vMTL)]; [E,(vZ0* ((vMTI)]) and moreover ES
([Z,(vKT((vMTL)]; [E, [(VL)'((vMTL]) - [E {vK)y*{{vM)*LA and [E,
(VKY*((vMXL)] < [EBZ]. enables us to finish this case of the
proof.

The proof in the case when A3 is of the form [X,si,[5K\ L]] < ?E<$([E,
vK'l [E, vL") is similar.

Let A4 be of the form [E, [*[<5i£],ikf]] < ?E5([EX(V[IiC,* [*']]) ‘M,
[E.MT) and let M 1= —s&& Then [X, AT] <B" and by the induction
assumption we get [X, (vM)*L] < [XI5L], Thus [E,(v[*[<5i£], MD]*] < [E,

and [£,[*[""3,7)"]] < ?ES([E,(V[AY, *[<5KT))’
(WWO'L)]; [Z,(vM)*L]) and ?X5([X,(v[IC,<52C]])*((vMOm [E,(vMO*Lj) =
[X,(vM)\L] and finally [E,(vM")*L] < [XI5L].

Let now Ji |= E5. Then [Z>[2C,*[5K,]]),M] < E1 By the induction
assumption of the form [X,(v((V[K"*[<5,IT])W3)LL] < [XZLL] and since
VMK",*[SK''yM") = (VIK'*SK'"nvM) we get [2Uy[*[<52C3,
-<[E,[*[*].,(vMTL]] and [X,[*[*'].(VM TO] s?E<5([E,(V[X>[5K]
D*((vMTL]); [E,(vMO-T]) and ?S5([E,(V[iC>*[«5K'T]r((vMO*1)]; [Z,(vMO*L3)
= [E,(V[K'S*[5ii']]r((vM")*L)] and finally [E, (v[X'+[5*]D*((vMTL)] <
[EL L], which ends the proof in this case.

The proof in the case when A4 is of the form [E, *[&K]]

< ?£5([X, VI[K, *[<5£]]]; E) is similar. m

Definition 26. A normal assignment E is well-formed for the program K iff

9(5” n 9Ys;wj) = P for every st, Sj(i ~ j) from E and for every wk, w, e &(K)
wherefor any expression x, 9(x) denotes the set ofall individual and propositional
variables occurring in x. O

95

Definition 27. We shall say that the program K has STOP property in the
model Ji iff Kgfo) LOOP for every valuation v in the model Ji. O

By Lemma 10 we can prove the following theorem:

Theorem 11. Let K be a program and X be a normal assignment well-formed
for K. 1ffZ, iQ has STOP property in the model Ji then there exists a normal
assignment X* such that [X, IT] -<XK O

Proof. (The proofis by the induction of the length of K). The case when K is an
assignment instruction is trivial since [X, c] -< XV. Therefore by Lemma 9 (iv)
X* = X is a normal assignment.

Let K be of the form [L, M], Since [X,K] has STOP property in the
model Ji, for every valuation v we get:

LOOP * [E,[L,M 3]» = Ma(L*(X»)) = QM

Hence [X, L]a(y) » LOOP for every v. Thus [X, L] has STOP property in the
considered structure. Since the length of [X, L] is less then the length of [X, K],
by the induction assumption there exists a normal assignment XL such that
[X,L]-<XL By Lemma 10 we get [X,(VI}*M] < [XLMJ. By A2 and
Theorem 10 [XL, M] has STOP property in Ji. Because XL is well formed for
M then there exists XLAfsuch that [XL, Af] -< XLMwhich ends the proofin this
case.

Let K be of the form By A3 [X, y [SLM]] -< ?2X5([X, vL];
[X, vM]). Let us assume that Ji f= X& Hence [X,j*[6LM]] = [X, vL\. By
Theorem 10 we get that the program [X, vL] has STOP property. Since X is
well formed for vL and by the induction assumption there exists a normal
assignment Xvi such that the following relation holds [X, -< XL
The proof of the case M X5 is similar.

Moreover the proof in cases when K is one of the form [*[¢(LM],JV],
[*[<5L],M] or *[<5L] is obviously similar. m

Corollary 2. By Theorem 11 we get that every program K having the STOP
property in @ model Ji can be decomposed by the decomposition rules to the
normal assignment, which we denote by the symbol KM. O

6.2 Decomposing proving system

Let Ji be a model of arithmetic. For any T, Q, U being sets of finite sequences
of generalized formulas, U c: At, U ~ 0, s being a normal assignment, KeS,
3e F\At, "e At, a, fieF', xe V we define the schemes of the rules of inference

as follows:

96

nu.Qys A rij-G

P+ -P
P+ we.5.U) ¢ ivi-c
sct,r\-Q T}- sa,Q
N _)
(N+) V{-Q,$-«x (-N) F.jrraj-Q
rj-5a, Q;r\-sp,Q 5a,5j2,1j~Q
€ rhosaan (O ¢ s@aPr)Q
r\-scc,sp,Q scc,r]rQ;sp,r\-Q
A
A+) rhfi,5(a v P) A r,s(a v P)\-Q
d+ sa,r\-sPyQ r\-sa,Q;sp,r\-Q
) r\-Q A«"P) (D r,s(cc~* P)\-Q
{T\-sKlatQ\ieJr} inx(K«).«,ri-fi
(O+) g sflKa (-0) " rsn&i-e
r\-s{JK(Ka),sa>Q {siCia,r|-8:ie"K }
(U+) r\-Q ,s{JKa <U)

ri-(5),e .. (jari-e
G+) tj-G.se rsev-Q (FCrU 1\ o ska
[sKJIMaX\-Q r(-s((x:=y)a),0

(=)~ r,sKa\-Q (V+)

where y is the least element of the set V such that y $({I‘, Q, s).

(-V) = U?er0(“ Nz where for every teT G

sVxa, (y:=*t)(s((x:=y)a))t F\-Q
(=n r,sVx<\-Q
eset F\ Q(sa).

and y is the least element of the

Formulas containing existential quantifiers are transformed in a standard
way into equivalent formulas containing universal quantifiers. The rules (—k)M,
(k+)M by Corollary 2 reduce programs to substitutions. Then the rules (s-f-),
(-s) may execute the substitution on atomic formulas.

97

7 Algorithmic...

Let Rfey be the set of all of the above mentioned rules and the rules of
decomposition. We divide all the rules into two groups: (£ +)w and {—R)M.
It is known by G. Mirkowska [58], [57] and by A. Biela [5] that every
generalized formula p(xt, ... t] containing programs can be transformed by the
function i into the formula of the form Kt ..Knp{x\,..,t) where p(x'L,
does not contain programs. To get a complete characterization it is necessary
to add to the previous rules two rules of the form:

(s x{p(xi,....xj)yr\-Q
rhQ,p(T1...,0 X r,p(Ti,..,TF(2

Let pand p be the symbols not belonging to the considered language. We
assume that the functor (pis m-ary and the predicate letter p is n-ary. By if* we
denote the extension obtained by adding the functor (p and the predicate p to

the alphabet.
Let K, M be programs and let cceFa and teTa be such that:

HKce) = {jqg ,xn)
${Mt) = [y"-."y]

Now we introduce in the same way as in chapter 4.2 the system offunction
and procedure defining the notions q p:

[FP) (p(yv ..,yml) = Mt p (X ..xni)= Kct

In the considered language if* the sets At’, Seq’ and {Ax~f are defined
analogously to the sets At, Seq and (Ax=). To define the set REq in if*
analogously to the set Rfeqwe change the usage of the rules (P+) and (-P). The
rules (P’+) and (-P’) can be used even in the case when the classical formula
<%e At’and 5 contains (pftlt.., tj, where (pis from {FP}. Obviously we get the
set (£'+)m* and (-&')™ hi the language if* instead of (E+)m* and {—R)M
respectively.

We extend the set of the rules of inference Rfe q We shall consider the

following rules:
frat), (M+), KJ, (-4), (A, (-rj, (1], (r=+), (-r=)

These rules and the set W are defined analogously as in Chapter 4.2.
We shall need the rule of the form (B) which is one of the rules (B+), (-B)
and for example:
r\-sK(x=u),Q
n-a("T)=u

98

where u is not an element of &(sK). This rule is a case of the rule (B) from
Chapter 4.2.

Moreover the rules simplifying generalized formulas containing FALSE or
TRUE {eg FALSE va changes into a) belong to the set W.

By we denote the set containing the rules from W and the rules: (x+),
(-id 67+), (~0> (B), (P’+), (-P»0™+), (-O- s the union of two sets (#.+)
and (-£?.).

6.3 ~N-diagram

In these considerations the model and the idea of decomposition will be
used and the above-mentioned two rules (&+).*, (—k)M will play an important
role.

The notion of indencomposability of a sequent in FE' is analogous to
Definition 18.

Definition 28. Let M be a model. By *-diagram of a sequent seSeq' with
a special set of axioms cz Seq’ and the rules we shall mean the tree of
sequents Ss— < S, <> if and only if it fulfils the following conditions:

(X The sequent s is a root of 6 S

(2) 1fs'eS and s' is indecomposable or s’ is an axiom or a special axiom then s'
is a leaf.

(3) Ifs'eS is on the 2n-th level of the tree <5 and s' is a conclusion of a rule
from X where X — (*+)\{(rcy+), (r*+), (P’+)} then r(s) is an element
of X. It means that the order < has the following property: for every
sequent s, the expression P_(ss._ is one of the rulesfrom We assume that
if s” is decomposable then we consider the first generalized formula on the
right-hand side of the considered sequent s’ to construct r(s).

If ' is not a conclusion of a rule from (~*+)\ {(r®+), (*y+), (P'+)}

then:
(i) If left(s) u right(s) ¢ At' then the following condition holds:

(il) 1fs" is a conclusion of some rule from {(rau+), (r'u+), (P'+)} then
r(s) is the same element of this set. Otherwise r(s’) £(-£%").
However ifit is one of the rules (-ral), (-r'y) or (-P") then such r(s") is
used as the last of all of these rules.

(ii) 1f right(s) n (F\At) =£0 then r(s") e (P'+)M.
(iii) 1f right(s) c: At” and left(s) r\(Fy\At) i=fi then r(s') e(-R)M

(4) 1fs’eS is onthe 2n + 1-th level of the tree & and s’ is a conclusion ofa rule
from (-2\{(“ 0 ’ (“in). (-P"} then T(s) is an element from this set.

v 99

We assume that if s” is decomposable then we consider the first generalized
formula on the right-hand side of the considered sequent s' to construct r(s’).

Ifs”is not a conclusion of a rule from {(—m), (»,), (-P)} then:
(i) [If left(s) uright(s) c At’ then the following condition holds:

(il) 1fs’is a conclusion of some rulefrom {(—ra)), {ro), (-P7} then r(s?)
is the same element ofthis set. Otherwise r(s‘e (& mt+). However ifit
is one ofthe rules (-ra), (-r',,) or (-P') then r(s’ is used as the last of
all of these rules.

(i) If left(s) n (F'A\At) * 0 then r(s) e{~Ry*.

(iii) If left(s) ¢ At” and right(s) r\ (F\WAt) ~ O then r(s) e (R'+)M
(5) Ss is well-formed for (-V). O

The deductive system <& (Ax=)"u u M,> will be called the
RETRPROV system where sdM is a special set of axioms. O

Using the RETRPROV system we shall change the standard notion of
proof in order to prove some properties which are not tautologies but which
hold in a model of arithmetic. Moreover this system enables us to consider
some notions defined by programs.

We shall say that is Ji-diagram of generalized formula a if <S,< > is
~N-diagram of the sequent O (- a with a special set of axioms sdM and the
rules |

Definition 29. We shall say that a generalized formula a has a proof in the
RETRPROV system (aeproof<(Ax")' mu Rfequ”~,>) if and only if the
height of the Ji -diagram of the generalizedformula a isfinite and each leafis an
axiom or a special axiom. O

However, there is a problem how to choose the set of the special
axioms. Obviously this problem will be considered in a model (i.e. in a standard
model of arithmetic in which the functors and predicates are interpreted and
where +, — *, ffrj are interpreted as addition, subtraction, multiplication,
m-th power and division respectively.

Let us remark that the ~-diagram of the generalized formula extends
Gentzen’ ideas: this is shown in Definition 28 (point 3 (i) (il)), since it makes
further proving possible even in the case when we get a sequent containing the
atom of the form (FP) or containing the atom including a term of the form (FP)
e.g. a term defined by programs (see Example 11).

6.4 Algorithm for proving theorems

In this paragraph we shall formulate the RETRPROV-algorithm which
enables us to prove theorems as well as to find a special set of axioms for
expressions containing procedures and functions defined by programs.

100

Let (FP) be a system defining the notions g~and p. Any Jt-diagram of
a generalized formula (p(tL>.., tn) = u from (FP) will be called a (p-Jt-diagram
and any Jt-diagram ofgeneralizedformula p(rl) rj = b will be called a p-"tt-
diagram O

The RETRPROV-algorithm:

1 Read(k); (k is a natural number helpful for “while”),

2. n:~ 0; X:= an empty file. We put the sequent (- *(il,...J87) = u as the root
in the (p-Jt-diagram (where <pt>.., tj is a classical term from (FP)) and we
put the sequent f- p(xv ...xn) = b as the root in the p-~-diagram (where
p (t15.,t,) is a classical formula from (FP) and ue
Moreover be WO\ 5({p(rl 3 t,),Ka})\

3. If a sequent s on the n-th level is indecomposable or if it is an axiom or
a special axiom (i.e. it is an element of the set of the form: (seSeq”
a eright(s) for some a from X and a* -*b or b eleft(s) for ~*beX}), then s is
the leaf. If all sequents on the n-th level are leaves then STOP — the proof
exists and the set of special axioms is equal to

4 n:=n+ 1
We construct the n-th level of the (p-Jt-diagram of the sequent
(- ip{tv, .., tj="u and the n-th level of the p-~f-diagram of the sequent
\- p(12.., +,) = b with the rules 0, and the special set of axioms which was
defined above.

If it is possible we use rules from (0, § Rfei)\ {(-fj))} to construct the
n-th level in the <p-Jt-diagram or in p-~-diagram using the premises of the
considered rule. We pay attention to use the rules (rd,+), (—al), (P’+), (-P)
only in the case when no other rule from 0t can be applied.

If we need use in the construction of the n-th level in the ¢ Jt-diagram
or p-“f-diagram the rule (-1J) for a sequent s of the form: T, sitj {Kd)\-Q,
then for further considerations we denote by Mff) the expression of the
form ¢KI where | is a natural number.

It is known that we get the following set F Q} of sequents as the
result of using the rule (-(J).

However we do not construct in practice all of these elements. In this
case we assume that the n-th level contains the sequent T,s'\J (Ka) j-Q and
additionally it contains either only k — 1 elements of the form: T\-Q
for 1 < / < k —1 when the rule (-(J) is used for the first time for the sequent
T,s (J Ka. Y@, or one element Mfk), T |Q, when the rule (-(J) was used for
the sequent more than once.

(In fact it means that on the n-th level instead of an infinite set of sequents
{M,H> T 2Q :le Jf} we shall consider only a finite number of sequents).

(To have on the n-th level only a finite number of sequents we do nearly the

same with the rules (f)+) aod (-V). However instead of the classical term t we

101

put a temporary pointer of dummy d. Moreover on each level we have to

decide whether some sequents are axioms. To do that we shall use the

well-known unification algorithm on both sides of the sign).

k:i=k+1;

5. We revise the n-th level of the tp-~-diagram or p-~-diagram. If a sequent
se(Ax~)' then s is a leaf. Otherwise if s£{i4=)'u then we consider two
cases:

(i) We look for a classical formula of the form x = u in the sequent s such

that t = ue right(s) and t does not contain the functor (p and x was not

obtained by any of the rules (r=+), (-r=) to a generalized term t containing
the functor gpand built by the functors: +, *, — ()mfor some me Jf (e.g. if
in some sequent, the classical term t equal to 0 was obtained from

O*<p(tx, tm) by (r=+), then the decomposable sequent was changed into

indecomposable sequent and we have lost the essential property).
If we find such a sequent s that fulfils two conditions:

() aeAt’ for every aes,

(@ s is not a conclusion of any of the rules from the set 2# = {(rx+), (-rj,

(%+)l ('I',), (rj1 (rn+)v ('rn)v (F +)1 ('P’), (B)v (r/\+)v ('O, (Z+)l ('*)}:

then if r = u is the only classical formula for some r which fulfils the

condition (i), we put t= u in the file X and the sequent s becomes
the leaf.

(i) We look for the element b in the sequent s. If we find such a sequent,

containing p and b on the same side of the symbol f-then STOP — we deal

with the case of the form: p(xv ...,xj = ~*p(xI}..,xj and the proof does
not exist. If s is not a conclusion of any of the rules from we consider
three cases:

Case 1. If for every aeleft(s) we get ae At\ {FALSE, b} and a does not
contain the predicate letter p and for every e rightfs), 3e AtA\ {TRUE}
and does not contain the predicate letter p and be right(s), then we
put b into the file X

Case 2. If for every a e left(s), ae At\ {FALSE} and a does not contain the
predicate letter p and be left(s) and for every /Jeright(s) we get
fte AtA {TRUE} and if ft does not contain the predicate letter p then we
put ->b into the file X

Case 3. Ifthereisband -h in X then STOP — the proof of the generalized
formula p(rl t rj = b in the RETRPROV system does not exist.

6. Ifs is an indecomposable sequent on the n-th level of the p-~-diagram or
<p-"-diagram which is not an element of u (Ax-) then STOP — if we
considered <p-~-diagram then the proof of the classical formula

tj = uin the RETRPROV system does not exist. Otherwise the
proof of the classical formula pizj,,...,x,) = b in the RETRPROV system
does not exist.

102

7. 1If every indecomposable sequent s from the n-th level of the <p-*-diagram
or p-~-diagram is an element of the set u (Ax=)and if there is no other
sequent on the n-th level then STOP — if we considered (p-M-diagram
then the set {se Seq” ae right(s) for some classical formula a from X and
a”™ band a# ~b] is the special set of axioms for the proof of the classical
formula:

and the file of the premises of the above mentioned functional equation
exists and contains the only element from X which is neither b nor >& If
we considered p-J{-diagram then the set {se Seq” be right(s) for b from the
file X or 6eleft(s) for-h from the file X) is the special set of axioms for
the proof of the generalized formula:

P(t =h n

Let us make a remark: the RETRPROV-algorithm can prove the classical
formulas as well as the generalized formulas.

6.5 Examples

Now we shall give an example which shows that the idea presented in the
above-mentioned algorithm allows us to find a special axiom for a function
defined by a program.

To explain the main ideas of the execution of our system let us consider the

following example:

Example 11.
H/U) = u where f is a function defined as follows: /(«) = K Ls. We recall that K 1 means if n = 0
then s:= 1 else s:= n*f[n —1).

To prove the above mentioned expression we shall try to find a missing assumption.
The execution runs as follows:
hsl:= I(if = 0thens:- 1else = s3+/(s2- I))(s = u)((reu+), (B)),
[-begin Sj:= 1; s:= $2»fts, - 1) eNd (S = U) i ((-*).*)>
(Sometimes for simplicity we shall write such a generalized formula in the form:
\- begin s:=/(0) end (s = u).)

() ST TR (@)
|-s2:= 0(if s2=0 then s3:= 1 else s3:= s2*J[s2- 1))(sa = u)((r,+), (B)j,
h begin s2:= 0; $3:= 1 eNd (S3= U) ovovrreereneineireeiseiesienesseee s e ————— ((—=k)~,

D o 1 bbb basee e . ((*+))-
This system admits the sequent |- 1 = u as an additional axiom (a special axiom). Intuitively

it means that/(l) = 1. So our system proved the expression [-/(7) « u by finding an additional
axiom and calculated the value of /(1). 1

103

Example 12.

Let r /(3) = u where /(«) is defined as in Example 11. During the execution of the
RETRPROV-aigorithm the set of additional axioms is generated. The proofis identical to the
proof in Example 11. In this case = (u= 6} 1

The RETRPROV-aigorithm is a dynamic way of looking for a missing axiom necesary to
solve a functional equation defined by procedure. Our system can as well find the boolean value of
the relation defined by the procedure P(x) = Ko

Example 13.
Let us consider the order relation between natural numbers.
1) (-p(l, 2) = b where p[x,y) = K29 and

K2 means if x3= x2 then q:= FALSE else

begin x3:a 0;
while—((x3= x2) v {x3= Xj))
do
"B x3+ 1,
if x3=Xj

then q:=TRUE else q:= FALSE

(@ pQ.2)hb ((C+), @+))
3) b\-p{l,2) e shreb et {(C+), a+)),
(4) begin x3:= 1; x2: ..((2) and (-F1J),
(5) bj- begin x1:= 1; x2:= 2 end K29 ((8) and (r~-P)),
(4.1) begin X3 0 while —((x3= 2) v (x3= 1)) do x3:= xs+ 1; if x3“ 1
then q:= TRUE else q:= FALSE end gq\-b .cevevivvinnis e ————————— ((—=Kk)N),
(4.2) begin x3 0; (v(begin x3:= x3+1; while —>((x3=2)v (x3=1) do x3:= x 34-1
end)* if x3—1. then gq:= TRUE else q:—FALSE end q(-b (by the rule of
of decomposition A4),
(4.3) begin x3:= 0;(begin x3:= x3+ 1, (while ~,(x3= 2) v (x3=1) do x3:=x 4 L)* if

x3= 1then q:= TRUE else q:= FALSE end) end qf-b ..ccoevrnrnnne. (by Definition 3 (i),
(4.4) begin begin x3:= 0; x3:= x3+ 1 end begin (while -1 ((x3= 2) v(x3= 1)) do x3:= x34-1;
if x3=1 then g:=TRUE else q:= FALSE end end g\-b ... (by the rule of

decomposition Al and Definition 3 (ii)),
(4.5) begin begin x3:= 0; x3 x3+ 1lend ifx3= 1then q:= TRUE else q:= FALSE end g\~b
... (by the rule of decomposition A4),
(4.6) begin begin x3:=0; x3:=x3+ 1 end g:=TRUE end g\-b
... (by the rule of decomposition A3 and Definition 2 (i)),
(4.7) begin x3:= 0; x3:= x3+ 1, q:= TRUE end q(-6
.. (by the rule of decomposition Al),

(48) TRUE 16 et ((-s))-
By point 5 (case 1) of the RETRPROV-aigorithm we put b into X and by point 7 the sequent
(4.8) becomes a special axiom in the se since * —[seSeq':6erights)}.

By analogous considerations in the case (5) we get the sequent b [- TRUE for b f-p(l, 2), which
is an axiom. m

Example 14.
Let us consider another example. We consider the function h defined as follows:

h{xltx2) = (ifxJ - 0 then x3:= 2 else x3:= A(X, - 1, h(x1x2))x3.

104

We shall try to compute the value of function h(l, 2). Let us remark that some compilers
(for example PASCAL, C) cannot do it However our algorithm manages to solve even this
problem, which seems to be rather sophisticated:

OMU) =«
(2) |- begin x,:= 1; x2i= 2 end (if x, = 0 then x3:= 2 else x3:= h(xl —1, h(x,,x2))(x3= u)
..... ((r,H (B+)),

(3) I-begin x3:= /i(0, h(1, - (&+)), (1, 49)),
L oW () T U (6+)).
(5) |- begin Xj := 0; x2:= A(l, 2) end(if xX- 0 then x3:= 2 else

¥3:02 K T = 1 /5(K,502)))(X 3 = U) ettt s ((r,+), (B+)),
(6) h begin x3:=2 end (x3= «) ((*+).«>
(7) h2 =« ((s+))

By point 5 (i) of the RETRPROV-aigorithm we put u = 2 into X. By point 7 of this algorithm
we get sdM = {seSeg': u = 2eright(s)}. So |-u= 2 becomes a special axiom. 1

Example IS.
Let us consider the function k defined as follows:
kfcj.xJ = (if x2= 0 then x3\—xX else x3:—k(xux2—1)+ 1)x3.
By using the RETRPROV-aigorithm we shall try to prove the expression of the form:
(1) (- k(x, 2) —v where x is an individual variable.
(2) |- begin xx:= x, x2:- 2 end (if x2—0 then x3:= x1 else x3:= k(xx,x2- 1)+ I)(x3= u)
= ((»4), (BH)),

(3) (- begin x3:= fe(X, 1) + 1 eNd (X3 T «) oot ((*+).«).
(4) N KX, 1) Tl 2 U et ((s+)),
(5) h begin xx:= x; x2:= 1 end (if x2= 0 then x3:= else x3:= fe(xj.Xj —1) 4 1)
*3+1=uvy - e ((raut)i (@ +)]
(6) (- begin x3:= k{x,0) + 1end (x3+ 1= «).. ((fe+)™,
(7) W K{X, 0) # 2 2 U oo ((s+) and (r,, -t)),
(8) (- begin x3:= x; x2 XX else x3:= fc(xj,x2—1) + 1)
x3+2=m e ———————————————— B+)),

(9) h begin (x3:= x) end (x3+ 2
(10) x+2=wu

By point 5 (i) of the RETRPROV-aigorithm we put k ==x + 2 into X. By point 7 of this
algorithm we get <M= {seSeq':u = x + 2eright(s)}. So (10) becomes a special axiom. We can
see that our algorithm does not simply calculate an expression, but instead it tries to prove it We
gel the expression x + 2 = uas a solution of the functional equation k(x, 2) = u. which certainly is

not only a calculation. 1

Example 16.

Let us consider the following expression:
(1) I Vx2((Pi("z) -* 3*p2(x)) = 3x10 j(x 2 -v p2(xj)))

Of course we present only a sketch of the proof of the sequent (1).
@) Ix2:= y((pi(x3 -* —4x-1p2(x)) + -VIL-(p.(x2- p2Ax.)) a

(-iVXl ->(Pi(*2) #>Pa(*i)) -* (Pi(x2) -* Tito)))
@ Fx, = y{ >Vl ->(pA(x2) -* p2(x])) + (pi(x2) -* ->p2(x)))
4) X2:= y((p,(x2 -> -V, --p2(x)) - - VXI =(pa(xa) -» p2(X,))
(3.1) \-x2:= y(Vxl -{p~a) - p2xj))), x2:= y(Pj(x - - Vt-»p2(x))
(82) x2:= y(pi(x2), x2:= y(Vx" PzM) hx2 y(xj := y,(—(p.(x2) -> p2(x])))

(33 Pi(y), *2:= y{vx~p2{x), - 'pa(lD, x2:= y(x, ‘= Pjobta) “*p2AX)) h
T s (-n (9. (0),
B4 pM x2:= y(V,-p2(x), PAY] (P M) o s (1+), (-N), (),
(35) p.(y), x2:= Y (VAP 2(x) ¥ P2AN), Po(Y) corviiirrnnnsissnnsns (1+), (-N), (s+),
which is an axiom by unication,
(4.1) x2:= y(p,(x2) -» ->VX->p2(x}), x2:= y(VXI~"(pI(x2 -* p2(Xj))) (-
... e e e (IF X(NF),
(4.2) x2:= H{V;i-"(pUx2)->p2(xD))> (y2:= i2(x2:=y (xi:=y2(--(Pi(x2-»
Pi(*1))))) h Pi(y) A e s e (-v), (-1), (s+),
(4.3) x2:= y(VxI -’ (pL(x2) -> PjfxJ)), (y2:= r2(x2:= y{x, := y2(-(p,(x2) ->
Pi(* M) \-x2:= y(x:= y3(- ,p2wW)
(421) x2:= y(Vx, -1 (p,(x2) 1 p2(x,))), p.(y) h p(i2), pj(y)
... (-N), (I'+), (s-h), ('S), which is an axiom,
(431) x2:=y(Y,1-.(pAx2) - p 2xi))), piCY), p2(y3) h p2EJ
(-N), (I+), (N +), (-s), (s+) which is an axiom by unification. 1

Example 17.

Let us consider the following formula:

f)y =1A (Un(-(n = 0)~iffn) = n*Jn- 1)->/(« + 1) = (n+ 1) *t«))))
where f was defined in Example 11.

In some cases we axe able to use the mathematical induction, e.g. in this example
we proved the correctness of a program defining the factorial. It means as well that we
proved (this proof is too long so we omitted it) the equivalence between two descriptions of
factorial: the mathematical definition and the program. The mathematical definition is as
follows:

when a =0

©

r
In*(n—11 when n>20
and the program is given in Example 11. This proof shows the correctness of the program.

Example 18.
If we want to calculate the value of the expression of the form:

l. L
----(.—_where i2 ml7 m2denote the variables of the type of integer, first we calculate the value

m
m3: —NWW(mu m2) where NWW(mu m2) is the least, common multiple of ml and m2. Next we

calculate the values Ij :=* *— | i2;= 12«— and B:= Ix + 12 Obviously the result of the division
THA i~

13
during the calculation of Ij and 12 is integer. Hence R]Sis the result of the considered expression.

During this calculation we considered the function NWW (X, y). Now wc show how we can use the
rules of decomposition especially the rules (—& _* and (fc+)~. Let NWW{xiyy}) —K & where K0

means:

begin
Xi1= X2, y:= Y,
while —(x = y) do
if x >y then

X:I= X —Yyy

106

else
y:i=y- x\
2
end

We shall show how to get NWW (6, 4) in the standard mode! of arithmetic. We have to
calculate the value (A”z),,”,) where a, is the valuation such that u”x,) = 6 UjQ#) = 4. This
valuation is represented by the substitution s —begin x, := 6; y, := 4 end. We decompose the
program begin s; KO end to the normal assignment
[sKJ =[[x/6,y./4], [X/x,y/yj, [*[-(x =y)"[x>Yy) x- yI Y- *]II, [w/x],
(207 -O)/ W) AK[[[X 7.y, "], [XX5y7Y]] PT-<x = y)_Y.[(x >) /X - YI[y/y - X]]9,
W/, [2/x >y /W) [[1Xi76,y./4], [X/%,y/y]l, (VI*(x > V) X- Y] [y/ly - X]],
-[-(x =y)NM(x > y) Xyl vy - xTDD)* [IwW/X], [2/(x, =y /w)ll] Do @Ki[[[x,/6, y./4],
I [>[(*>y) K- Y] Y- XL > Y) v (x> y) [x- oy vy - x
oy []afynfwv]v])}m%][A/2<[[[x[//6 /4] [x/xIB]//yJ],_(X[x/x[-[y]')-[*[74(]x [y)/ [(x>y)
IXX —y ~ »*], [0 * (y») I« * 1« x/™yly
[[x/x-y], *[->(] =y) ylx>y) &X/X vl y/y—xI1ll, [w/X], [2/(x, (/W) /ﬁ
[CCxAYi/4], DX/X)Y/Y]I X —y], [*['(=y) <[> y) /x- y] Wy - X]], [[w/X],
[2/09 *(yY W) [[[x./6,y./74], [X/X).y/y.], [X/x-y]]] [D[>(x=Y) yx>Y)
D/x - y] Wy- X1, [wW/X], [2/0 *(yM)]TTT ~ - [[1x./6, /45, [[X/%,, y/y.], X - v,
[w/x], [2/% *(y./WHIl AK[[[x./6,y./4], [[X/X,y/y.], [X/x- YIII*W/X], [2/(x, *(y./w)l]
Dr~ “[[WEi.h /1, [x/x,y7y.], p/x- 211 [>/]), [2/(x, >(y./w)]] L[[x./6,y./4],
[D/X).y7y.), [/ - y], [w/X]IL [2/(, (v, /W)l A< [[x./6, y./4], [[x/x,.y/y.], [[X/X - Y],
[w /X]11T-7 ")] N« X8,y /4], [xuy/y] [Ix7x-y], [w/x]], [2/(x, >
(y»)]]]]]

Let us denote the normal assignment [[Xj/6,y,/4], [[x/x,,y/y,], f[x/x—y], [[w/x],
[z/(x, *(y,/w))]1]1]]] by symbol £0. We proved by using it,fjul that the program [sKJ can be
decomposed to the normal assignment XQ Therefore [sJCJ -< By Theorem 10 we get
ISKJR(v) = Hence (JC.zU»,) - zr{Kr(Vj)) = zr(KK(sM) = = 2*@Z*(t>) =
6*(4/(6- 4) = 12

We proved that the function NWW (6,4) defined by program has the value 12. Therefore
RETRPROV-alJgoritom during the prove f-JVWW(6,4) = u finds a special set of axioms

jitah = {s£Seq':12 = ueright(s)}. m

X;
X, *(y,/w);

Let us remark that the RETRPROV system described above definitely
differs from JRS-algorithm. The main difference concerns the set of rules (rules
of decomposition) and the RBTRPROV-algorithm. The key idea lies in the
rules {k+)M and {—k)M, since from Corollary 2 and the model of arithmetic,
the expression (sK)” being the result of the execution of program enables us to
optimize the calculation. It is also worth emphasizing that RETRPROV
produces results in an evidently shorter and faster way (see Example 7 and
Example 11 or Example 10 (iv) and Example 13), the correctness of which is
guaranteed by Corollary 2

Chapter 7
Summary and concluding remarks

7.1 Conclusion

The main result of the first part of this paper is algorithmic structural
completeness of algorithmic logic strengthened by the substitution rule i.e. the
derivability of all structural, finitary and admissible rules. To date the
well-known substitution rules which were considered do not fit into these
considerations, since they do not preserve the properties of programs. The
substitution rule which was defined in this paper was just enough strongly
deductive to allow to prove algorithmic structural completeness of algorithmic
logic. This result enables us to use many structural and finitary rules in practice
provided admissibility of them is proved. Some examples of such rules:

¢'(while ado K) TRUE, (" M TRUE, ' L TRUE

¢ °(while a do begin M; K; L end TRUE)
where (5(M) u 9(L)) n (5(a) u 5(K)) = 0 and ¢ ' denotes any finite sequ-
ence of substitutions.

2 where a is a classical open formula and p is any program-
P(«)
substitution.
Let us take peSb wich is defined by geG, classical open formula X
and by the functions e and eOsuch as in Theorem 9. We get from a the

formula p{a) equal hefa) which is equivalent (s"a a X) v (/ie’(@) a ->X) for
sY being such as in Theorem 9.

¢'({while adoK) TRUE -» (while £ do K) TRUE”’
where ¢' denotes any finite sequence of substitutions.

108

Such rules allow to simplify the proofs of correctness of programs.
It is worth to pay attention to the following questions:

(1°) Is it true that the property of structural completeness of some logic is
a result of the completeness of this logic i.e. of the property of the form
CR{X) — C~ {X} for every set of formulas X

(2°) Is it true that the property of Post-incompleteness of algorithmic logic (i.e.
Q?.({ap N F for some a strengthened by the substitution rule is
a result of the completeness of this logic for the set of rules R.

To answer these questions it is not enough to know whether the property of
completeness holds.

Let us consider the point (1°). There exists a consequence which is complete
but is not structurally complete. Such a system is for example the classical logic
with quantifiers based on the set of axioms AQ and on the set of rules
ROV — .o, r¥}, where «o is the modus ponens rule and r¥ is the generalization
rule of the form:

a, a-»(i a

ﬁ 5 rv%

Indeed, such a system is not structurally complete. To illustrate that let us
consider the rule r defined as follows:
<{a}, $ > er iff there exists ee£ such that:
a= ~ViVRe(P(x)) e(P() and = \k-(e(P(x)) -» e(P(x))),
where £ is the set of substitutions defined by W. A. Pogorzelski and T. Prucnal
[71].

The admissible rules in the logic with programs are called permissible in the
logic without programs. The defmition of the latter is analogous to the former
one. The rule r is admissible in the considered logic since a is not valid in any
interpretation, in any model with a single element therefore a $CR"(AQ for
every eef£. Since the antecedent of the definition of permissibility is false
therefore the rule r is permissible in this logic. Moreover r is structural.
However r is not derivable in this logic since in the opposite case for ee £
such that e(P(x)) = P(x) and e(P(y)) = P(y) by the deduction theorem, we get
arPfc) a -P(y)) -»W-(P(x) ->P(x)) e CRO{AQ) which is not true. Therefo-
re the structural completeness is not an immediate result of the property of
completeness. O

Now we consider the point (2°). Some variant of the question (2°) was
known i.e. the logic without the substitution rule is incomplete. However, with
regard to the study of the structural rules and the extension of algorithmic
logic to the algorithmically structurally complete logic it appeared that the

109

introduction of the notion of the substitution rule was the sufficient condition.
After introducing a new substitution rule with a very strong deduction we get
the algorithmic structural completeness of algorithmic logic strengthened by
the substitution rule. Therefore>the algorithmic logic strengthened by the
substitution rule could become complete. So we have to prove the incom-
pleteness of such extended algorithmic logic. The proof of incompleteness of
this logic could be done in a different manner if we knew that the substitution
rule was hereditary in every model (ie. if <{a}, /7> er. and a is valid in
a model then (§(fi = p(a)) is valid in this model too). But we think that it is not
easy to prove this property without our considerations. The difficulties depend
on changing the shape of Formulas by using the substitution pe Sb which is
defined by e fulfilling some properties (see Definition 3, 8 and Theorem 9).
For example: e{p{xly...xn) = p(r'u ...zn) a X

It is worth to notice that the theorem on algorithmic structural comp-
leteness allows us to use many secondary rules in various considerations. The
only condition which such a rule ought to fulfil is to be structural, fmitary and
admissible in algorithmic logic strengthened by the substitution rule. This
condition is in a way a useful criterion for using many secondary rules.

There is an interesting and open problem of getting structural completeness
without assuming Unitary rules. O

The second part of this paper is devoted to the construction of proving
algorithms. The first of these algorithms called RS-algorithm use Gentzen’s
method and some idea of decomposition of formulas containing programs. We
use some P. Gburzynski’s ideas [28], [29] connected with proving theorems
without programs but we make it possible i.e. we extend these ideas essentially
to a case of algorithmic logic i.e. we can prove algorithmic formulas and test
programs and their properties for example the correctness and equivalence of
some programs and we can consider functions and relations defined by
programs. At the time the existing implementation of proving theorems was
not able to achieve that. Therefore our implementation was the first one
serving programs. The new created RS-algorithm in a sense enables us to
execute an expert’s report since it answers the question whether some relation
p(x, y) defined by a generalized formula holds. For example if p(x, y) is defined
by K2b which expresses the order relation between natural numbers x = 1
and y = 2 then we ask the question by writing for example p{1,2) = b and we
understand this expression as follows: for which b the relation p(1,2) holds. The
proofdepends on assuming b to be TRUE when the relation p(x, y) holds or to
be FALSE otherwise. For example if x = 1and y = 2, the algorithm tries to
prove the expression p{1,2) = b by replacing p(l, 2) by the program Kzb
defining this relation. Finally using the rules of decomposition we get the
sequent TRUE |= b which ends the proof by adding the special axiom
{seSeq’ :beright(s)} to the set of axioms.

110

The action of RS-algorithm cannot be treated as a calculation of the
program since for the program of the form: begini:= i+ 3;z:= xend and
for the function g(x) defined by K Az7 the algorithm gives for the equality
g(n)4 = u the axiom i.e. the set of sequents {seSeq'iu = n4e right(s)} as the
solution to this equality.

It is known that without changing variables into values the standard
calculation of function g is impossible. It is worth to notice that the considered
RS-algorithm gives us the result even in case when the standard calculation
overflows the stack. To explain that let us consider the program of the form: if
x = 0 then z:= 2 else z:~ h(x —1)h(x,y))\ denoted earlier by Ks and the
function h(x,y) defined by Ksz

We shall try to calculate the value of the function h(1,2) during the
execution of RS-algorithm and in fact we shall try to prove the equation
h(l, 2) = u3. RS-algorithm finds the solution u3= 2 though the shape of the
program defining the function h evidently makes it impossible for compiler
since the compilation leads to overflowing.

The mere process of dynamic looking For the set of axioms is more
complicated than it seems from this short description. The example of this can
be a test of the proof of the expression/(2) = u for/(2) defined by K Lz. During
the proof there appeare two sequents. The first of them leads to the sequent of
the form: (=0 = u, 1 = u, 2 = uywhich at first sight makes the further proof
impossible since we have difficulties with choosing the proper assumption
among the expressions of the form: u= 0, u=1 and u =2 The second
sequent leads during further decomposition to the sequent of the form:
0=0)=2 = Q1= 0,2 = «which becomes an axiom after assuming that each
sequent s for which 2 = ue right(s) is an axiom. Lemma 8 enables us to solve
this problem. It ensures that for every leaf of the tree which unables us the
univocal choice of the specific axiom (the sequent containing the expression of
the form u =1t on the right side of the symbol |=) among many such
expressions occuring in this leaf there exists another leaf in which this choice is
univocaf i.e. there exists only one expression of the form u =t on the right
side of the symbol |=. After this choice the earlier leaf in which appears
diversity of meaning becomes an axiom too.

RS-algorithm contains also a particular manner to avoid the difficulties
which appear during the decomposition of the sequent containing the program
with the word WHILE. The rule generates in one case the infinite set of
sequents and only the special treatment of this case enables us effective activity
of RS-algorithm.

The expression of the form: W, s while a do Y,b,Z is changed by the
rule (+k) into the formula W, s(p:= TRUE) (J begin p: = p a a; K end(p a
—a a /) |= 7 b, z. For further considerations we denote by Af,(/): begin g,
p:= TRUE end [begin p:= p a a; K end]i where | means a natural number.

As a result of using the rule (+U) we ought to consider the set (M,,(i)
Pa->aap,WEYDb2Z: Since it is impossible to construct all of
these elements in practice therefore we further consider the sequent of the form:
M, (N(p a =0 a (5, W £= r where r denotes the expression: Y, b>Z. This
sequent is treated in a special way by RS-algorithm in the point 4.

RS-algorithm enables us to prove the correctness of some programs with
STOP property. Moreover this algorithm eliminates the inconsistence of the
definition of relation. Let us assume the following definition: p(x) =

If we want to know whether the relation holds RS-algorithm starts the
proof of the expression of the form: [= p{x) = b. Since during the execution of
RS-algorithm we meet the expressions b and p(x) on the same side of the
symbol [= therefore RS-algorithm STOP and we get an answer about the
inconsistence of the above definition of p(x) since only the expression with
negation is able to change the side of the symbol J=

Besides the Gentzen’s method we considered in our paper a sequential
method of the decomposition of programs. This method decomposes each
program with STOP property in the model M into a normal assignment which
can be executed on terms or on formulas. The assumption of STOP property
of the program means in implementation the possibility of execution of all
needed calculations in this program. Under such an assumption there is no
problem with the decomposition of the considered program.

References

[1] Banachowski L: Investigations of properties of programs by means of the extended
algorithmic logic. I. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticac,
Vol. I. 1, 93—119 (1977).

[2] Bartol W. M., Gburzys$ski P., Findeisen P., Kreczmar A, Lao M., Litwiniuk A,
Muldner T., Nykowski W., Oktaba H., Salwicki A., Szczepariska-Waserstrum D.:
loglan. International Summer School of the programming language. Zabordw.
Poland, September, 5—10.1983. Institute of Informatics, University of Warsaw.
Warszawa 1983.

[3] Bibel W.: Automated Theorem Proving 2., rev. ed. Braunschweig—Wiesbaden—
Vieweg 1987 (Artificial intelligence).

[4] Biela A.: Program-substitution and admissibility of rules in algorithmic logic. Acta
Informatica, 25, 439—473 (1988).

[5] Biela A: Retrieval system and dynamic algorithm looking for axioms of notions
defined by programs. Fundamenta Informaticae, Vol, 19, No. 3 (1993).

[6] Biela A, Dziobiak W.: On two properties of structurally complete logics. Reports
on Math. Logic, 16, 51—54 (1982).

[7] Biela A, Borowczyk J.. RETRPROV: a system that looks for axioms. Acta
Informatica (1995).

[8] Biela A, Wojtylak M.: Automatyczne dowodzenie twierdzeri. Wyd, Uniw. Slaskiego,
Katowice 1993.

[9]1 Blake A.: Canonical expressions in Boolean algebra. PhD thesis, Univ. of Chicago,
Ilinois 1937.

[10] Blasius K., Bisinger N., Siekmann L, Smolka G., Herold A, Walter C.: Vie
Markgraf Karl Refutation Procedure. Proceedings of the IJCA1-81, 1981,
pp. 511—518.

[11] Bledsone W. W., Tyson M.: The UT interactive Prover, MEMO ATP-17, Math.
Dept. Univ. of Texas, May 1975.

8 Algorithmic... 113

[12]
(23]
(14]
[15]
[16]
[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]
[30]

(31]

[32]

(33]

Boyer R. S, Moore J. S. A Computational logic. ACM Monograph. Academic
Press, New York 1979.

Boyer R S, Moore J. S: A verification condition generator for FORTRAN.
Academic Press, London 1981.

Bundy A.: Catalogue of Artificial Intelligence Tools. Springer—Verlag 1986.
Cardelli L.: MLunder Unix. Bell Laboratories, Mursay Hill, New Jersey 1982.
Chang W., Lee R.. Symbholic logic and Mechanical Theorem Proving. Academic
Press, New York—San Francisco, London 1973.

Chlebus B.: On the decidability of propositional algorithmic logic. Zeitschr. fur
Math. Logik und Grundlagen der Math., 28, 247—261 (1982).

Church A Introduction on Mathematical logic. Princeton 1956.

Cooper D.C.: Theorem proving in computers. Advanced in programming and
non-numerical computation, ed. Fox, Pergamon Press, Oxford 1966, pp. 155—182.
Danko W.: A criterion of undecidability of algorithmic theories. Ann. Soc. Math.
Pol., Ser. IV. Fundamenta Informaticae, 3, 605—628 (1981).

Danko W.: Algorithmic properties of finitely generated structures. Proceedings,
Poznan, August 1980. Lect. Notes in Computer Science, Vol. 148: Logic of
programs and their applications. Springer, Berlin 1983, pp. 118—131.

Danko W.: Definability in algorithmic logic. Ann. Soc. Math. Pol., Ser. IV.
Fundamenta Informaticae. I, 277—287 (1979).

Davis M.: A computer program for Presburgers procedure. Summaries of talks
presented at the Summer Institute for Symbolic Logic (1957). Second edition
published by Institute for Defense Analysis, Princeton NJ 1960.

Davydov G. V.: Synthesis of the resolution method with the inverse method. J. Soviet
Math., 1, 12—18 (1973).

Dummet M.: Elements of inluitionism. Clarendon Press, Oxford 1977, p. 1609.
Dunham B., North J.: Theorem testing by computer. Proc. Symp. Mathem. "Theory
of Automata". Polytechnic Press, Brooklyn NY 1963, pp. 173—177.

Engeler E.: Algorithmic properties of structures. Math. Syst. Theory, 1, 183—195
(1967).

Gburzynski P.: Badania eksperymentalne w dziedzinie automatycznego dowodzenia
twierdzen. Analiza poréwnawcza dwoch metod. Praca doktorska. HUW, Warszawa
1982, pp. 1—57.

Gburzynski P.: Mechanical proving system of universal purpose. Raport CO-PAN
nr 390, 1980.

Gentzen G.: Untersuchungen uber das iogische Schliessen. Math. Zeitschr., 39,
176—210, 405—431 (1935).

Gordon M. J. C: Representing a logic in the lefmetalanguage. In: Tools and Notions
for Program Construction. Ed. D. Neel. Cambridge University Press, Cambridge
1982.

Gordon M., Milner A, Wadsworth G: Edinburgh LCF: A Mechanized Logic of
Computation. Lect. Notes in Computer Science, 78, Springer—\Verlag, Berlin 1979.
Green G: Theorem proving by resolution as a basis for question — answering
systems. In: Machine Intelligence 4. Eds. B. Meltzer, D. Michie. Edinburgh
University Press, Edinburgh 1969.

114

[34] Greenbaum S. Input transformations and resolution implementation techniques
for theorem proving in first order logic. Ph.D. thesis. University of Illinois at
Urbana Champaign 1986.

[35] Greenbaum S, Plaisted D.: The Illinois prover: a general purpose resolution theorem
prover, 8th Conference on Automated Deduction 1986.

[36] Grundy J., Newey M.: Theorem proving in higher order logics. 11th International
Conference, TPHOLs'98, Canberra, Australia, September 27—October 1. Lect.
Notes in Computer Science, 1479, 1998, 497 pp.

[37] Guard J, Oglesby F., Bennett J., Settle L.: Semi-automated mathematics, JACM,
18, 49—62 (1969).

[38] Haan J., Schubert L. K. Inference in a topically organized semantic net.
Proceedings of the AAAI-86. 1986, pp. 334—338.

[39] Harel D., Pratt V.: Nondeterminism in Logics of programs. Proc. 9-th Ann. ACM
Symp. on Theory of Computing, Boulder, Colorado, May 1977. MIT, Cambridge,
MA 1977.

[40] Harrison J.: Theorem proving with real numbers. Logical Found, of Computer
Sciences & Mathematical Logic, 12, 186 (1998).

[41] Herbrand J. J.: Recherches sur la theorie de la demonstration. Travaux Soc. Sei. et
Lettres Varsovie, C13 (Math., Phys.), 128 (1930)

[42] Hermes H.: Introduction to mathematical logic. Springer, Berlin 1973.

[43] Hilbert D., Ackermann W.: Grundziige der theoretischen Logik. Springer, Berlin

1967.

[44] Hines L. M.: Building in Knowledge of Axioms, Ph. D. Dissertation, Univ. of
Texas.

[45] Hines L. M.: Hyper-chaining and Knowledge-based Theorem Proving. CADE-9.
1986.

[46] Jansohn H. S., Landwehr R., Wrigtson G.: An Interactive Proof Systemfor Higher
Order logic. Proceedings of the 5th European Meeting on Cybernetics and System
Research, 1980.

[47] Jansohn H. S, Landwehr R., Wrigtson G.: Design. Implementation and Results of
an Interactive Proof System for Higher Order Logic. Universitat Karlsruhe,
Interner Bericht 19/79, Karlsruhe 1979.

[48] Krcczmar A.: Effectivity problems of algorithmic logic. Ann. Soc. Math. Pol.,
Ser. IV. Fundamenta Informaticae, Vol. LI, 19—32 (1977).

[49] Kreczmar A.: The set of all tautologies of algorithmic logic is hyperarithmetical.
Bull. Acad. Polon. Sri., Ser. Math., 21, 781—783 (1971).

[50] Loveland D. W.: Automated Theorem Proving: A Logical Basis. Fundamental
Studies in Computer Science, Vol 6, 406 (1978) (ISBN 0-7204-0499-1, North-
Holland).

[51] Loveland D. W.: A linearformatfor resolution. Symp. on Automatic Demonstration.
Lect Notes in Math., 125. Springer, Berlin, pp. 147—162.

[52] Loveland D. W.: A simplified format for the model elimination procedure. JACM,
16, 349—363 (1969).

[53] Loveland D. W.: A unifying view of some linear Herbrand procedures. JACM, 19,
366-384 (1972).

115

8*

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]
[66]
(671
[68]

[69]

[70

—_

[71

—_—

[72]

Luckham D.: Refinement theorems in resolution theory. Symp. Automatic Demons-
tration. Lect. Notes in Mathem., 125. Springer, Berlin 1970, pp. 163—190.
Lusk B. L., McCune W. W., Overbeek R. A: Logic machine architecture: kernel
functions. D.W. Loveland 6th Conference on Automated Deduction. Lect. Notes in
Computer Science, 138. Springer—Verlag, Berlin 1982.

Miller S. A., Schubert L. K.: Using Specialists to Accelerate General Reasoning.
Proceedings of the AAI-88, pp. 161—165.

Minc G.: Proizvodnost dopustimych pravii Issliedovanija po konstruktivnoj
matiematikie i matiematiceskoj logikie. Vol. 5. Matiemati¢eskij InstituT. kn.
V. A Steklova. Leningrad 1972, pp. 85—89.

Mirkowska G.: Algorithmic logic and its applications in the theory of programs.
I. Ann. Soc. Math. Pol., Ser IV. Fundamenta Informaticae, Vol. 1.1, 1— 17 (1977).
Mirkowska G,: Algorithmic logic and its applications in the theory of programs I1.
Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae. Vol. 12, 147—165
(1977).

Mirkowska G.: Algorithmic logic with nondeterministic programs. Ann. Soc. Math.
Pol., Ser. IV. Fundamenta Informaticae 3, 45—64 (1980).

Mirkowska G.: Model existence theorem in algorithmic logic with non-deterministic
programs. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae 3, 157—170
(1980).

Mirkowska G.: On formalized systems of algorithmic logic. Bull. Acad. ScL, Ser.
Math., 19, 421—428 (1971).

Mirkowska G., Ortowska E.. An elimination quantifiers in a certain class of
algorithmic formulas. Ann. Soc. Math. Pol., Ser. IV. Fundamenta Informaticae
| (1978), 347—355

Mirkowska G., Salwicki A.: Algorithmic logic. PWN. D. Reidel Publishing
Company, Warszawa 1987.

Newell A., Shaw J., Simon H.: Empirical explorations of the logic theory machine.
Proc. West. Joint Computer Conf. Vol. 15. 1957, pp. 218—239.

Ohlbach H. J: link Inheritance in Abstract Clause Graphs. J. Automated
Reasoning, 3, 1—34 (1987).

Paulson L.: Natural deduction as higher-order resolution. J. Logic Programming, 3,
237—258 (1986).

Perkowska E.: On algorithmic m-valued logics. Bull. Acad. Polon. ScL, Ser. ScL
Math. Astr. Phys., 20, 717—719 (1972).

Fetermann U.: On algorithmic Logic with partial operations. Proceedings, Poznan,
August 1980. Lect. Notes in Computer Science, 148. Logic of programs and their
applications. Springer, Berlin 1983, pp. 213—223.

Pogorzelski W. A.: Structural completeness ofthe propositional calculus, Bull. Acad.
Polon. SeL, Ser. ScL Math. Astr. Phys., 19, 349—351 (1971).

Pogorzelski W. A, Prucnal T.: Structural completeness of the first order predicate
calculus. Zeitschr. fur Math. Logik und Grundlagen der Math., 21, 315—320

(1975).
Porte J.: Antitheses in systems of relevant implication. J. Symb. Logic, 48. 97—99

(1983).

116

[73]

[74]
[75]

[76]
[77]
(78]
[79]
(80]
[81]

(82]

[83]

[84]
(85]

(86]

(87]

(88]
(89]
[90]

[91]

[92]

[93]

[94]

Pratt V.. Semantical Considerations on FJoyd-Hoare Logic. In: Proceedings 17-th
Ann. IEEE. Symp. on FCS, October 1976, pp. 109—121.

Prawitz D.: An improved proof procedure. Theoria, 26, 102—139 (1960).
Prawitz D., Prawitz H., Voghera N.: A mechanical proof procedure and its
realization in an electronic computer. JACM7, 102—128 (1960).

Prucnal T.: Structural completeness of Lewis's system S5. Bull, de I’Acad. Polon. des
Sei., Ser. Sei Math. Astr. Phys., 29, 101—103 (1972).

Radziszowski S.: Programmability and P = NP conjecture. Proc. FCT' 77. Cont.
Lect. Notes in Computer Science, 56. Springer, Berlin 1977.

Raph K. M. G.: The Markgraf Karl refutation procedure, Seki-84-08-kl. Fachbe-
reich Informatik, Universitat Kaiserslautem 1984.

Quine W. V.. A way io simplify truth functions. American Math. Monthly 62,
627—631 (1955).

Rasiowa H.: On logical structure of programs. Bull. Polon. Acad. Sei., Ser. Math.
Astr. Phys., 20, 319—324 (1972).

Rasiowa H., Sikorski R. Mathematics of Metamathematics. PWN, Warsaw
1968.

Rasiowa H.: -valued algorithmic logic as a tool to investigate procedures. Proc.
MFCS'74. Lect. Notes in Computer Science. Vol. 28. Berlin, Heidelberg: Springer
1974.

Robinson J.: A Machine-oriented Logic Based on the Resolution Principle. IACM
12, 23—41 (1965).

Robinson J.: Logic: Form and function. University Press, Edingburgh 1979.
Robinson J. A: Mechanizing HOL. Machine Inteligence 4. Edinburgh Univ. Press.
Edinburgh 1969.

Rusinoff D.: An experiment with the Boyer-Moore theorem prover: A proof of
Wilson's theorem. J. Automated Reasoning, 1, 121—139 (1985).

Salwicki A.; Axioms of Algorithmic Logic univocally determine Semantics of
programs. Proc. MFCS’80. Lect Notes in Computer Science 88. Springer, Berlin
1980, pp. 352—361.

Salwicki A.: Formalized algorithmic languages. Bull Acad. Pol. Sei., Ser. Sei. Math.
Astr. Phys., 18, 227—232 (1970).

Salwicki A Programmability and recursiveness, an application of algorithmic logic
to procedures. Dissertation. Uniwersytet Warszawski, Warszawa 1976.
Segerberg K.: A Completeness Theorem in Modal Logic of Programs (abstract),
Notices of the American Mathematical Society, October 1977.

Stickel M. E.: An introduction to Automated Deduction. Fundamentals of Artificial
Intelligence. An Advanced Course. Lect Notes in Computer Science, 232. Sprin-
ger—Verlag, Berlin 1986, pp. 75—132.

Stickel M. E.: A Prolog Technology Theorem Prover: implementation by an extended
Prolog compiler. Eighth International Conference on Automatic Deduction. Lect.
Notes in Computer Science, 230. Springer—Verlag, Berlin 1986, pp. 573—587.
Stickel M. E.: Automated deduction by theory resolution. J. Automated Reasoning,
1, 4, 333—355 (1985).

Stickel M. E.: Automatic Deduction by Theory Resolution. Proceedings of the
IJCAI-85. (1985), pp. 1181—1186.

117

[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]

[104]

Szatas A.: Algorithmic logic with recursivefunctions. Ann. Soc. Math. PoJ., Ser. IV.
Fundamenta Informaticae, 4, 975—995 (1981).

Thiele H.: Wissenschafistheoretische Untersuchungen in algoritmischen Sprachen.
VEB Deutscher Verlag der Wissenschaften, Berlin 1996.

Trybulec A: Jezyk informacyjno-logiczny MIZAR-MSE. Prace IP1 PAN, ICS
PAN REPORT, No. 465, PAN, Warszawa 1982.

Tsitkin A. 1.: On structurally complete superintuitionistic logics. Doki. AN SSSR
241, Moskwa 1978, pp. 40—43.

Wang T. C: Designing examples for semantically guided hierarchical deduction.
Proceedings of the 1JCAJ-85, 1985, pp. 1201—1207.

Wang T. G, Bledsone W. W.: Hierarchical deduction. J. Automated Reasoning 3,
35—77 (1987).

Wang H.: Proving theorem by pattern recognition. I. Comm, of ACM, 3, 220—234
(1960).
Wang H.: Proving theorem by pattern recognition. I1l. Bell System Technical

Joum., 40, 1—41 (1961).

Wang H.: Toward Mechanical Mathematics. IBM Journ. of Research and
Development, 4, 2—22 (1960).

Woijtylak P.: On structural completeness of many valued logic's. Studia Logica, 3,
3—8 (1974).

Andrzej Biela

Algorytmiczna strukturalna zupetnos$é
i system wyszukiwania dowoddw twierdzen
w teoriach algorytmicznych

Streszczenie

Dowody poprawnosci oprogramowania sg jedynym sposobem zapewnienia uzytkownika
(inwestora), ze mozna z niego korzysta¢ bez ryzyka. W pracy rozwaza si¢ zatem klase regut
algorytmicznie strukturalnie zupetnych, pozwalajgcych na poprawne wnioskowanie.

Duze znaczenie w automatycznym dowodzeniu twierdzen ma witasciwy dobor regut, dlatego
badania rozpoczeto od préby uzasadnienia wyprowadzalnosci regut dopuszczalnych w logice
algorytmicznej.

W publikacji zawarto wyniki badan dotyczace algorytmicznej strukturalnej zupetnosci logiki
algorytmicznej oraz omoéwiono system automatycznego dowodzenia twierdzen, w ktorym pewne
relacje czy funkcje moga by¢ reprezentowane za pomoca programoéw. Badania przedstawiono
w jezyku umozliwiajacym wyrazenie wiasnosci programéw (rozdz. 2).

Pierwsza cze$¢ pracy dotyczy:

1) wprowadzenia reguly podstawiania do logiki algorytmicznej i do logiki z Diedetermini-
stycznymi programami ora2 udowodnienia zasadniczych wiasnoséci podstawiania (rozdz. 3),

2) uzasadnienia algorytmicznej strukturalnej zupetnosci logiki algorytmicznej z dotaczong
regutg podstawiania (rozdz. 4).

Zdefiniowano zbi6ér podstawien tald, ze wprowadzona za jego pomoca reguta podstawiania
okazata sie, méwiac intuicyjnie, na tyle ,silna dedukcyjnie”, iz pozwolita na uzyskanie algorytmicz-
nej strukturalnej zupetnosci logiki algorytmicznej. Na podstawie tej wiasnosci stwierdza sig, ze
w konsekwencji logiki algorytmicznej kazda reguta strukturalna, Unitarna i dopuszczalna jest
w niej wyprowadzalna. Mozna zatem swobodnie stosowa¢ reguty z tej klasy. Ponadto dla
niezupetnego systemu logiki algorytmicznej otrzymano pewien rodzaj guasi-zupetnosci, ktorym
jest algorytmiczna strukturalna zupetnosc.

Dalsza cze$¢ pracy (rozdz. 5) poswiecono omdwieniu systemu dowodzacego, ktéry umozli-
wia dowodzenie twierdzen metoda Gentzena, sformutowanych w jezyku réznych teorii, a takze
dowodzenie twierdzenn o programach. Ponadto mozliwe sg dowody wyrazen nie bedacych
twierdzeniami, polegajace na znalezieniu i dotaczeniu dodatkowych aksjomatéw umozliwia-
jacych dowdd. System ten pozwala réwniez na dowodzenie poprawnos$ci programéw, roz-
wigzywanie réwnan funkcyjnych, ktérych funkcje sa zdefiniowane za pomoca programoéw,
a takze badanie relacji zdefiniowanych za pomoca procedur oraz badanie niezaleznoSci
aksjomatow.

Pragnac potwierdzi¢ wiarygodno$¢ teoretycznych rozwazan, system ten zostat zaimplemen-
towany w jezyku LOGLAN, a nastepnie w jezyku PASCAL i z jego wykorzystaniem wykonano
liczne eksperymenty. Niektore z nich zostaly zaprezentowane w podrozdz. 5.6.

Byta tez mozliwa inna metoda dowodu wyzyskujaca model arytmetyki, dlatego rozdz. 6
zawiera opis tej metody, polegajacy na rozktadzie programéw. W ksigzce podano aksjomaty

119

rozktadu i twierdzenie gwarantujace sprowadzenie kazdego programu z wiasnoscia STOP-u
w rozwazanym modelu do podstawienia bedacego wynikiem tego rozktadu. Reguty omawia-
nego systemu dowodzacego postugujg sie wynikiem bedacym podstawieniem, a nie samym
programem, co znacznie upraszcza dowo6d. W rozdziale 7 oméwiono gtéwne idee przedstawione

w pracy.

Andrzej Biela

AjiropHTMHgecKasx CTpyKnrypHaH nojmoTa
h cHCTeMa Haxo/iKii h AOKa3aTejifcCTBa TeopeM
b ajifopHTM HHecKHX Teopiuix

Pesksmc

B aaTOMaTHIHOM AOKa3axeju,CTBe TeopeM fiojiLuioe afiaTeane HMeer cooTBercTByrotuHH
ox6op npaBHJi, n03ToMy ara HccneaosaHafl nasajm ¢ HcabrraHHH AQica3aTejn>CTBa BlLraeAeHHK
npaBHji flonyCTHMLIix B ajtropHTmhhcckoh jtorHKe, B pafiore coaepxaTCa arora HCcneAOBaHH,
Kacaiomaeca anroparMEmecKoi crpyKTypHof noliHorw ajrropfrrMfnecKol noratua, a Taic«e
o6cy*fieHa a aefi cacrreMa aaroMaTHiaoro AOKaaarejiiCTBa TeopeM, b tcoropofi fleaoroptie
orHornean« hah @(yHKUH Moryr 6utb npeAcrawieHLi ¢ noMOmwo nporpaMM, 3ra
HOCJieAOBaHHH npeACTaaiiemj Ha H3hiKe ajiropar mhheckosi jiothkh, Ae-JiaioiueM bo3mojkhmm,
BHpaxeHBe co6cr bchhocth nporpaMM (rmaBa 2).

ilepBas stacrfc pafioTLi Kacaerca:

D BseAeHHH upaBHJia itoactslhobkr b ajrropHTMHaecicyio Jioraily 0 JioraKy
¢ HeAeTepMaancrKHecKHMH nporpaMMaMH a Tarace AOKaaaTej&cTBa npHmwaaarabHKDi cbohctb
NoACTaHOBKIT (raasa 9.

2) AOKaaarejTLCTBa anroparMHaecEofi CTpyirrypHofi nojiaOTU ajiropBrrMHaeCKofi nonaim
¢ npHJiokeHHUM npaBHJioM ixoact Ihobkh (rirnsa 4).

Tem cawiJM onpeAenHlia Tasoe MHoaecrBO hoactehobok, aro no3BOmno uoAyaarb
crpyKrypHyio rtonsory ajiropHTMirreCKOH jiothkh. 3ra cofierBeHHoerb ycTaHaBJiHBaer, ato
b pe3yjXkraTe arcroparmrbcckoh normar KaxAoe crpyjorypBoe, tfiBRHTapace r AonycTHMoe
TipaBHno fiIBJwerca BWBeAEHRLIM- TasHM 06pa30M mokho cboBoaho npHMeHETE npaBHJia H3
3Toro tenacea, KpoMe Toro jvia Henojiaofi cacreMu ajiropfrrMEraecicofi jiorasa nojiyaeH
HeKOTOptIH pOfl qUASI-NOAHOTM, KOTOpbIM HBHHETCK I TOpHT Mxrrecicagi — crpyK TypHaji
noAHOTa.

Cneayiomaii nacrt pa6orbt (masa 5) nocsamcHa oficyxAeHHio AOKaaBrsaiomea cncxeM tr,
KOTOpaH «enaer bo3Vibjchlim AosasarejibCTBO TeopeM mctoaom resrrueHa ctjjopMynHpOBaHHLix
Ha fObiKO paaBLix Teopafi, Toare AOKaaareabCTBO TeopeM coaepKawHx cporpaMMU. CBepx toto
bo3nokhw AOKaaaxe/ihCTaa BbxpaaceHHH He hbjugowhxck TeopeMajwna, 3ac/noaaiomHecH
b Haxoajee h npanoarefloaa AoSaBOHHbix aacHOM AeaaKmxHX bo3noschejm AQKa3aTe.ro>ctbo. 3 ra
CHCTeMa AWiaer BO3MOxhijm Toare AOKasaTeatcrao npaBHjroHOcra nporpaMM, pemenne
(JtyHKHHoaajaalix ypaBHeaHH, KOTOpux (JyHKAKH onpeAeneaw ¢ domoiubio nporpaMM, Tose
KccjieAOBasHe onpeAeaeH&hix CBB3efi ¢ homoeamo npoueAyp a Tarase HcaieAOBaftae
CaMOCTOHTeALHOCTH BACHOM

V[ejiBto npeAcraBAeHHH reopeTHHecKm paccyagreHHH 3Ta cacreMa 3aHMiiieMeKroaana Ha
aaHKe JIOrJIAH a 3aTeM IIASCAJlI h c ero noMomtno cAemoa paa 3KcnepHMesroB.
Hexoropile E3 hhx bhah npeAcraBlieHU b rnaae 5.6.

TaK tcaa BO3MOxaa fiama Apyraa MeroAa AOKaaaTejiBCTB nps HcnoabaoBasHM moacah
apH"MeTHKH, DO3TOMy b rjtase 6 coAepXHTca onHcame sroro MeroAa, 3aKJnonaK)merocR

121

9 pacrmcaaHB npcrpaniM, llpcACTaaneHM tsm slkceomw pacnHcaHHK h TeopeMa
rapasTupyiomaa npascAemse aa»KOK nporpaMMu co cbohctbom STOP-a b paocyameHHoS
Moflean k noflcranease «aasKmieScs pesyjararoM axoro paecrmcamm. Tsm caiwuM
npasajia paccyacflaeMosi noEcaabiuaiomeH chctemli noliLayicTca pcavatraTOM, HBAKiomHMCg
(JOflcrraHOBKOH, a ne camoh nporpaMMoS, tto anawreatHo cospamaer AQita3aTejn>ciB0.

