
SpecVer & LEM’12 projects XX (2015) 1–14 1

Dombrova Research

Creating a class from specification
DRAFT – please do not copy

Grażyna Mirkowska & Andrzej Salwicki
Faculty of Mathematics and Natural Sciences

University Cardinal Stefan Wyszyński

Wóycickiego 1/3, 01-938 Warszawa, Poland

G.Mirkowska@uksw.edu.pl | A.Salwicki@uksw.edu.pl

Abstract. This paper presents the work on creating a class from the specification together with a
proof of its correctness. Our starting point are two specifications: specification ATPQ of priority
queues and specification Simulation of Simulation class.
Analogy with programming of an algorithm: there we have two conditions: a precondition and
a postcondition. Specifications we consider have more complicated structure. Each specification
consists of a signature and axioms or postulates.
Differences:

1. Introduction

In earlier articles we discussed the problems related to the specifications. In [6] we demonstrated the risks
of creating inconsistent or incomplete specifications. We made an example of complete specification.
The algorithmic formulas used there allow to show that any two implementations of the specifcation are
isomorphic. We also remarked that the algorithmic logic makes a formal base for proofs of correctness of
algorithms. In other article [7] we demonstrate ... In these articles specifications are viewed as somewhat
theoretical, abstract beings. In fact, we talk of formalized algorithmic axiomatizations. Yet, the practice
of programming brings the concept similar to specifications, it is interface module.

This article is third in series. In [6] we discussed the problems related to the creation of a specification
of a class. In [7] we presented a proof of correctness of a class w.r.t. a specification.

Now, we illustrate that in some circumstances one may build a class using only knowledge of two
specifications: specification SA of the base classA and a specification SB of a target classB that inherits
the class A. No knowledge on the body of the inherited class is needed.

The meaning of this result is the following: the created class B will be correct with any class A
provided it correctly implements the specification SA. One possible application of this result is a quick

2 G. Mirkowska, A. Salwicki / Creating a class with a proof

construction of software. A prototype class A may be used in order to quickly construct the system
consisting of classes A and B. Later, one may replace the class A by a more efficient implementation.

A comment is in place here: our specifications can be compared with the interface modules of Java.
It turns out that:

1◦ Interfaces limit themselves to the signature part of an specification. The specification files .spec of
the SpecVer system contain signatures as well as properties (or invariants, or axioms) of specified
classes.

2◦ Interfaces can not prevent misinterpretation of the signature. Imagine, an interface

interface Stacks {
Stacks push(Element e, Stacks s) { }
Stacks pop(Stacks s) { }
Element top(Stacks s) { }

}

What will happen if a class Stacks implemnts this specification in the manner of FIFO instead
of LIFO? This and similar examples demonstrate that specifications of Java do not garantee any-
thing but that the class implementing an interface has declared some methods of given names and
parameters.

3◦ Interfaces are not complete. Obviously, one interface I may be implemented in many ways. There
is no way to express that any implementation of I must ...

In section 2 we give the specification for the class Simulation. Section 3 presents step by step work
on implementation of the class Simulation. Appendix A contains the specification of the base class PQS.
Appendix B contains an informal, yet sufficiemtly complete, specification of coroutines.

2. Specification of Simulation class

Now we are going to describe and to axiomatize a system of discrete event simulation. There are numer-
ous situations in which we have to deal with processes to be simulated, for example:

• system of patients and medecine doctors,

• system of vehicles and street lamps,

• system of ...kupno-sprzedaż

Class Simulation is meant as a base for further extensions. It offers a prototype of simulated processes
and defines a set of basic operations on processes. The universe of the system Simulation of simulated
processes and discrete events consists of four disjoint subsets: SimProcess, EventNotice, T ime and
SimulationP lans. Objects of type SimProcess are quasi-threads, more precisely they are coroutines.
Each object of type SimProcess has a thread, however only one coroutine is executed in a moment.
The control passes from one coroutine to another grace the direct command attach(x).

G. Mirkowska, A. Salwicki / Creating a class with a proof 3

The type Time may be a predefined class.

The type EventNotice has two fields: process and time.

The type SimulationP lan is the data structure of priority queues of EventNocices

Initialization

Passive

Active Awaiting

Terminated

kill(x)

hold(dt)

run(p)

chooseProcess

new Your_SimProcess(...)

x:=

return

passivate cancel(p)run(x) schedule(x,t)

Scheduled

end

3. Constructing Simulation class

3.1. From specification’s signature to the skeleton of the class Simulation

The first step is a simple,almost automatic, translation of the specification’s signature onto the skeleton
of the class Simulation.

4 G. Mirkowska, A. Salwicki / Creating a class with a proof

Specification’s signature Class’ skeleton

Types:
simprocess

plan of simulation ⊂ PQ
time

eventnotice

Operations:
current - this process is currently active,

current : PQ→ SP

time - the value of currently simulated time,

time : PQ→ T

schedule - enables planning of events,

schedule : (SP × T)× PQ→ PQ

hold - suspend a current process for a while,

hold : T × PQ→ PQ

run - immediately execute the indicated process,

run : SP × PQ→ PQ

passivate - suspends the current process,

passivate : PQ→ PQ

cancel - removes a process from simulation plan,

cancel : SP × PQ→ PQ

idle?

idle : SP → Boolean

terminated?

terminated : SP → Boolean.

unit Simulation: PriorityQueues class

unit Simprocess: elemFIFO coroutine;
unit isIdle: function: Boolean;
unit isTerminated: function: Boolean;

end Simprocess;

unit EventNotice: elemPQ class; ...
end EventNotice;

unit PlanSymulacji: QueueHead class;
unit schedule : procedure(p: SimProcess, t: time):
unit hold: procedure(dt: time);
unit run: procedure(p: SimProcess);
unit passivate: procedure;
unit cancel: procedure;
unit chooseProcess: procedure;
unit currentProcess: function: SimProcess;
unit currentTime: function: time;
var currProcess: SimProcess, currTime: Time;

end PlanSymulacji;

unit Time: class ... end Time;

var SQS: PlanSymulacji;
end Simulation;

Below we gathered the postulates (invariants, axioms) the class Simulation should obey.

SQS is a finite set. (S1)

EventNotice = SimProcess× Time (S2)

SQS.currentProcess = (SQS.min qua EventNotice).p (S3)

SQS.currentT ime = (SQS.min qua EventNotice).t (S4)

¬ idle(p, pq) =⇒ (∃t)member((p, t), pq) (S5)

∀pq∈SimulationP lan∀p∈Simprocessmember((p, t1), pq) ∧member((p, t2), pq) =⇒ t1 = t2 (S6)

G. Mirkowska, A. Salwicki / Creating a class with a proof 5

pq = c ∧ idle(p, pq) ∧ ¬terminated(p, pq) =⇒ (S7)

[callschedule((p, t), pq)]¬idle(p, pq) ∧ pq = insert((p, t), c)

(pq = o ∧ ¬idle(p, pq) ∧ ¬terminated(p, pq)) =⇒ (S8)

[callschedule((p, t), pq)](idle(p, pq) ∧ pq = insert((p, t), delete((p, time), o)),

terminated(p, pq) =⇒ [callschedule((p, t), pq)]{ERROR}, (S9)

[call hold(t, pq)] α ≡ [call schedule((current(pq), time+ t), pq)] α, (S10)

(current(pq) = p′ ∧ ¬terminated(p, pq)) =⇒ (S11)

{[callrun(p, pq)]α ≡ [callschedule(p, time, pq)]α}
(p = current(pq) ∧ pq = o) =⇒ (S12)

[call passivate(pq)](idle(p, pq) ∧ pq = delete((p, time), o))

pq = o =⇒ [call cancel(p, pq)](idle(p, pq) ∧ pq = delete((p, t), o)). (S13)

We made the following decisions:

• We introduce the class PlanSymulacji derived upon the class Queuehead which implements prior-
ity queue [7].

• Instead of functions schedule, run, hold, passivate, etc. of type PQ with one argument of type
PQ we declare methods schedule, run, hold, passivate, etc. within class PlanSymulacji. In this
way we spare transferring argument and receiving the result. This simplifies the body of class
Simulation and the usage of it.

The full text of the first version is here.
Now we ought to fill the bodies of methods schedule, run, hold, etc in such a way that the properties S1
– S13 are valid.

3.2. Property S1

SQS is a finite set. (S1)

Remark that the property S1 is garanteed. For the variable SQS points to a priority queue object.

3.3. Property S2: EventNotice = Simprocess × Time

EventNotice = SimProcess× Time (S2)

Property S2 says: objects of type EventNotice are pairs 〈s, t〉 where s ∈ SimProcess and t ∈ Time.
EventNotice objects are inserted into priority queue. Hence they need an ordering relation. We use the
following definition:

e1 ≤ e2
df
≡ e1.t ≤ e2.t

The class EventNotice takes the following form

http://lem12.uksw.edu.pl/images/f/f3/SimClassWersja1.pdf

6 G. Mirkowska, A. Salwicki / Creating a class with a proof

unit EventNotice: elemPQ class(p: SimProcess, t: Time);
unit less: virtual function(e: EventNotice): Boolean;
begin

result:= t ≤ e.t
end less;

end EventNotice;

The full text of the second version is here.

3.4. Properties S3 and S4

We shall prove that in each state of SimulationPlan SQS and hence in each moment of a simulation
experiment the following two properties hold.

SQS.currentProcess = (SQS.min qua EventNotice).p (S3)

and
SQS.currentT ime = (SQS.min qua EventNotice).t (S4)

To assure this, we put the instruction
call chooseProcess;
as the last instruction in the operations: hold, run, passivate.
For example,

unit hold: procedure(dt: time);
begin

...
call chooseProcess;

end hold;

The instruction chooseProcess has to select from the priority queue SQS the eventnotice of the min-
imal time and to activate the process named in this eventnotice. Moreover information on the chosen
process and on the time of chosen eventnotice are to be accessible as the values of function designators:
cuurrentProcess and currentT ime. We achieve this by declaring private variables: currProcess and
currT ime and makking their values available through the methods currentProcess and currentT ime.

unit chooseProcess: procedure;
var e: EventNotice;

begin (* value of SQS.min is the least element of priority queue *)
e:=SQS.min qua EventNotice; (* projection qua EventNotice is needed here *)
(* variables currTime i currProcess are private variables of the object SQS *)
currProcess:= e.p;
currTime := e.t;

http://lem12.uksw.edu.pl/images/c/c5/SimClassWersja2.pdf

G. Mirkowska, A. Salwicki / Creating a class with a proof 7

attach(e.p);
end chooseProcess;

We can not not forget to declare method currentProcess.

unit currentProcess: function: SimProcess;
begin

result := currProcess;
end currentProcess;

In a similar way we declare method currentT ime. The reader sees that properties S3 and S4 are valid.
The full text of the third version is here.

3.5. Property S5

¬idle(p, pq) =⇒ (∃t)member((p, t), pq) (S5)

In words, every not suspended process is planned for certain time t. This property requires that informa-
tion whether an object s of type SimProcess has an eventnotice in the SimulationP lan or not were
known to the object itself. The simplest way to achieve this is to put the eventnotice 〈s, t〉 in the object
s. Now, the function idle answers correctly by checking the value of the variable event.

unit SimProcess: elemFIFO coroutine;
var event: EventNotice; (* make sure that, event.p = this SimProcess *)
unit isIdle: function: Boolean;
begin

result := (event=none); (* not scheduled iff event = none*)
end isIdle;

end SimProcess;

The full text of the fourth version is here.

3.6. Property S6

∀pq∈SimulationP lan∀p∈Simprocessmember((p, t1), pq) ∧member((p, t2), pq) =⇒ t1 = t2 (S6)

In words, in every simulation plan every process can be planned at most once. Property S6 will follow
from the analysis of methods schedule, hold, run, for they are inserting an eventnotice to the plan of
simulation.

http://lem12.uksw.edu.pl/images/a/ae/SimClassWersja3.pdf
http://lem12.uksw.edu.pl/images/d/d4/SimClassWersja4.pdf

8 G. Mirkowska, A. Salwicki / Creating a class with a proof

3.7. Property S7

Property S7 reads:

pq = c∧idle(p, pq)∧¬terminated(p, pq) =⇒ [callschedule((p, t), pq)]¬idle(p, pq) ∧ pq = insert((p, t), c)
(S7)

In words, a suspended process can be scheduled to be reactivated at time t. Note it is the time of
simulation system.

terminated(p) ≡ objectpexecutedallitsinstructions

We shall write a constructor (empty) and a thread of the coroutine SimProcess.

begin
return; (* end of constructor, constructor is empty *)
inner; (* it is a place for the thread of derived class *)
finished :=true; (* thread is terminated *)
call passivate;
raise Error; (* at the attempt to activate a terminated simprocess object *)

end SimProcess;

A provisory variant of procedure schedule may look as follow:

unit schedule: procedure(p:SimProcess, t: time);
var ev: EventNotice;

begin
ev := new EventNotice(p, t);
if p.idle and not p.terminated then call SQS.insert(ev); p.event:=ev; endif;

end schedule;

The full text of the fifth version is here.

3.8. Properties S8 and S9

(pq = o∧¬idle(p, pq)∧¬terminated(p, pq)) =⇒ [callschedule((p, t), pq)](idle(p, pq)∧pq = insert((p, t), delete((p, time), o)),
(S8)

A scheduled already process p can be scheduled again for another time, this will delete an earlier event-
notice for p.

terminated(p, pq) =⇒ [callschedule((p, t), pq)]{ERROR}, (S9)

An attempt to schedule a terminated process results in an error. Properties S8 and S9 require the correct,
full version of operation schedule.

unit schedule: procedure(p:SimProcess, t: time);
var ev: EventNotice;

begin
if p. terminated

http://lem12.uksw.edu.pl/images/7/70/SimClassWersja5.pdf

G. Mirkowska, A. Salwicki / Creating a class with a proof 9

then
raise ErrorDo not ScheduleTerminatedProcess;

else
ev := new EventNotice(p, t);
if not p.idle
then

call SQS.delete(p.event);
endif;
call SQS.insert(ev);
p.event:=ev;

endif;
end schedule;

As it is easy to observe the operation schedule defined in this way satisfies properties S7 and S8. We
should react when the parameter t has the value less than currentT ime.

The full text of the sixth version is here.

3.9. Property S10

[call hold(t, pq)] α ≡ [call schedule((current(pq), time+ t), pq)] α, (S10)

for arbitrary formula α.
A hold operation suspends the current process and schedules its activation after t units of time. The
property leads directly to the following body of the procedure hold.

unit hold: procedure(dt: time);
begin

call SQS.schedule(currentProcess, currentTime+dt);
call SQS.chooseProcess;

end hold;

The first instruction causes suspension of the current simprocess’ thread for dt units of time. The second
instruction will choose a new active simprocess object. The full text of the seventh version is here.

3.10. Property S11

(current(pq) = p′ ∧ ¬terminated(p, pq)) =⇒ {[callrun(p, pq)]α ≡ [callschedule(p, time, pq)]α}
(S11)

for arbitrary formula α.

Procedure run immediately activates the indicated simprocess p.

http://lem12.uksw.edu.pl/images/4/49/SimClassWersja6.pdf
http://lem12.uksw.edu.pl/images/6/61/SimClassWersja7.pdf

10 G. Mirkowska, A. Salwicki / Creating a class with a proof

unit run: procedure(p: SimProcess);
begin

if p.terminated
then

raise ErrorDo not ScheduleTerminatedProcess;
endif;
call hold(0.1); (* wstrzymaj na chwile bieżacy proces *)
call schedule(p, currentTime);

end run;

The instruction call run (x) results in immediate activation of the simprocess object x.
The full text of the eigtht version is here.

3.11. Property S12

(p = current(pq) ∧ pq = o) =⇒ [call passivate(pq)](idle(p, pq) ∧ pq = delete((p, time), o))
(S12)

Instruction passivate removes the current simprocess from the plan of simulation.

unit passivate: procedure;
var s: Simprocess;

begin
s := currentProcess;
call SQS.delete(s.event);
s.event :- none;
call SQS.chooseProcess;

end passivate;

The full text of the ninth version is here.

3.12. Property S13

pq = o =⇒ [call cancel(p, pq)](idle(p, pq) ∧ pq = delete((p, t), o)). (S13)

Instruction cancel applies to a scheduled, non-active simprocess.

unit cancel: procedure(p: SimProcess);
begin

call SQS.delete(p.event);
p.event :- none;
call SQS.chooseProcess;

http://lem12.uksw.edu.pl/images/5/5b/SimClassWersja8.pdf
http://lem12.uksw.edu.pl/images/4/41/SimClassWersja9.pdf

G. Mirkowska, A. Salwicki / Creating a class with a proof 11

end cancel;

The full text of the tenth version is here.

3.13. Property S6 again

∀pq∈SimulationP lan∀p∈Simprocessmember((p, t1), pq) ∧member((p, t2), pq) =⇒ t1 = t2 (S6)

Własność ta powiada: w każdym momencie obliczeń i dla każdego procesu s, w planie symulacji nie
ma dwu zdarzeń e1 i e2 planujacych wznowienie procesu s w dwu różnych chwilach. Można sprawdzić,
że procedura schedule zapewnia te własność, a w konsekwencji także pozostałe procedury planowania,
które sie na tej procedurze opieraja, zapewniaja te własność

3.14. Remarks

skad sie wział prior?
Unit Mainpr: SimProcess class

4. Conclusions

One immediate corollary says:

Theorem 4.1. (on relative correctness)
If the base class correctly implements the specification of Priority Queues, then the class Simulation
correctly implements the specification SimulationSpec.

Proof:
Follows from the construction of the class Simulation ut

The next question arises: are there more implementations of the specification? or all of them are
equivalent? The answer is given below:

Theorem 4.2. Let CPQ be a correct implementation of the priority queues. Any two correct implemen-
tations of specification of Simulation which are based on the class C + PQ are isomorphic.

And the most important

Theorem 4.3. In every step of computation the active coroutine is the simprocess of the current process.

Proof:
follows from the properties S... ut

Hence

http://lem12.uksw.edu.pl/images/9/93/SimClassWersja10.pdf

12 G. Mirkowska, A. Salwicki / Creating a class with a proof

References

[1] Bartol, W. M., et al.: Report on the Loglan’82 Programming Language, PWN, Warszawa Łódź, 1984.

[2] Conway, M.: Design of a separable transition-diagram compiler, Communications of the ACM, 1963.

[3] Dahl, O.-J., Myhrhaug, B., Nygaard, K.: Common Base Language (Simula67), 1970.

[4] Dahl, O.-J., Wang, A.: Coroutine sequencing in a block structured environment, BIT, 1971, 425–449.

[5] Mirkowska, G., Salwicki, A.: Algorithmic Logic, PWN and J.Reidel, Warszawa, 1987.

[6] Mirkowska, G., Salwicki, A., Świda, O.: SpecVer - the methodology integrating specification, programming
and verification, Fundamenta Informaticae, 85, 2008, 343–357.

[7] Mirkowska, G., Salwicki, A., Świda, O.: Verifying a Class: combining Testing and Proving, Fundamenta
Informaticae, 95, 2009, 305–324.

Appendix A: Specification of Priority Queues

The specification of priority queues class was published in [5], we recall it here for the convenience of
the reader.

G. Mirkowska, A. Salwicki / Creating a class with a proof 13

Table 1. Specification ATPQ of priority queues.
Signature Comments

Sorts Universe = E ∪ PQ
E set of elements
PQ set of priority queues

Operations let e ∈ E and q ∈ PQ
insert : E × PQ −→ PQ put e into q
delete : E × PQ −→ PQ delete e from q

min : PQ −→ E find the minimum element
empty : PQ −→ {true, false} is a priority queue q empty?
member : E × PQ −→ {true, false} does e ∈ q?
≤: E × E −→ {true, false} the ordering relation

Axioms

(a1) The set E ofelements is linearly ordered by the relation ≤ .
(a2) [while not empty(q) do q := delete(min(q), q) done] true

This axiom says for all q program halts, i.e. the priority queue q is finite
(a3) [q1 := insert(e, q)]{member(e, q1) ∧ (∀e16=e member(e1, q1)⇔ member(e1, q))}
(a4) [q1 := delete(e, q)]{¬member(e, q1) ∧ (∀e16=e member(e1, q1)⇔ member(e1, q))}
(a5) empty(q)⇒ (∀e∈E ¬member(e, q))
(a6) ¬empty(q)⇒ (∀e∈E member(e, q)⇒ min(q) ≤ e))

The operation min finds the least element of the set q.
(a7) [e := min(q)]true⇔ ¬empty(q)

Axiom (a7) says the result of expression min(q) is defined iff ¬empty(q)
(a8) member(e, q)⇔ begin

s1 := q; result := false;
while not empty(s1) and not result do

if e =min(s1) then result:=true fi;
s1 := delete(min(s1),s1)

done
end result

Appendix B: Coroutines

Coroutines were invented in 1963 [2] by M. Conway. Fathers of Simula67, O.-J. Dahl and K. Nygaard
defined coroutines in a completely new way, see [3, 4]. The system of coroutines of Simula67 had
a weak point: namely coroutines were dependent on the notion of prefixed block (a prefixed block
is in Java terminology an anonymous class). In Loglan’82 [1] coroutines obtained a new and clean

14 G. Mirkowska, A. Salwicki / Creating a class with a proof

definition. Nowadays coroutines attract more attention, see Wikipedia []. Astonishingly, the majority
of programmers ignores the proper definition. And consequently they are ignorants of broad class of
applications. For these reasons we present here a short presentation of coroutines. The diagram of the
Figure 4 gives almost complete information on coroutines. The system of Loglan’82 has a notion of
dynamic chain of a coroutine. Each coroutine object has a stack of activation records associated to it. At
the beginning the stack contains the activation record of the thread.

Definition 4.1. Let o be an object of coroutine type. A dynamic chain associated with the object o
contains the object. If a procedure instruction is executed in the dynamic chain of o then the dynamic
chain is extended by the activation record of the called procedure. When the last instruction of the
activation record is executed, the dynamic chain is reduced by the rejection of the record.

Definition 4.2. Let x points to a coroutine object. An instruction attach(x) has the following effect.
The instruction following the instruction attach(x) is memorized in the object y - the currently executed
coroutine. The dynamic chain of x is activated, the first instruction of the most recent activation record
of this chain is going to be executed.popraw to!

Initialization

Passive

Active

Terminated

return

kill(x)

new My_Coroutine(act_params)

x:=

attach(x) or detach

attach(y) or
detach

end

Axiom: card(Active)=1

	Introduction
	Specification of Simulation class
	Constructing Simulation class
	From specification's signature to the skeleton of the class Simulation
	Property S1
	Property S2: EventNotice = Simprocess Time
	Properties S3 and S4
	Property S5
	Property S6
	Property S7
	Properties S8 and S9
	Property S10
	Property S11
	Property S12
	Property S13
	Property S6 again
	Remarks

	Conclusions

