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INTRODUCTION

The strong development of computer science inclines mathematicians to look
for mathematical models of the most important concepts which occur in this field
such as a computing machine, a program, a computation, etc,

This is a natural way of creating mathematical theories, which first try to
describe a reality in 2 more or less detailed way and are later developed independently,
being often applied to fields not previously anticipated. It seems quite obvious
that there are various approaches to the concepts occurring in computer science,
in particular to programs. Up to the present various ideas, methods and approaches
have been applied in order to develop a mathematical programming theory.

One of the possible research methods is to present programming theory as
a formalized logical system. Attempts to find a proper and simple logical system,
constituting a basis of programming theory, and sufficiently rich to be applied
in sophisticated investigations, led to the creation of algorithmic logic and its vatious
extensions.

Algorithmic logxc has been formulated in the doctoral dissertation of A. Sal-
wicki and developed in several papers by mathematicians of the University of
Warsaw (L. Banachowski, 'A.. Kreczmar, G. Mirkowska-Salwicka, H. Rasiowa,
A. Salwicki, and others).

The first purpose of introducing algorithmic logic has been to havé a tool
for finding and formulating the most important laws concerning computational
processes, independently of computing machines, of programming languages, and
of computation objects. Those laws are like the laws of propositional calculi or of
predicate calculi. Methodologlcal investigations concerning problems which occur
in programming and investigations which could i improve programming have been
adopted as further topics of research.

The method of defining a system of algorithmic logic is analogous to that
used to define any formahzed logical system.
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To begin with, formalized algorithmic languages: are introduced. Any such
language is' obtained from a first order predicate laniguage without quantifiers by
adjoining certain new expressions, to be called substitutions, and—in addition—
program operator signs: o (composition sign), » (branching sign), # (iteration
sign), and the iteration quantifiers. Substitutions are adopted as atomic programs.
Roughly speaking, they correspond to programs like:

x:=y-zand y:=z+1 and p:=x <y (simultaneous assignment)

in ALGOL-like languages. Other programs in a formalized language of algorithmic
logic are constructed from substitutions by means of program operators and by
using also formulas (in the case of branching and iteration). The intuition connected
with a composition o [KM] of two programs K and M is obvious. As regards a branch-
ing v [«KM] it corresponds to “if « then K else M™. An iteration % [«K] corresponds
to “while @ do K. The set of all “program-expressions” is precisely defined and
denoted by FS. The elements of FS are also called FS-expressions. It is clear that
FS-expressions are interpreted as' programs without recursive procedures. Any
formalized algorithmic language contains also generalized terms and generalized
formulas. Any term is a generalized term and any formula is a generalized formula.
Among the general terms there are expressions of the form Kz, where K is a pro-
gram and v is a term. The intuitive meaning of K7 is: v after performing K. Among,
generalized formulas there occur expressions of the following forms: Ko, | ) K,
() Ko, where X is a program, o is a formula and |_J, (M) are the existential iteration
quantifier and the universal iteration quantifier, respectively. The intuitive meaning
of Ku is: u after performing K; if X does not stop, then K« is going to be false.
The formulas |_) K and () Ka are interpreted as infinite disjunction v K v KKo v
V... and infinite conjunction aAKaAKKan ..., respectively. Any realization (in
a non-empty set J) of functors (symbols of functions) and predicates (symbols.
of relations) occurring in an algorithmic language is extended to the set of all well-

- formed expressions. Valuations in J, i.e., mappings assigning to individual variables.

elements in J and to propositional variables elements in the two-element Boolean
algebra, are considered as memory states (state vectors). Programs, i.e., FS-ex-
pressions, are realized as partial mappings of the set of all state vectors into itself.
Properties of programs are expressible by means of generalized formulas.
For instance, let X, M be any programs, «, # any formulas, and 1 a propositional
constant interpreted as a symbol of any true sentence. Then for any realization
and any state vector o, K1 is true if and only if by this realization program K stops
for the initial state vector ». Thus K1 describes the stop property for K. Similarly,
formula (¢ = KB) describes the correctness of K with respect to an initial condi-
tion « (for the data) and a terminal condition # (for the results of the computa-
tions). The formula ((xA K1) = KB) describes a partial correctness of K, namély
by the assumption that K stops. The formula (Ko <> M) describes an equivalence
of programs K, M with respect to a terminal condition a for the results of the com-
putations. : i
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It follows that the investigations of properties of programs can be reduced
to those concerning the satisfiability and the validity of corresponding generalized
formulas in certain or in all realizations.

In any algorithmic language the semantic consequence operation is defined,
as usual, by means of realizations. A formalized algorithmic language and the
consequence operation in that language constitute a system of algorithmic logic.
If, moreover, a set of generalized formulas is adopted as a set of specific axioms,
we obtain an algorithmic theory. .

Systems of algorithmic logic have been examined by G. Mirkowska-Salwicka
in her doctoral dissertation [17]. Let us mention some of her results. The compactness
property does not hold. One obtains an axiomatization and a formalization of the
Hilbert type of the systems of algorithmic logic (based on enumerable languages)
with the completeness theorem on applying the algebraic method due to H. Rasiowa
and R. Sikorski (see [49]). The formalization in question uses two infinitistic rules
of inference of w-type. The completeness theorem makes it possible to reduce the
examination of properties of programs to the verification whether the generalized
formulas describing those properties are provable or not. A formalization of the
Gentzen type of systems of algorithmic logic by using the method of diagrams
of formulas (see H. Rasiowa and R. Sikorski [49]) has also been formulated. This
is more convenient with regard to automata proving theorems. Proofs have been
obtained of an analogue of Herbrand’s theorem for certain generalized formulas.
A theorem on a normal form of a program has been obtained. An algebraization
of algorithmic languages and their semantics has been used to get simpler and
purely algebraic proofs of various metamathematical theorems.

Effectivity problems in algorithmic logic have been examined by A. Kreczmar,
most of them in his doctoral dissertation [13]. He proved that the set of all valid
generalized formulas of algorithmic logic is recursively isomorphic to the set of for-
mulas true in the standard model of the arithmetic of natural numbers and that
the set of all consequences of aset 4 of generalized formulas is hyperarithmetical
with respect to 4. These theorems establish an infinitistic character. of algorithmic
logic. Other results concern the degrees of unsolvability of fundamental properties
-of programs (such as the stop property, correctness, equivalence). These properties
have been examined in the class of all realizations, in the class of all realizations
in finite sets, in ‘the class of relational systems isomorphic to the standard model
of the arithmetic of natural numbers, and in the class of relational systems isomorphic
to the system (R, 0,1, +, -, —, —!) of real numbers. Using algebraic and meta-
mathematical methods which may be apptied to algorithmic logic, Kreczmar presents
new simple proofs of kmown theorems (eliminating Gédel's numerations and
Turing’s machines) and certain new results.

Problems of the definability and programmability of functions, relations and
relational systems in algorithmic logic have beerr investigated by A. Salwicki [31].
‘Theorems on the elimination of explicit definitions in systems of algorithmic logic
-express the possibility of eliminating subroutines in ptograms without recursive
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procedures. Functions and relations are said to be programmable if they are definable
in algorithmic logic by means of explicit definitions of a special type. Programmable
relations are said to be stringly programmable if their complements are program-
mable. An extension 2 of a relational system B is said to be its strongly program-
mable extension if all functions and relations in % are strongly programmable in B.
Two relational systems are constructively equivalent if each of them is a strongly
programmable extension of another. Relational systems constructively equivalent
to the standard model of the arithmetic of natural numbers are said to be constructive.
A. Salwicki [31] presents a theory of programmability and its relationship with the
theory of recursive functions. In particular, he obtains a generalization of the Post
theorem, a generalization of Shepherdson’s and Sturgis’ theorem [54] and a theorem
establishing necessary and sufficient conditions for a relational system to be con-
structive. .

Problems concerning the correctness of programs and modular properties
of programs have been investigated by many authors (Floyd [37], Manna [45],
Hoare [38] and others). An analysis of the notions of a modular structure and of
a description of a program on the basis of algorithmic logic has been carried out
by L. Banachowski [6], [7]. It turns out that the various approaches used by the
authors mentioned above can be included and presented in a uniform way in a theory
of modular properties of programs as constructed by Banachowski. Algorithmic
logic extended by adjoining the existential and the universal quantifiers has been
a tool for developing this theory.

The case statements

case expression of begin K;;...; K, end, n = 2,3, ...,

which occur in programming languages and are generalizations of if then else state-
ments can be described in a natural way in w*-valued algorithmic logic. Similarly,
generalizations of while do statements are easily expressible in that logic. Formalized
w*-valued algorithmic languages may contain m-valued predicates for all m > 2.
As a semantic basis of that logic a generalized Post algebra P,, is adopted. Its
elements form a chain /| = e; < ey < €; < ... < €, = |/ isomorphic to the chain
of all ordinals not greater than . PB,, is a linear pseudo-Boolean algebra with respect
to the operations U, m, =, 7]. Moreover it has operations d;, i = 1, 2, ..., defined
by the equations di(e) = |/ if i < j, and di(e) = | if i > j. The set {,[”}
is the two-element Boolean algebra with respect to U, N, =, 7], Metamathematical
investigations concerning this logic are based on the theory of generalized Post
algebras of order w*. There is a close connection between P, and the two-element
Boolean algebra, and more generally, between Post algebras of order w* and Boolean
algebras. This relationship permits us to associate with any system of w*-valued
algorithmic logic an equivalent theory based on a system of algorithmic logic.
However the formalized language of this theory must be much richer. Any m-valued
predicate is replaced by a sequence of (m—1) two-valued predicates. The applica-
tion of*w*-valued algorithmic logic simplifies considerably the description of very
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complicated programs. The formulation of this logic and a formalization of the
Hilbert type with the completeness theorem are to be found in. [20]-[23] by Ra-
siowa.

_ Procedures are an essential tool in programming b:cause there are functions
programmable by procedures which are not definable by any program which does
not contain a recursive procedure (see e.g. Daiiko [8]).

An extended o™ -valued algorithmic logic (see Rasiowa [24], [25], [26]) is a tool
for investigating procedures and programs with procedures. Investigations con-
cerning these problems are continued. It is proper to add that this approach
links procedures to Mazurkiewicz’s pushdown algorithms {33] and that the applica-
tion of w*-valued logic is essential for introducing labels and describing the control
functions of pushdown algorithms. However, it is possible to eliminate from for-
malized languages of extended w*-valued algorithmic logic m—valued predicates
for m > 2 (see Rasiowa [26]).

Another approach to recursive procedures, due to A. Sa1w1ck1,15 based on the
observation that procedures can be treated as implicit definitions of a special type
and thus they are generalized formulas in algorithmic languages. He introduced
the notion of a formal computation distinguishing computation by value and by
name. Procedures are treated as axioths of theories in extended languages of algo-
rithmic logic. This enabled him to investigate models of systems of procedures
and to obtain certain theorems concerning these models.

The recent investigations on algorithmic logic and its extensions conducted
by mathematicians at the University of Warsaw, deal with problems connected
with recursive procedures, coroutines, concurrent programming, data structures,
automata proving theorems in algorithmic logic, and algorithmic theories of certain
relational systems, e.g. standard model of arithmetic of natural numbers, a system
of lists LISP, etc.

The present survey of results in algorithmic loglc is of ‘a cursory and super-
ficial character. It neither includes the whole of the research nor pretends to uniform-
ity of presentation. The aim of this paper is to introduce the reader to problems
connected with this trend of research and to refer him to original papers.

Chapter 1
ALGORITHMIC LANGUAGES AND THEORIES

The aim of this chapter is to express the- fundamental properties of programs as
axioms of formalized algorithmic theories based on algorithmic logic. We state
the completeness property of the formalization given here. In order to be able to
formulate the axioms we have standardized the language, simplifying its syntax
and defining semantics in a precise way. All the existing programming languages
can be reduced, if necessary, to the suggested here.

"In addition, the notions of definability in algorithmic logic are’ introduced.
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The chapter is designed as an introduction to the remaining ones. We have
tried to make it selfcontained; for more details the reader is ‘advised to refer to [11],
[15], [25], [28].

§ 1. Relational systems

By a relational system we understand the following system

A= F, {Ox}iet, {rk}kaK>
where # is a set called the universe of the system U for every i € I, o; is an n;-ary
operation in ¢, 0;: #™" — ¢ and,for every k€ K, ry is an my-ary relation, ry, = #m.
ExAMPLES. 1. Let ¢ be a two-element set with elements denoted by [~ and },
respectwcly Let o, be a unary opcratwn defined as follows:

ol =1 o(N=".
Let 0, be a binary operation satisfying
(5,1 =" el N= (A=A o0l D=1

We san also define further binary operations o5 and o, by the equalities
0s(a, b) = 01(02(01(‘1): 01(”))): o4(a, b) = 03 (ol(d)i b): a,be {1/}

The only relation considered is the binary relation of identity {(/, "), (], D}
denoted by = ‘ :
The relational system -

| §B=<{[/:/I]}:01102a03’047 =>
is called the two-element Boolean algebra and will repeatedly appear in the sequel.
We shall then use the signs — and N, U, — to denote operations oy, 0, 03, 04
and B to denote the set {|/, |}; hence B = (B, —, n, U, >, =).

2. The arithmetic of natural mimbers. This is a relational system with the follow-

ing universe: the set of natural numbers 4", one zero-argument operation 0-—zero,
one unary operation S—succesor (add one) and the binary relation of identity =

U = (AN, 0,8, =>.

3. The arithmetic of a computer. The universe of this relational system is com-
posed of all binary words of length k, i.e., all sequences of length k composed of
two signs, 0 and 1. The length k as well as the operations depend on the type of the
computer. This is clearly understood. The relations are usually unary: “to be equal

to zero”, “to be positive”, etc.

4. The relational system connected with the ALGOL-60. The universe of this
system-is the sum of the followmg sets:

A of real numbers,

{true, false} of Boolean values,

STR of strings.
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The operations considered are partial operations on real (or integer) numbers.
and on Boolean values and some operations on strings which must be expressed
in code. :

5. The relational system connected with the SIMULA-67 is more complicated.
In fact, we should speak about a new relational system for every SIMULA program
as it enriches the basic universe by introducing new classess of objects, with ap-

propriate operations defined by procedures.

§ 2. Formalized language of algorithmic logic

In order to describe the properties of a relational system, programs and the pro-
perties of programs we need a language with signs that correspond to operations,
relations and memory locations or variables and with signs that denote the program-
ming constructions such as branching if ... then else ..., for example. Expressions
of the formalized language will be interpreted as mappings from the set of memory
states into corresponding subsets of the universe. Various kinds of expressions
correspond to arithmetic and Boolean expressions, to programs and finally there
are some (generalized) formulas that describe properties of programs.

The realization (interpretation) of a formalized language in a relational system
is defined in the mext section.

A formalized language is fully described by two elements:

—its alphabet A (i.e. a collection of signs), -

—its set of well-formed expressions.

The alphabet of a formalized algorithmic. language is the union of disjoint,
at most enumerable sets

A = V,uVuPUPUL, UL VL,UQUITUU.

Elements of V; will be called individual variables and denoted by x, y, z (with
indices if necessary). :

Elements of ¥, will be called propositional variables and denoted by p, ¢ (with
indices if necessary).

The set @ is the union of disjoint sets @, (1 € 4, where 4" is the set of non-
negative integers). Elements of @, will be called n-argument functors and denoted
by @, ¢ (with indices if necessary). We assume that at least one of the sets D, is
nonempty.

The set P is the union of disjoint sets P,, (where m is a positive integer). Elements
of P,, will be called m-argument predicates and denoted by o5 n (with indices if
necessary). We assume that the sign of equality = belongs to P,. .

The set L, contains exactly two elements called propositional constants. They
will be denoted by 1 (true sentence) and 0 (false sentence).

The set L; contains one element called the negation sign and denoted by 7.
Negation is a 1-argument logical connective.
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The set L, contains three elements called 2-argument logical connectives. They
are called the disjunction sign, the conjunction sign and the implication sign, and
are denoted by v, A, =.

The set Q contains two elements, called iteration guantifiers and denoted by
() the existential iteration quantifier and () the universal iteration quantifier.

The set /I contains three elements, called program connectives and denoted
by o composition sign, . branching sign, % iteration sign.

Elements of the set U are called auxiliary signs. We assume that U contains
elements denoted by / slash, (, )parenthesis, [ , ] brackets.

By a language & of algorithmic logic or shortly, an algorithmic language we
shall understand a system

Z = {4, TUF°USUFSUFSTUFSF),
where A is the alphabet of 5? and the set
TuF°uSUFSUFSTUFSF

forms the set of expressions belonging to %, i.e., the set of well-formed expressions.
We start with the definitions of T and F°.
The set T of terms is the least set of expressions over A satisfying:
ifxeV;thenxe T, N
if pe®D,, 7y, ..., 7, € T then p(z4, ..., 1) € T.
The elements of T—terms—will be denoted by = (with indices if néccssary).
The set F° of open (quantifier-free) formulas is the least set of expressions
over A satisfying:

tn)
{t2)

(fo)y 0,1eF,

(f1) ifaeV,thenaeF°,

(f2) ifpeP,, 7y, ..., Ty € Tthen o(7y1, ..., Tw) € F°,
(f3) if a, B € F° then the expressions

@vp), @rp), (@=f), Ta
belong to F°. .

The elements of F°—formulas—will be denoted by o, 8, y (with indices if
necessary).

BXAMPLES. xUy, (xUy)nz, (xny)u(xnz) are examples of terms in formalized
language of the lattice theory. xu—y, xn(yuU —z) are terms in formalized language
of theory of Boolean algebras.

S(x), 0, S(S(x)) are terms in formalized language of arithmetic.

In the examples above we have used another syntax for terms with binary
functors.

xny =z, ((xuz)nz = (xuz)uy) = y=12

are examples of formulas in the formalized language of lattice theory.
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The set § of substitutions is the set of all expressions of the form

[xl/Tl X,,/’l’,, al/al am/am]
‘where ,
=20,m>=0,
X1, +er5 X, are different individual variables,
a,, ..., a, are different propositional variables,
Ty, ...y T, are terms from the set T,
0y, ---, Oy are open formulas from the set F°.

Substitutions will be denoted by the letter s (with indices if necessary).
EXAMPLES. [x/s(x)],

[x/s(x) yjux*+tx+o af (x+p)+1 = z) = ((avb)A b)]

Substitutions are the simplest programs.

The set FS of programs (FS-expressions) is the least set satisfying

(fs1) if s € Sthen s € FS,
{fs2) if aeF° K,MeFS then the expressions o[K M], x[aK M], #[aK] are
in FS.

Programs will be denoted by the letters X, M, N, L (with indices if necessary).

To see thesconnection with programming one can translate FS-expressions
into an ALGOL-like language as follows:

1. BEvery substitution s of the form

[xl/TI xn/Tn al/al ﬂ,,,/dm]

is to be read

Xy =17, and ... x, := 7, and a; := o, and ... and g, 1= o,.

This will be interpreted as simultaneous substitution (assignment instruction).
‘One can also see that terms play the role of arithmetic expressions and open formulas
play the role of Boolean _expressions as in ALGOL.

2. Suppose that FS-expressions K and M are translated into programs Ilx
and I7); then the program

begin

: I,
IIy; X
HM | 1593 | )
end —

will be the translation of the FS-expression o[K M].
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3. If the FS- expressxons in question are v [aK M] or #[«K] then they will be
translated into

if o then ITy else I1,

[=1

and into
(for i := i) while « do IIx

We call the attention of the reader to the fact that the % sign used here differs in
shape and meaning from a similar. sign used in earlier works on algorithmic logic.
The set FST (of generalized terms) is the least set of expressions satisfying

(fstl) each indiv.idual variable x e V; is in FST,
(fst2) if peD,, 14, ..., Ty € FST then ¢(vy ... 7,) € FST,
(fst3) if K€ FS, = € FST then the expression Kv € FST.

Elements of FST will be denoted by the letter = (with indices if necessary).

In order to dlstmgmsh between T and FST, terms belonging to T will be called
classical,

EXAMPLES.
[x/x+y- 2l(z—x"y); .
*[)g‘< ¥ [x/x+1J(x+p)+ x[x = p [u/x—11[u/x+1 z/2]}(x+y—2).
The set FSF (of generalized formulas) is theJeast set of expressions satisfying:
(fsf0) 0,1 e FSF,
(fsf1)  if a € V, then a € FSF,

2 Banach t. IT
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(fsf2) -if @ € P, Ti»-ers, T € FST then o(zy e T) EFSF : ‘
(fsf3) if «, B e FSF then the expressions (xVf), (oc/\ﬂ) (oz = /3), "|ac belong
to FSF,
(fsf4) if a e FSF, K e FS then the expressions Ku, UKoc, ﬂ Ko belong to
FSF.
Elements of FSF will be called formulas and denoted by «, 8, y (with indices
if necessary). -
EXAMPLES. (x < ¥);

(= <yv(x/x+y 2ez—x3)) = z);

/01 [x/x+11(x = ). ;

In the sequel it will be convenient to use the abbreviation « <> denoting
the formula of the form (& = B)A (f = &).

By V(@) we shall denote the set of all variables in an expression w.

* § 3. Realization of the formalized language ;)f 'algo’l'ithmic logicv

The connection between formalized languages and relational systems is established
through the notion of realization of a language % in a relational system 2.

By a realization of the language % in a relational system U = {#, {0:}ier,
{ri}kery, and the two-element Boolean algebra B we shall understand any mapping
R such that

(a) to every m-argument functor @in !D,,,, R assigns an m-argument operation

gr in U, ie gr: f7 > 2,
(b) to every m-argument predicate ¢ in &, R assigns an m-argument function

or- Ff" > B
where gr is the: chaxacterlstlc function of a relanon i, i€

Ui wdmy =1/ Giodwer (kel).

Usually we shall assume that among the relations ry (k el ‘there is an identity
relation and moreover that =p is its characteristic function.
By a valuation v of variables we understand any pair of mappings '

i Vio £,
: Vo B.

The notion of valuation will be treated as a formalized equlva]ent of the notions:
state of memory, vector-state, etc.

The set of valuations #¥x B”® will be denoted by W.

Given the realization R of the language %, we can interpret ahy expression
of the language % as a mapping defined on the set of valuatlons w:

every term 7 will be interpreted as

! W £,
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every formula « will be interpreted as a mapping
ag: W B,

every program K will be interpreted as a (partial) mapping

Kp: Wo W,
The details are as follows. Let v = (v;, v,) be a valuation of variables. Then
(tIR) ’ xp(@) = v;(x),
(t2R) (T, s Tr(®) = or(T:12(), ..., 7.x(2)),
(fOR) ' %) = /. L@ =1/
(FIR) ax(2) = vo(a),
(f2R) 0(T1s -vs Tw)r(@) = gr(T1r(®), ..., Tmr(®)),
(f3R) (avPr(®) = ak(w)uﬁx(v),

(@A Br@) = ar(@)nfrv),
(x = B)r(®) = ar(v) = Pr(2),
(TR = —(@);
@BIR)  [xy/Ty oo X0/ T0 A1/ .. Gnfotn]r(®) = @' where
2'(x) = (@) for i= i, cs M,

2'(@) = ajg(®) for j=1,...,m, *

v'(z) = v(2) for the remaining irariables,
My (Kr(®)) if the valuations v’ = Kz(v) and Mg(v")
(fs2R) o[K M]z(v) = exist,
undefined  in the opposite case,
Kx(v) if ag(v) = |/ and Kz(®) is defined,
~ [aK MIr(v) = | Mp(v) if ag(v) # |/ and Mz(v) is defined,
undefined in the remaining cases,

Kk (v) if i is the least integer such that:all
valuations K% (@) (j < i) are defined and
#[aK]p(v) = ag (Ki(®)) ;—_R}} U<
undefined if such an integer i does not exist.

ExAMPLES. Let K be the program
K: y[x = ylu/x—1][u/x+1 z/2]],

and let o be the valuation v ; “

W=
ENEY

The realization considered hcre is in the

-4

field of real numbers. The result Kx(v) is the valuation v’ 5

(N1
u|‘<
m[:

2
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Let M be the program: #[x < y[x/x+1}]; then the resulting valuation 2"

zu
= Mx(v) is defined and equal to v": %%7{?'

The realization of FST-terms is defined as follows: -

(fst1R) xr(v) = v(x),
- @r (T1x(@), ..., Tr(@))  if all values 7ix(v) are de-
(fst2R)  p(7y, .-, TI() = . fined,i=1,..,n
undefined - : otherwise,

(K@) if v = Kx(v) and vx(v’) are defined,
undefined  otherwise.

(fst3R) . (K7)r(v) ={

The realization of FSF-formulas is defined as follows:

(fsfOR) @) = 1, L@ =",
(fE1R) ax(2) = v(a),

(fsf2R) o 0(T1, eoes TR = 0 (T12(®), ..., Tr(®)),
(fS£3R) (@ (@) = ax(0)Pr(®),

(N NOEENOLAOR
(2= Fa(®) = (@ ~ F(®),
. (1@ = ),

g (Kr(®))  if the valuation o' = Kg(v) is defined,
(fsf4AR)  (Ko)r(v) = { N otherwise,

(UKa)(@) = Lub.(K'2)x(0),
(M K2)a(@) = gLb.(K'Dx(®)-
EXAMTLE Let v be the valuatlon v

235599/II/V

then the value of the formula a: ([x/x+y z](z—x"))) = zAb at the valuation v
in the realization in the field of real numbers is /.

A formula o € FSF is said to be satisfied in the realization R by the valuanon v
iff ag(@) = |/ -

A formula « € FSF is said to be valid in the realization R iff for all valuations
ar(®) = /.

We shall use the notation [=x oc['v] for the following phrase: the formula o is
satisfied in the realization R by the valuation v. Similarly, |=¢ « denotes that the
formula « is valid in the realization R. . ’

A formula is said to be a fautology iff it is valid in every realization R De-
notation: = a.
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ExampLEs. Formula _J [x/x+1](x = 5) is satisfied in the system Ur of natural
numbers by the valuation v: %— This formula, however, is not valid in 2t. In fact,
let »’ be a valuation such that ©'(x) = 6. Then

Ulx/x+1)(x = Sae(®) = Lwb. (Be/x+1J(x = 5))are (@)
= 1 u.t b.(x = S)are ([x/x + 11, ()
='1;151.}>‘.(x = S5)e (07)

where v;(x) = 6+1.
Evidently, for every ie A,

(r=5u@) =1 and Uk/x+1](x =)= /1.
Formula K(avf) = KavKp is a tautology. Let us consider a realization R
and a valuation v. By the definition of realization, the equality K(xVv fr(v) = |/
implies that Kg(2) is defined and (o v B)r (Kz(2)) = |~. Hence

g (Kr(@)Pr(Kr(®)) = |/ and (KavKBRr(@)=1|". .

§ 4. Algorithmié properties

We shall consider the following properties of programs.

1. Stop property—a program K stops (halts) in the realization R at the valua-
tion v iff the resulting valuation K(v) is defined. The formula K1is satisfied in R at ¢
iff Kx(v) is defined. We shall say that the formula K1 expresses the stop property,

2. Correctness with respect to an input formula o and an output formula f—this
property of a program K holds whenever the fact that the initial data of the program
K satisfy the input formula « implies that the results are defined and satisfy the out-
put formula . This property is expressed by the formula o = Kp.

3. Partial correctness with respect to an input formula o and an output formula
is expressed by the formula (xAK1=> Kp). The program K is partially correct
with respect to « and 8 iff for every valuation v if v satisfies « and K stops then
the results Kx(v) satisfy f. ’ ‘

4. Equivalence of two programs K and M with respect to the f01 mula o can be
defined according to different patterns as follows:

(a) Ko <> Mu,

(b) (K1 <> MI)A (Ka <> M«) (denotation K = ,M),

(©) K1AM1A (Ko< Mua).

In addition, the important properties of

being results of the program K, 1K;
adequacy of program for input and output conditions (a<> Kf)A (aK )
can also be expressed. '
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The last two formulas belong to the language of extended algorithmic logic,
see I, § 5.

In algorlthmlc logic one can characterize properties not exprcs51ble in classical
logic.

1. Formula [y/0]1\) [¥/y+11(y = x) is valid iff a number x can be obtained
from zero by adding a finite number of unities.

2. Formula [x/1]() [x/x+ 1](x # 0) expresses the property of being of char-
acteristic 0.

3. Formula (x > 0Ay > 0= [z/y]|J [z/z+¥](x < z)) expresses the axiom
of Archimedes.

¥ § 5. Normal form of programs

Every program of the form ofKx[aM]] where K and M are loop-free programs
is called a program in the normal form.

5.1. For every program K in FS, there exists a program M ir the normal form
such that K and M are equivalent on the set (Vo) — (V(M)~V(K))) of variables,
i.e. for every realization R and for every valuation v, the valuation Kg(v) is defined
iff Mp(v) is defined, and if they are defined then, Jor all variables x ¢ V(M)—V(K),
Kr(@)(x) = Mr(@)(x). (1171)

The variables V(M)—V(K) have an auxiliary meaning only. They can always
be chosen so that they do not occur in the formulas under consideration.

ExampLE. For any loop-free programs M, N and any opén formulas «, 8 program
* [a ° [M* [ﬂN]]] can be reduced to the normal form

[[q/0] *[qvas[v[gVM] [q/ﬂ]]]]

§ 6. Definability and programmablllty

Let o = (j {01}.51, {r}rer be a relational system and let % be a language
associated with U in the following manner:

for every o; (i), n;-argument operation in %, there exists in the alphabet
of £ an n;-argument fimctor g,,,

for every ri (k €I’), my-argument relation in %, there exists in the alphabet
of & an m;-argument predicate Ory-

The realization of the language % is defined in the obvious way.

We shall say that a relation r < #" is definable in the system U iff there exists
a formula « € FSF with n free variables such that the equivalence or(®y ... %) = o
is valid in U provided that the predicate o, is realized as the characteristic function
of the relation r.

-, ~For the further use it will be convenient to. introduce a restriction of the notion
of definability.-
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We shall say that the relation r is programmable iff it is dcﬁnable by a formula
of the form K« where K € FS, « € F°.

A relation r is strongly programmable iff r and its complement F"~r are pro-
grammable.

The following theorem is an analogue of the Post theorem.

6:1. A relation r = #* is strongly programmable iff it is definable by a formula
of the form Ko, (K & FS, a € F°) such that the formula K1 is valid in % ([31]). -

ExAMPLE. Let us consider a language in which 0 is a constant zero-argument
functor, S a one-argument functor, and = binary predicate. The relation < (less
than) is defined by the following equivalence: :

x <y xfx =yl [0l [« [ = yvu = D/S@I]
[u=x [e/1] [c/O]]]]]c

which defines the relation < in the set of natural numbers. This can be proved
in a formal way, e.g. by showing that the right-hand side is semantically equivalent
to the formula ‘

/01U [/S@] x+z=y

in the set of natural numbers, or by proving the equlvalenoe
wfx = el [@iore [ [0 = yvu = AW/S@I] 2l # xLef1] [c/01]]]]
' = EOUL/S@lx+z = y

from the formula—axmm of natural numbers .

AxTiz: TIS0) = 04 (3() = S0) = ¥ = »)A L6/0] U L/SCA(x = y)

§ 7. Conditional ‘definitions of functions

Explicit definitions of functions are usually equalities; we shall consider conditional
definitions of functions as implications in which the antecederit describes the domain
of the function to be defined.

Let K be a-program and v a valuation. The rfesulting valuation o' = Kx(v)
is hot always defined. We can easily see that the formula X1 describes the domain
of the function Ky for any realization R. We now define another formula with
that property. We shall define the mapping '

E: FSOUFST — FSF
as follows: e .
E(s) =1 for any substitution s & S;
E(o[KM]) = E(K)AKEM),
E(x [0k M]) = anEK)V Ten E(M), .
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Es[aKD = 2[oK[ 1] 7ot

E(x) =1 for any individual variable x € V;,
B(p(wis s w) = [\ B,
E(Kv) = E(K)AK E(-z:)

The following lemma. states that the mapping E gives halting formulas for
programs and terms from the FST set.

7.1. For every realization R, every valuation v, every program K e FS, and every
term 7 € FST, the following conditions are equivalent

() the resulting valuation v' = Kg(v) is- defined, ‘ o

(i) the formula E(K) is satisfied in the realzzatzon R by the valuation v, E(K)R )
=/
similarly

(t) the value tx(v) is defined iff (E(r))R(v) =1/ ([31).

* Bvery expression of the form § = (p,(x; ... x,) = 7) such that
. (1) the expression @,(X; ... x,) is an elementary term, the part1a1 functor: rp,

does not belong to the language 2,

(2) the expression 7 is a term (7 € FST),
(3) the expression # is a formula E(7) or. is semantically equivalent to E(z),
(4) the set of free variables of 7 is {xy, ..., x,},

will be called the conditional definition of a partial-function.

ExaMPLEs. 7.1. In the relational system (4,0, S, =, < of natural numbers
with the relation < (less than) the formula

Tx<y= {x-'—y = y_[x <y#[ ]~ [[u/y z[0] % [Tu = x[u/S(u) z/S(z)]]]]z}
is the conditional definition of subtraction ;c; y which'is feasible iff x > y.

7.2. The folIowzng Jormula gives the definition of division x[y in the system
(H,0,8, +, —, <, =) of nonnegative integers

Ty =0Vl [t+)l(x = 1) = {x/y = M[y =0%[x = x[ ]]

(1910 wixl [T = 0x[u < yu[x = ¥ Noufu—y ala-+11]]]]a}.

S

§ 8. Substitutions
Let s be a substitution of the form
/Ty oo XalTn @ifa; ... G/l
we can conceive this as the diagram of the mapping

st ViuVy = TUF°®

icm
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such that

s(x)=1; fori=1,..,n,

s(@)=o; forj=1,..,m,

s(z) = z  for the remaining variables.

From now on we shall make no distinction between substitutions and mapplngs
which satisfy the following conditions:

(1) 52 ViuVy = TUF?,

@) ifzeV;thens(@) e T,

(3) if z e V, then s(z) € F°,

(4) the set {z € ViUV, s(2) # z} is finite.

Let us observe that every mapping s can be extended in a unique way to the
set TUF° if we put

s(w) = @ (z1/5@z1), - 2a/5(z0))

where

(2) zy, ..., z, are all variables occurring in the expression w € TUF?,

(b) co(z1 I5(z1)5 .ovs z,,/s(z,,)) denotes an expression obtained from w by simul-
taneous replacement of all occurrences of the variables z,, ..., z, by corresponding
expressions §(zy), ...,.5(z,). We shall use the denotation 5w, also.

It can be proved that the resulting expression w(zl/s(zl), veerZp /s(z,,)) is a term.

(an open formula) provided that w € T (o € F?).

Let s, 5, be two substitutions. We can define another substitution s, letting
5(2) = 51 (52(2)) = (52 2 $2)(2).
It is obvious that the substitutions considered with the superposition eperation
form a sémigroup S, the identity mapping (or empty substitution) being the unit
of the semigroup.
8.1. For every term v, every open formula «, every substitution s, every realiz-
ation R, and for every valuation v the following equalities hold ([49]):
s7)r(v) = T (SR(U)):
(F0=(@) = or(s(2)).
This lemma leads to the following theorem:
8.2.
{($2 05)r = S2r © S1R,
i.e., the realization is a homomorphism from the semigroup of substitutions into the
semigroup of transformations of the set of valuations W into itself.

§ 9. Generalized terms

Generalized terms from the set FST possess the following useful property:
9.1. For every generalized term T there exist a program K and a classical term
T* such that for every realization R and every valuation v

7r(v) = (Kt¥)r(v) ([17D.
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ExAMPLE. Let us consider

v w[x 2 p [x/x—y]x+([[i/01%[x = y [x/x~y i/i+1]]]i)-».

‘This term is equivalent to the term

o[[z/x] [ [x =y [x/x=)]]e [[t/x x/z o [[i/0]%[x = y [x/x~y 1/t+1]]]]]](t+i-y‘)."

Lemma 9.1 implies the following important fact:
9.2. There exists an effective transformation 3 defined for every formula of the
Jorm o(ty ... ©,) and such that . .
) x(e(zs .., ) = Ko(v¥, ..., v¥) where <%, .., 7% are classical terms
from T,
(2) for every realization R and every valuation v
(o1, -vs T))r(®) = (Ko(7t, ..., ©))r(@).

Compare this with axiom (T16) in Section 11. m

§ 10. Semantic consequence operation .

.

Let « be a formula; if it is valid in a realization R, we shali_say fhat the reélization
R is a model of o.

The given realization R is associated with a relatlonal system. We shall say

that W is a model of w if it'is valid in 2.
Notation: }: o (): o).

By a model of the set o of formulas we shall understand a realizatlon R such
that all formulas « € o are valid in R Notatlon !: A,

-

A formula o is a semantic consequence of the set .szl of formulas iff every model
of & is also a model for «.
Notation: & = a.

The set of all formulas that are semantic consequences of the set of of for-
mulas will be denoted by Cn(«), i.e.
Cn(f) = {ac FSF: o |= a}.
The set. of all' tautologies is equal to Cn(Q).
EXAMPLES. B
(ks = Bl E (UKe = §)
‘where K is a program, « and 8 are formulas.
In fact, let R be 2 model of every formula (K’ = f) (i e 4 ). By definition,

this means that, for every valuation o, (K'a = fpw) = /. Hence, for every valu-
ation v,

(UKo = B)ao) = Lub. (K')a(®) > fx(e) = glb. (a = Pue) =1/
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Contrary to classical consequence operations, Cr is not finitistic, i.e. it is not
true in general that if « € Cn(&/) then a € Cn(sZ,) for some finite subset o, = o,
This problem will be examined in Chapters I and I.

§ 11. Algorithmic formalized theories

The set Ax of all logical axioms consists of all formulas of the following forms:
.. ((e=p=>(B=y=(@=17)),

T2. (x=(avP),

T3 (B=(2vp).

T4 (@=n=(B=n=(vh =)

T5.  ((xAp)=B),

T6. (anB) = a),

7. (== (G=H=@=@rp)),

T8 ((e= B=0)= (@rp) =),

9.  (((@rB)=7p)=(a= (=),

T10. - ((eA 7o) = B),-

Til.  ((2= (2A7I&)) = Ta),

Ti12. (av o),

T13. (1A770),

Ti4. (56 <> $8),

T15.  (Ko(ry, ..., ) < o(K7,, ..., K7,)),

T1e6. (9(11, s Ty = g (o(Te, ooy 1,,))),

T17.  (K(avp) < (KavKp)),

TI8.  (K(xAB) < (KaAKR)),

T19. (K= "1Ko),

T20. (K1= (T1Ka= K7]a)),

T21.. (K(ox= B) = (Ko = KB)),

T22. (K1= ((Ka= Kp) = K(z= B))),

T23. (M) Ka<s (MavM{JK(K))), v
124, (M (" Ka<> (Moaa M (M K(Ka))),

T25. (o[KM]a <> KMo),

T26. (x[8KM]a < ((8AKd)V(T]6A Ma))),

T27.  (#[6K}a<>J 2 [6KT ](T16A ), e
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where a, B, y denote any formulas from FSF, é an open formula, s a substitution,
and K, M programs.
We admit four rules of inference

(1) &Eﬂi@
@ . ochl

Let & be a subset of FSF. By C(&#) we denote the set of all syntactic conse-
quences of &7, i.e. the set of all theorems derivable from the set &/ UAX by means
of the rules (r1)-(r4). The system I = (%, ¥, ) is called a formalized algor-
ithmic theory. The system (%, %, @} will be called the dedictive system of algor-
ithmic logic.

A realization R is said to be a model for an algorithmic theory I = (%, €, o>
provided every formula in & is valid in R.

All the theories studied in the sequel are theories with equality, i.e., they contain

the sign of equality in their languages and the following axioms for the predlcate
of equality:

T28. x = x,
T29. (x=y=y=1x),
T30. (x=yAy=z=x=172),

for every natural number m and every m-argument functor ¢;
(Ger = yA .. = Yu) = (pGey, -oos %) = @0y, ..
for every natural number m and every m-argument predicate;

T32. ((xl = YI)A A(xm = ym) = Q(xlx sery xm)¢9(}'1:
where x, ¥, z, Xy, ... » Ym are individual variables.

A (X

s }’m)))g

)

5 Xms Yis o

Exampres. 1. The algorithmic theory of natural numbers is a theory with the
following specific axiom:

AxUr: Sx = 0A (Sx = Sy = x = y)A [y/OJU [y/y+1](x = ).

This theory characterizes categorically the standard model of classical arithmetic.
2. The algorithmic theory of fields of characteristic zero is the theory contain-
ing the axioms of a field and the axiom 2 from § 4.
3. The algorithmic theory of Archimedean ordered fields is a theory containing
the axioms of an ordered field and axiom 3 from § 4.

icm
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- § 12. Completeness theorem

12.1. C(s4) = Cn(sf) for every o/ < FSF.

Theorem 12.1 shows that algorithmic logic constitutes an appropriate basis
for proving properties of programs. Not only does it allow us to carry out correct
proofs but also if an algorithmic fact is valid then a proof of it exists.

As a consequence we obtain:

12.2. Formula o is a tautology iff « € C(D) ([17])

An algorithmic theory 7 issaid to be consistent if there is no formula « with
the property that both « and ~|« are theorems of 7.

12.3. An algorithmic theory I is consistent iff it possesses a model ([17]).

§ 13. An example of proving a property of a program
We shall prove here that addition is a strongly programmable function in the rel-
ational system N = (A, 0, S, =).

Let us assume

(d) x+y= of[t/x u/0l%[Tu =y [t/S() u/S(u)]]]t
The program used here will be denoted by XK.

We are going to prove that

(@) E Ax%r= K1,

®) = AxUrad = (x+0 = x),

© E AxWead = (x+S0G) = S(x+)).

Ad (a). For every natural i the formula S'(0) = y = §'(0) = y is a tautology:
E S0 = y = S0) = ».

Making use of axioms (T14), (T26) and of axioms (Tl)—(T 12) we can prove
that, for every natural i, ‘

- /Ol u/S@u = y = [tx u/0]¥[_1u =y [t/S(®) u/S(u)][ Tu =y
Simple induction based on (T23) leads to the following conclusion: for every nat-
ural i

= /0 w/S@Yu = y = [fx w0l x[Tu =y [/S@) WISEIT T]u =
By (T27) and (T25) we obtain for every natural i

= [/Ol[w/S@u = y = o[[t/x u/0)# [Tu = » [1/S() w/SEN]L.
Now, by r4 we obtain
= /0] [/SG)lu = y = o[[t/xu/0] % [Tu = y [1/S() /SE]]1,
i.e. the program K stops when interpreted in natural numbers.

.Ad (b). This is a simple consequence of (T26).
Ad (c). In proving (c) we shall make use of two more general lemmas (the

proofs are left to the reader).
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13.1. Let K and M be programs written in the language of arithmetic. Let the
Sollowing formulas

K(u = 0),
(@ =10) = M(u=S(@)
be valid in natural numbers. Then the following programs are equivalent:
o[K# [Tlu = S() M]] [Ko ¥ [TTu=y M]M]]

We can state this also as follows: for evéry formula a the following formuld
is valid

and

o[K# [Tu = S(y) Ml < O[Ko[* [(u = yM]M]]cx.
The next lemma used in the proof is as follows:

13.2. For every program K, for every 1-argument functor o, for every realizations
R and for every valuation v the Sfollowing equality holds

(Kp(0)e(@®) = (p(KD)a(@).
Indeed,
(K‘P(T))R('U) = @(Dxr (KR(‘Z’)) = ‘PR(TR (Kn('v) ))

= ¢r ((KT)R(‘”)) = (VJ(KT))R(U)- K
Making use of these facts we proéeed as follows: -
x+80) = o[[t/x u/0] % [TIu = SG)/S() u/S@WY]]t

. from the definition of +

o o[ /0] # [Tu = y1e/SG) u/SEIN]IE/S() wiSG)]t

from lemma 13.1

I

It

° [[t/x uf0] % [TTu = y[2/S@) u/S@I]]SE) ,
from {T14)

I

S([o [t/ /01 * [T = Y[£/S¢) u/S@]7)

from lemma 13.2

il

S(x+y). o
from the definition of +.

This simple example shows certain tools that can be used in the proofs of
properties of programs. :

Chapter I
METAMATHEMATICAL INVESTIGATIONS IN ALGORITHMIC LOGIC

§ 1. Properties of the semantic consequence operation

In this section we shall investigate the semantic consequence operation Cn as de-
fined in'T, § 10.

Let # be an established algorithmic language
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1.1. For every set Z = FSF and every formuld o € FSF; if Z = o then the set
Zu{[~a} has no model [17].

In the case where the formula o« 'is closed, i.e., where for every realization of
the language & the value of the formula o does not depend on the adopted valu-
ation, the above lemma can be strenghthened:

Z |= a if and only if the set Zu{[~a} has no model.
1.2. For every set Z < FSF and any formulas o, € FSF,

if Z = (0= p) then Zuf{a} = B [17].

Let us observe that the inverse theorem is, in general, not true. Consider the
following example: Z = @ and § = (so). Certainly, o |= fbut if « and [« are
not tautologies then there exist a realization R, a valuation » and a substitution s
such that az(v) = |/ and ag (sz(®)) = .

1.3. The consequence operation Cn does not have the following property: :f VA |: «
then there exists a finite subset Z0 of the set Z such that Z, {= o.

To prove 1.3 we shall give an example of the set Z and formula o such that
Z |= o but for every finite set Z, < Z there éxists a model for Z that is not-a model
for the formula o. '

Let

< Dhews  a=[x/01N [x/Sx 0<

= { (x/0)(1x/Sx1 0 ;
where 0 is a constant (0 e ®y), S is.a one-argument operatlon and 0 IS a one-
argument relation.
Let R be a model for the set Z. Then we have ([x/0] () [x/Sx] 0 @) =/

for every valuation v. Thus R is a model for the formula «, and Z = «. Let us con~
sider any finite subset Z, of the set Z,

Z, = {[x/0)([x/Sx] 0 <

where I is any finite sequence, of natural numbers.

X }rer

Now we define a realization R in the set of natural numbers 4 as follpws;
the constant 0 is a zero in the set .4, the operation S is a consequent in A, the
relation 0 < is the characteristic function of the set I, ie.,

7 if mel,

A if nél

The realization R defined in such a way is a model for the set Z0 since for every
i el and for every v

(Ee/01(1x/SxT 0 < x))z(0) = 0 <
Nevertheless, if i ¢ I then the formula
([X/O]([X/SXJ‘ < %)

has value ] for every valuation v in the realization R. So az(@) = /.

0<n={

s'o =/
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We. can prove an analogue of the downward Skolem-Ldwenheim theorem.

1.4. If the theory I = (&, %, o) has an infinite model then it has a denumer-
.able model. - .

"Let us observe that the upward theorem of Skolem-Léwenheim is not true
in the class of all ordinary semantic models. One can prove that all models of the
theory of arithmetic with the axioms

TEx=0), KOIUJIxSxx=yp, Sx=Sy = x=y)
are isomorphic with the standard model (A", 8,0, =D of arithmetic.

§ 2. Diagrams of formulas

In this section we shall consider another formalization of the set of tautologies
of the algorithmic language #. We shall follow Gentzen’s ideas. We .first recall
some auxiliary notions. - ‘

By a tree we shall understand a set .D of finite sequences of natural numbers
such that if any sequence ¢ = (i, ..., i,) is an element of D then every initial segment
e of ¢, ¢ = (iy, ..., i), k < n, is an element of the tree D also. The empty sequence
-of natural numbers, denoted by @, belongs to every tree. }

For any element ¢ = (iy, ..., i,) of the tree D, the number 7 is called the level
of the element ¢ in D. v

By the level of D we shall mean the set of all elements that have the same level.

A subset of D such that its elements are linearly ordered with respect to the
relation “to be an initial segment” is called a branch of the tree D. ]

Let I'y, Iy denote finite sequences (the empty sequence is admitted) of formulas
in . Bvery expression of the form I'; — I", will be called a sequent.

The sequent S of the form - ) :

Uy veny Oy = ﬂl: --"ﬂm

is called indecomposable if and only if every formula a;, Bi=1,.,nj=1,..,m
is an atomic formula.

A sequent S is said to be an axiom if and only if there exist indices # and J
(1<ign, 1<j< m) such that « and B; are identical or 1€ {8, ..., B} or
0¢€ {as, ..., a,}. i .

.. By a scheme we shall understand a pair {8, So} of sequents, a triple {8, So; Sy}
of sequents or an enumerable sequence {S, Sp; Sy; Sy ...} of sequents, which
will be written in the form

s or S or )
o So; Sy {Sihies
Sequent S is called the conclusion, and sequents: Sy in the first case, Sy, S, in the
second and Sy, Sy, ... in the third case—the premises.
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In the sequel we shall consider three groups of schemes:
(1A) Iy, g s, Iy = Ty

Sq e Sy S0, Iy, Iy —~ I35

>

Iy—= Ty, s ... sy, Iy

— ,
Ty =50 o Spmy Si 0o, I, Ty

(1B)

where o, is an atomic formula and k e 4';

TuSQ(Th---:Tn)st—’Fa
2A

R FTCTSME ) V3 /= 1
Iy =Ty, s0(zy, -y 7)), I

2B B
R e G S i
Ly, e, Iy > Ty .
(3A) -f'l,]’zﬂsu,f'g ’
Iy > Ty, s70e, Iy
(3B) Iy, 50— T,, 1T,
PI’S(“Aﬁ)sFZ _’TS
(“4A) sa, 88,0y, 5 - T5
Fl ‘*Pz,s(“vﬂ):r’a
(SB). Iy > sa, 5, 15,15
(7A) Iy, sN\Ka,I', » T
s(\K(Ko), I'y, sa, T, = Ty’
Iy = Iy, s(e=>p), 5
® TS
Lol P1,3°[KM]asF2—’ra
©A) sKMa, I, T, - I3 °
(3B) Iy - Ty, s\ JKa, Iy
Iy - s\ JK(Kw), Ty, sa, IG5 °
(104) Iy, s [6KM)a, Ty - Ty
S((OAK)V (T10AMD)), Iy, T, - Ty °
Iy =TIy, so[KM) o, Ty
©B) Iy —» skMa, Iy, Ty °
(114) Iy, s%[6K]a, I, - I
SUS[KT (07D, T, Ts > Ty’
(10B) Iy —» Iy, s [6KM]a, Ty
Iy - s((éAKa)V("]&AMa)), I, ry°
(llB) ]11 —>T2,s*[6K']a,T3

Iy SUSKTNC 108 8), 15, T3

3 Bapach t. IT
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The second group
Iy, s@vp), I, ~ T

GA T T, ol BT Do Ty
4B Fl_)PZ.’S(aAﬁ)’FS
(“B) Fl"S“,Fz,Psirl”"Sﬂ’I’zypa’
(6A) Iy, s(e=p),1> > I}

T, 1, 50,1588, Ty, 0o =I5
The third group

Iy, s\ Ko, I, = I
(5K, 'y, Ty — shier '’

B) Fl—yl‘z,sﬂKoz,Fg
Y T, = Ko, T, Toher

In all the above schemes I'y, I',, I's denote any sequents, s denotes any sequence
of substitutions, K, M—any programs, and o, f, 6 any formulas a, § eFSF, 6eF°.

By the didgram of a formula a, we shall mean an ordered pair (D, d) where D
is a tree and d is a mapping which to every element of the tree D assigns a certain
non-empty sequent. The tree D and the mapping d are defined by induction on the
level I of the tree D as follows:

1. If 7 = O then the only element of this level is & and d(@) is equal to the
sequent — .

Suppose that we have defined all the elements of the tree D with the level not
higher than n. Now we define the elements of the level n+lofD.Letc = (iy, ..., In)
€D and let the sequent d(c) be defined: )

2. If d(c) is an indecomposable sequent or an axiom, then none of the elements
¢ = (i, ..., In, k), k€ A belongs to D, and ¢ and d(c) are called an end-element
and an end-sequent of the tree D.

3. The sequent d(c): I'— V is neither indecomposable nor an axiom. We shall
consider two cases ’

(84)

Case 1: n is an even number.

A. If the sequence V contains only atomic formulas, then (i, iy O) €D
and d(iy, ..., iy, 0) = d(c).

B. If « is the first right side non-atomic formula in V, then we consider differ-
ent forms of the formula o:

1. if the sequent d(c) is the conclusion in a scheme of the group IB concerning
the formula «, then (iy, ..., iy, 0) € D and d(ly, ..., i, 0) is equal to the only premise
in that scheme,

2. if the sequent d(c) is the conclusion in a scheme of the group IIB, then
(i1s --»0s»0) and (i, ..., s, 1) belong to D and d(iy, ..., 4, 0), d(i, ..., 0, 1)
are the first and the second premise in that scheme,
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3. if the sequent d(c) is the conclusion in a scheme of the group IIIB, then
(g, ev» Ins k) are in D for every ke A" and d(i,, ..., iy, k) is the kth premise in
that scheme.

Case 2: n is an odd number. v

Points A and B in the above definition must be changed in the following way :
the sequence V is replaced by I" and groups I, II, IIIB by I, II, IITA.

From this definition it immediately follows that for every formula its diagram
is defined in an unambiguous way.

Let S be a sequent ay ... a, = B ... f,; then by ds we shall denote the for-

mula (0 A (A - A% )= BV B2V oo B) o0))-

2.1. For every realization R of the language & and for every vdluation v the
following conditions hold: ) .

1. if {S, So} is @ scheme of inference belonging to the first group, then 3sg(v)
= O5,r(v); ‘ )

2. if {S, 8o, Si} is a scheme of inference belonging fo group I, then Osg(v)
= 65.,11(‘1’)053'111(7));

3. if {S, So, Sy, ...} is a scheme of group 11, then dsg(v) = g.lb. {d5,r(@)}ic -

The diagram of a formula « is said to be finite if and only if its every branch
is a finite set.

2.2. A formula a, is a tautology if and only if its diagram is finite and every end
sequent is an axiom.

§ 3. Inessentiality of definitions

Let % be an arbitrary fixed algorithmic language. Let Z; < FSF be a set of for-
mulas and let Z, < FST be a set of terms. By FV(«) or FV(z) we shall denote the
set of all free variables that occur in formula o or in the term 7, respectively. The
precise definition of FV can be found in [28], here we limit ourselves to the asser-
tion that a variable z is free in « (%) if for any realization R and any valuation v
the value ag(v) (Tx(%)) of expression depends essentially on the value v(z) of the
variable z.

We assume that the free variables of the formulas of Z, and of the terms of Z,
are all individual.

With every formula o« € Z; we associate a predicate g, not belonging to %;
the number of arguments of g, is equal to the number of free variables in a. All
predicates g, are different. For every term v e Z, we introduce a functor ¢, not
belonging to £; the number of arguments of ¢, is equal to'the number of free
variables in 7.

Let %' be an extension of the language % obtained by adding new predicates -
{0c}eez, and new partial-functors {@,}rez,. Let 7 = (&, ¥, &) be a theory with

3%
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the set . of specific axioms. Let &’ be the set of formulas composed of all the
formulas from & and of all formulas of one of the following forms:

(1) (oulr1s s X2y <> a)  where FV(a) = {X1y cems Xn}s
Q) (E() = ¢.(%1, ..o, %) = )  Where FV(3) = {15 coes Xu}e

E(7) is a formula with the following property: for any R and v, E(¥)r(v) = |/
if and only if 7x(v) is defined, see L.7.

3.1. For every realization R which is a model for the theory T there exists an
extension R' of R such that R is a model for the theory I' = (%', ¥, ") [31].

An introduction of new predicates and partial-functors is equivalent to passing
to an extension of a given theory. By admitting definitions of new predicates and
functors we cannot prove anything new about the predicates and functors in the
already existing theory, as is stated by the following theorem:

32 Let ' = (Y', @, A"y be an extension of the consistent theory I =
(&,%,H4) by assuming definitions (1) and (2). Then the theory ' is an inessential
extension of T, i.e., (&) = (£ )nFSF.

§ 4. An analogue of the Herbrand theorem in algorithmic logic

In this part of our considerations we present a theorem of algorithmic logic that
is analogous to the Herbrand theorem in classical logic. In spite of the fact that the
theorem refers only to some narrow class of formulas, it can be applied to the solv-
ing of some decidability problems in algorithmic logic and in the programs
theory based on algorithmic logic.

Let us consider the algorithmic logic {.Z, ¥) where .% is a fixed algorithmic
language with equality and the consequence operation % includes axioms of equality.
Let n be any natural number, let X;, M; (0 < i < n) be programs in which the
sign % does not appear and let a belong to the set of open formulas.

Under these assumptions we can formulate the following theorem.

4.1. Any formula B of the form M, UKo ... M, K, is a tautology of algo-
rithmiq logic if and only if there exist natural numbers my, ..., m, such that the for-

mg m,
mula M, _\/o K ... M,\/ Ko is a tautology of algorithmic logic [17].
de= j=0

Let us denote by " the class of all formulas of the form M, UKy ... M, K«
where K;, M; (i = 0,1, ...,n) are as above. From theorem 4.1 it follows that the
subset of tautologies in £ is recursively enumerable. Indeed, let 8 be a formula
of class 2. By 4.1, B is a tautology if and only if there exists a formula in which

signs of quantifiers do not appear and which is a tautology of algorithmic logic.
Now observe that the following lemma holds:

4.2. For every formula o without the symbols (s M) * we can find in an effective
way an open formula o such that the formulas (o« = o) and (0 = ) are both theorems
in’algorithmic logic [17). '
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Hence for the formula 8 we can find an open formula g, such that = f if and
only if = B,. Now, in a finite number of steps we can check whether f, is a.substitu-
tion in a tautology of the propositional calculus.

§ 5. Algorithmic logic with classical quantifiers

In some applications we need an algorithmic logic extended by classical quantifiers
3 and V. That logic will be called extended algorithmic logic (see [5]). In order

to preserve the completeness property it is sufficient to add the following four Jogical
axioms:

(s@xa) <= 3y (s([x/] o)) where y is an individual variable
(s(¥xa) = Vy(s([x/y]2)))| not occurring in sa;

([x/7]o = Ixc),
(Vxa = [x/7]a),

and the following two rules of inference:

[x/yla = B  where y is an individual variable
Axa = occurring neither in « nor in 8.
B =[x/l
£ = Vxa

Remark. On the grounds of Gentzen style formalization we need the following
rules of inference concerning the universal quantifier

I'> s[xfyla, 4 . s e s .
T4, sVxa) where y is an individual variable

not occurring in the conclusion;
s(Vxa), I, s[x/z)o — 4

forreT.
I, s(Vxa) » 4

In the above rules s denotes a finite sequence of substitutions (the empty one in-
cluded). '

The extension by classical quantifiers is essential. Let us consider the relational
system % = {J, P, =) where J = {1,2,3} and P is a binary relation defined
as follows: P(x, y) iff x = 1 and p = 2. In this system formula 3y P(x, y) cannot
be equivalently reduced to a formula from the set FSF.

In extended algorithmic logic every closed formula can be reduced to its prenex
normal form Q, Q, ... Q,«, where o is an open formula and, for each i =1, ..., n,
O either is a classical quantifier binding an individual variable or is of the form
s|_J K or (M) K where s is a substitution and K is a loop-free program. Thus,
it is possible to classify properties of programs by means of a configuration of
quantifiers Q,Q, ... Q, appearing in the prenex form of the formula expressing
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the given property. For example, the formula (V&(x = Kf)) of correctness has the
prenex form: ¥X[a/1]| ) My where ais a propositional variable and M is a loop-
free program.

In Chapter IV we shall consider the following properties of a program K.
Namely,

the strongest verifiable consequent of a formula (introduced by Floyd [33])—
aK: 3y (oz(y)/\ K()( = %)) where X is the sequence of all different variables occurting
in Ko and ¥ is a copy of X—(«K)r(¢) = |/ means that v is an output data of X
for some initial data satisfying «;

jteration of the strongest verifiable consequent of a formula o— () aK:
P U KGG =%))—(J aK)r@) = |/ means that v is an output data
of an iteration K’ for some initial data satisfying o;

adequacy with respect to an input formula « and an output formula p—
(<> YA (B <> aK))— (e <> KB) A (B <> aK))r(v) = |/ means that

(1) the input v satisfies o iff X converges and the output satisfies 8,

(2) the valuation v satisfies 8 iff v is the output for some initial data satisfy-
ing o.

The equality (|_)«K)x(@) = 1;2;13.(aK")R(v) shows the interconnection between

the two constructions.

The strongest verifiable consequent cannot be defined without classical quanti-
fiers. This follows from the undefinability of the existential quantifier and the de-
finablity. of the existential quantifier by means of the strongest verifiable consequent,
i.e., Ixa <> [x/yl(a[x/y]) is a tautology provided y and x are distinct individual
variables.

Chapter III

EFFECTIVITY PROBLEMS OF ALGORITHMIC LOGIC

In this chapter we shall examine various algorithmic properties from the point
" of view of recursion theory. The first stage of our investigations will show that
such natural notions as for example the strong and weak equivalence of programs,
the correctness of a program, the halting problem for different classes of examined
models, lie at the bottom of arithmetical hierarchy: strictly speaking in the
class IT9.

The last-mentioned theorem establishes that the whole elementary theory
of programming has the same degree of unsolvability as the notion of truth in the
first order arithmetic. Hence, there are elementary properties of programs on an
arbitrarily high level of arithmetical hierarchy. In order to obtain these results
we must introduce in the Gentzen formalization of algorithmic logic axioms for
equality. We devote the first section of this chapter to this aim.
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§ 1. Gentzen style formalization with equality

We start from the following definitions:

DEeFINITION 1. Let X be a set of equations #; = #; where #, #; -are terms. We
shall say that terms ¢, u are X equivalent (t = u[X]) iff there exists a sequence of
terms ty, ..., t, such that ¢, is t, ¢, is u and for i < n either #, is 441 or one of the
equations #; = #;,, and ;4 = t; belongs to X.

DEFRINITION 2. Let X be the same set as in Definition 1. We shall denote by
t =< u[X] the closure of relations ¢ = u[X] with respect to the extensionality of func-
tional symbols, i.e.,

if 4 = llg[X], i< tn) xf(uls B ll,,)[X].

The relation < is of course a congruence in the algebra of terms.

The rules of inference of this system with equality are exactly the same as in
Chapter II, § 5 for the system without it. But to the set of axioms we must add
the following: ‘

(V) I' > A if for any term t the formula t = t appears in 4; ‘

(2) I' = A if there exist a set of equations X in I' dnd a set of terms t;; u;, i <n,
such that t; X w[X] for i < n and for a certain predicate r, r(ty, ..., t,) €l and
r(uy, ., up) €.

The schema of axioms of type (2) ensures the extensmnahty of relational symbols

n, then f(t,, ...,

1.1. (Completeness theorem for Gentzen axzomanzatwn with equality). For every
Sormuld « of algorithmic logic with equality = o iff |- — a.

Outline of the proof. The implication from right to left is obvious. To show
the converse, let us consider the case where the diagram of a sequent — « has an
infinite path. From this path we build a model in which formula « is not valid (for
comparison see [43]). The universe of this model is a set of equivalence classes
of the relation =< defined in Definition 2, where X is a set of equalities lying on the
antecedent of this path. Thus, an element of the model is a class

] = {u: =X ulX]}.

Functional symbols are realized as corresponding classes:

Sr([td, - Tt = DG s 2]
Relational symbols are realized in the following way:
true  if there exists a # €[t;]] for every i <n such that
er(ltdds o) [t = @(t1, ..., t,) belongs to the antecedent;
false  otherwise.

The correctness of this realization for functional symbols fellows from the
extensionality of relation = and for relational symbols from the axioms of equahty
Let v be the following valuation:
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v(x) = [x] for individual variables,

v(p) = true if p occurs in the antecedent, otherwise false.

Finally, let us suppose that og(v) is true. Analysing inference rules we can
easily prove by induction on the complexity of formulas that there is an atomic
formula in the consequent such that @g(?y, ..., £,)(v) is true. This contradicts the
definition of realization.

§ 2. Some elementary algorithmic properties
Let 4 be a class of similar models. In this szction we shall consider the following
properties of progress: :

Stop4 = {K e FS: for every model 4 & A |= 4 K1},

Stopy = {K e FS: for every model 4 € 4 =4 ~ K1},

Corry = {{a, K, ) e FXFS'x F: for every model 4 € 4 =4« = KB},

Bqy = {<(K, M) e FSxFS: for every model Ae A |-, K = M}.

In the case where A contains all similar models we shall omit the symbol A. So,
for instarice, Stop = {K € FS: = K1}. )

If A is a class of models isomorphic to the model of natural numbers with
successor N = (A", 0,8, =), then the above properties are those of partial re-
cursive functions, since programs in this model and partial recursive functions
are recursively isomorphic. '

In what follows we shall try to place in an arithmetical hierarchy these pro-
perties for other classes of models.

§ 3. Model-independent properties

3.1. Stop; Corr € 2 —I1?, Stop’ elI?— X9, Eq el13—X3.

Proof. )

1. Stop € £?. This fact we obtain immediately from axiomatization. In dia-
grams of sequence of the form — K1 only finite rules of inference are used.

2. Stop ¢ II?. For the proof see [44].

3.Stop’ €lI7. Tn fact, = ~ K1 iff & ~ [Ki#[BK,]]1 where o [Ki#[BK:]]

" is the normal form of K. Since X; is a loop-free program in the diagram if the

sequent

- °[K1 *® [ﬂKz]]l =,
after a finite number of steps we pass to a finite sequence of assertions:
=T s% [BK,]1 — A,

where all the formulas in I" and 4 are open. This assertion is in the class IT? since

after applying the infinitistic rule only once we come to sequents of open formulas
exclusively.
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4, Stop’ ¢ Z¥'. For the proof see [44].

5. Bqell3. To begin with, consider an assertion | K1 — M1, In this diagram,.
as in point 3, after a finite number of steps we obtain assertions — I, s % [fK,] —» 4
where M appears in 4. After the application of the infinitistic rule, the resulting
sequents will require in their probfs only finite rules of inference. Thus, this asser-
tion is in the class II3. Since K = M is equivalent to the conjunction of three formulas.
of the form K1 = M1, Eq is in the same arithmetical class.

6. BEq ¢ 29. Let us suppose the contrary. We first limit the set of non-logical
constants to the functional symbols 0 (zero argument) and S (one argument). Let
K;i(x) denote a program in that language which in the model of natural numbers.
computes the partial recursive function of number i in the Godel enumeration
(9i(x)). Now, let us consider two programs:

o[y/01« [y # x [y/SOJLv/01,
Pz o[ [MK] [/0]].

Then P; = M iff P;1 <> M1 because the output value of variable y in both programs.
is the same. So, from our assumptlon {i: & P 1< M1} e 29. By the completeness.

theorem

{i: - Pi1> MIA}- M1 P11} e X9,
‘We add two axioms:

- I'> 4 if formula S(x) = 0 is in I" or if S(x) = S(») in I" and x = y in 4.

This will not change the arithmetical class, so again by the completeness theorem,.
theset U= {l:a |= Pi1 <> M1} where a: ~ (S(x) = 0) A (S(*) = S() < (x = »))
belongs to 279.

Now, if 4 = (#, 0, s) is a model of « then a subsystem B = (&, 0, s) where:
& = {s'(0): i e #} is isomorphic to N. So, for every model 4 of a we have:

for every a e o, M(a) is defined iff P;(a) is defined.

But M(a) is defined iff a € #. We obtained the following chain of equivalences:
l.ieU,

2. for every model 4 of « and every a € o, M(a) is defined iff P,(a) is defined,.

3. for every model 4 of « and every a € o, ae & iff P(a) is defined,

4. for every model 4 of o and every a € o, a € A" iff Py(a) is defined,

S. @, is total.

Since P; is obtained recursively from 7, the set {i: ¢ total} is recursively reduc-
ible to U. This is a contradiction because the set {i: @ total} is IT3-complete (see:
[52]).

7. Corr € Z9 ~II9. It follows from the equivalence

K e Stop

iff (1,kK,1)eCorr.
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§ 4. Properties of programs in the fields of reals

We shall denote the class of models isomorphic to the model of reals (&, +, —
-,7L0,1)by R

4.1. Stopg, Corrg 29—I19, Stopr I —Z¢, BEqrelI3—23.

3

Proof. In the proof we shall need the following lemma, due to E. Engeler ([36]):

4.2. For every formula o which is a Boolean combination of formulas of the form
KB where f is open

Ere  iff CharOf=a
where Char O denotes the set of algorithmic axioms of fields with characteristic zero.
(1) Stopg € X¢. From 4.2 we obtain an equivalence:
ErK1 iff | [x/0}n[x/x+1](x # 0) = K1.
Examining diagrams of this kind of sequents, we see that finite rules are used. This
proves point (1).

(2) Stopg ¢ 119 . Let K;(x) be a program which computes in the system R a partial
recursive function @;(x) (the construction of this program is the same as in N).
Let N; be a program o [[x/1+ ...
is defined iff =gN;1.

(3) Stopg €I19. We have the following chain of equivalences:
1. KeStopr iff
2 g~ K1 iff
3. Er~ o[k, % [0K,]]1 1ﬂ”

4. (Vry, s rn € BYVie /) (Er K Kbo)  iff
5. (Vie N) =r(¥xy, ..., X,) K; Kb where Xy, ..., x, are all input vari-
ables of K.

Notice that the formula K; K} « is effectively equivalent to an open formula
Bi(x1, ..., x,). From Tarski’s ([55]) theorem we infer that the relation = g(Vxy, ...
-..» X) Ky KL o is recursive.

(4) Stopr ¢ 22, ¢,(i) is undefined iff N; € Stopk.

(5 Eqr s_fﬂg . K= M is equivalent to a Boolean combination of formulas
of the form Ka. So, by applying Engeler’s lemma and examining the diagrams
of corresponding sequents we easily prove (5).

(6) Eqr ¢ 23. Let M denote a program:

o[ o [/01 [ # Dipty+ 1N i/0]]

and let P;: o[K;[y/0]} where y is for both progra.rns a unique output variable. Now,
‘we have the equivalence:

{(M,P)ecEqr iff ¢;istotal
(7) Corrg € Z9—1II7. As usual, K e Stopg iff <1, K, 1> € Corrg.

+1]K;] where the sum is equal to i So, ¢(i)-
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§ 5. Properties of programs in the ordered field of reals

Let R denote a class-of models isomorphic to the ordered field of reals (Z, +,
—- 7 <0, 1.

5.1. Stopg., Corrre, Bqr. €[I3—ZX%, Stopg. eII{—27.

Proof. We shall need Engeler’s lemma ([36]):

5.2. For every formula o which is a Boolean combination of formulas of form
Kp where B.is open,

Erea
where Arch denotes the set of algorithmic axioms of Archimedean ordered fields.

(1) Stopr. €I13. By 4.2, K € Stopg. iff Arch = K1 but Arch is the conjunc-
tion of open formulas and the formula

iff Archf o,

(x>0Ay >0 = [z/y]1U [z/z+]

The diagram of the sequent Arch — K1 is in the same class as"that of the sequent
M1 — K1. So, '

(x < 2).

Stopr. €l13.
() Stopr< ¢ 29. Let us consider the program

MiG): o[ o[1x/0] [x < [xfx+1]] K]

where Ki(x) is the same as in § 4,.(6). Hence, Er Ml iff (Vne ) Er K1
iff ; is total.

(3) Bqr. €lI3—Z29. Proof as in § 4.

(4) Stopg. 19— Z¢. Exactly the same situation as for Stopg.

(5) Corrg. eII3—ZX3. Since K e Stopg. iff <1, K, 1) & Corrg..

Remark. The idea used in the case of point (2) for Stopg. cannot be copied
in the case of Stopg. If we have taken

M)z o [ [ti01# [x # » Ixx+1]K]

we should obtain non |= g M;1 for every i.

COROLLARY. The relation < is not programmable in the model of reals without
ordering R.

Proof follows immediately from the fact that Stopg. ¢ =3 and Stopg € X9

§ 6. Degree of recursive unsolvability of algorithmic logic

Let ¥ denote the set of all sentences of the first order arithmetic valid in the standard
model. Let W denote the set of all tautologies of algorithmic logic. In [11] the follow-
ing theorem is proved:

6.1. (i) V and W are recursively isomorphic.
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(ii) W is recursively isomorphic to 0°.
(iii) W is not an arithmetical set.

(iv) It is impossible-to replace infinitistic inference rules of any kind of axiomatiza-
tion by finitistic ones [12].

Chapter IV
DESCRIPTIONS AND THE MODULAR STRUCTURE OF PROGRAMS

§ 1. Verification of program correctness and the modular method

In up-to-date practice programs are checked for some simple input data for which
the solution of the problem is known. If the test happens to be positive for a program,
the latter is considered to be correct and is passed for exploitation. However, after
some time one finds an input data for which the results are incorrect. Therefore
the question what .one should require from a programmer designing a program
in order to be certain of the correctness of the program is of great importance.

One of the possibilities consists in demanding that a programmer should supply
the proof of correctness in the appropriate, formalized, algorithmic theory. The task
of the machine would be reduced to the examination whether the proof contains
any errors.

A demand which is easier to fulfil is that the programmer should supply a com-
plete net of subtasks for some segments of the program, i.e. the so-called descrip-
tion or documentation of the program. This approach to program verification
is called Floyd’s method [37]. Attempts at mechanical verification of programs
based on Floyd’s method have been presented in [1], [40] and [41].

The describing of programs corresponds to the modular method of their design.
The process of designing a program begins with the elaboration of its logical struc-
ture. This consists in splitting the overall task into a net of subtasks in Such a way
that having obtained programs which accomplish the subtasks, we can put them

together in an appropriate manner so as to obtain a program correct with respect
to the overall task.

§ 2. Properties of programs in algorithmic theories

In this chapter we-shall use extended algorithmic logic (see 11, § 5), i.e., algonthmxc
logic with classical quantifiers.

According to I, § 4 we admit the following definitions of properties of programs
in an algorithmic theory 7 = {%, %, «}.

Program X is said to be correct with respect to formulas « and B in theory g
provided the formula (@ = K§f) is a theorem of theory 7. .

Program X is said to be bartially correct with respect to formulas « and 8 in
theory 7~ provided the formula (KIA o= KP) is a theorem of that theory.
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Program X is said to be adequate with respect to formulas « and g in theory 7~
provided the formula ((« <> KB)A (¢K <> f)) is a theorem of that theory.

ExampLE. Let us consider program M: o [[t/0 z/x]% [z = y [z/z—y t/t+1]]]
and algorithmic theory of integers (see I, § 11). This theory is categorical. Hence
every question about a property of a program in the algolic realization of integers
is equivalently reduced to the problem whether an appropriate formula is derivable
in algorithmic theory of integers. One can prove that:"

M is partially correct and not correct with respect to the formulas x = OAy > 0
and x =y t+2A0< zAz < y. M is correct and not adequate with respect to
x20Ay>0and x=y t+2zA0<zAz <y. M is ddequate (hence partially correct
and correct as well) with respect to x 2 0Ay > 0 and x = y- t+z2A0 < zAZ < yA
Atz 0. '

The following lemma is useful in practice.

2.1. Program K is partially correct with respect to o and B in an algorithmic
theory 7 iff (oK = f) is a theorem of T . Program K is correct with respect to o
and B in an algorithmic theory I iff K is partially correct with respect to o and
in 7 and additionally (« = K1) is a theorem of 7. [6], [7] .

§ 3. Compatibility of the modular structure of programs and descriptions

We shall investigate the possiBilities of deriving properties of programs from the
appropriate properties of their modular structures.

By a module of a FS-program we shall understand any subexpression of K
which is also a program. The set of all modules of the program K will be denoted
by Mod(X).

A pair H=(I, K)is said to be a tree of the program K if T < {1,2}%, K
I — Mod(K) and the following conditions are fulfilled:

onto

(1) the empty sequence e belongs to I and R.: K;

2 1f iis in I and K, o[L M] or K, x [yL M] then il, i2 are in I and
Ku L, ng M;

(3)if i is in I and K; #[y M]then il is in T and Ku M;

(4) every element in I can be obtained from the vertice ¢ by means of rules
(2) and (3).

The function K = {IAQ}E; is said to be the modular structure of the program K.

By a description of the program K we shall understand any sequence

= {(a, B)}ier of pairs of formulas. For every i in I, the pair A(F) = (o, B

deﬁnes a subtask of the module K;. The formulas o; and §; are called an input
formula and an outpur formula of the module K, respectively. In particular, the
overall task is defined by the pair A(e) = (e, fe).
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EXAMPLE.
M: o [[z/x y/@) %[z # O [y/y+1() 2/z— D]

Below there is a tree of M with an associated description.

y+z=x

y+z=;£
; y/y+f () z/z=f(2)]

According to the definition, the modular structure of a program is determined
uniquely by the program alone. However, in practice the choice of the partition
of a program into modules depends also on the programmer. The results of this
chapter will not change if we allow some loop-free programs to stand at the terminal
vertices of the program tree. It was this approach that was applied in [1].

By a verification condition of a vertice 7 in I with respéct to a description
A = {(o, B) }ier we shall understand a formula V'C; defined as follows:

) if 1?, 5 is a substitution then V'C;: (o = (sB));

() if Kit ofL M] then VCi: ((a = i) A (Bix = @) A (Bia, = BD), 1.,

% %1 Bir

L ) v e b
i

@) if Ki: x [pLM] then

8).i VCi: ((uny = i) A (eun 1y = @) A (Bu v B
= B1)), 1.6, i
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@) if K.z #fyM) then VCr (v f) Ay = @) A (v Bu) A 7Ty = B1), Lo

By a verification condition of a program X with respect to a description 4 we
shall understand the formula VC: /\ VC,;. The description A is called compatible
iel

with: the modular structure K in an algorithmic theory ° = {&, ¥, o/} provided
VC e %(4). ,

Let H = (I, E) be the tree of a program K, let 4 = {(a, #;)}ier be a descrip-
tion of Kand let 7 = {&, ¥, &} be an algorithmic theory. The modular structure
R is said to be correct (partially correct, adequate) with respect to 4 in & provided
that

(1) 4 is compatible with X in 7;

(2) for every i in I, the ith module IA(, is correct (partially correct, adequate)
with respect to «; and fi; in 7. ;

The following theorem explains the meaning of compatible descriptions.

3.1. If A is compatible with the moduldr structure kKing , then K is partially-
correct with respect to A in 7.

As a corollary we obtain

3.2. If A is compatible with the modular structure K in T, then the program K

- is partially correct with respect to a, and f.in T .

The above lemma justifies Floyd’s method of proving the partial correctness.
of a program (see also [32], [37], [14], [45], [47)).

" ExampLE. Let Boolf be the formal algorithmic theory of Boolean algebras.
with the following additional axiom:

(Af) x+f(x) = x
where fis an additional 1-argument functor.

Let us consider the program M and its description from the preceding example-
in this section. In order to prove the partial correctness of M with respect to f01:~
mulas 1 and x = y in the Boolf theory, by 3.2 it is sufficient to.show that the veri~
fication condition ¥C is a theorem of the Boolf theory. Let us observe that VC”
is the conjunction VC.AVE AVC, AVCyy Where

VC,: ((l=>1)/\(z=xAy=Q=>z=xAy=9)A(x=Y=°x=Y))»
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1t (l=>x=xA0 =0), .
VCz ((((z = XAy =@)Vy+z=x)Az= 0=>x =) A ((=xry = Q)v
Vytz=x) az# B=ytz=x)),
VCa: (J)-i-z =x=(y+f@+ (-f®)) = x).

Evidently VC,, VC, and VC, are tautologies and it remains to prove that
¥ C,, is a theorem of the Boolf theory. To begin with, (y+/(2))+ (z—f(2)) = y+z+
+f(2) is a theorem of the theory of Boolean algebras. Moreover, by the axiom
(Af) the formula z+/(z) = zis a theorem of Boolf. Hence V'C,, is also a theorem.

§ 4. An extension of a task of a program to a description

“The properties of correctness, partial correctness and adequacy have the common
feature of extendability of a program task to the whole description.

4.1. For every algorithmic theory J. for every program K and for any formulas

a, B, if K is correct (partiaily correct, adequate) with respect to o and B inT then

there exists a description A of K such that the modular structure R is correct (partially
correct, adequate) with respect to A in I and A(e) = (a, p).

Strong correctness, expressible by (Kl/\(oc »Kﬁ)), is a property for which
4.1 fails to hold. )

By means of 3.1 and 4.1 one can build (see [6]) formal syntactic systems for
proving the partial correctness of a program (or for the synthesis of programs
partially correct with respect to a given task). These systems resemble Hoare’s
approach to proving partial correctness (see [38]). Contrary to [38] the systems
based on 3.1 and 4.1 possess the completeness property of syntactic derivations.

§ 5. Open descriptions

Tn practice we usually meet descriptions consisting solely of open formulas. Such
descriptions will be called open. The following theorem establishes the complexity
degrees of properties of a modular structure with respect to open descriptions.

5.1. In every algorithmic theory I

(1) the properties of partial correctness of a modular structure with respect to
-open descriptions and of the provability of open formulas are recursively reducible
20 edch other;

(2) the properties of correctness of a modular structure with respect to open
descriptions and of correctness of a program with respect to open formulas are re-
cursively reducible to each other.

Hence supplying a program with a description 51mp11ﬁes the examination
-only in the case of partial correctness. However, in order to verify a program fully,
‘we additionally have to check the stop property of that program.
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§ 6. Properties of programs and second order logic

By Fp; we shall denote the set of all formulas of the second order predicate
calculus (i.e., quantifiers can bind also predicate variables).

We say that formula o is Fyr-existential (Fy-universal) provided there exists
a formula y of the first order predicate calculus and a sequence of predicates %
such that « <> 3uy (x <> Viy) is a tautology.

By means of 3.1 and 4.1 one can prove that

6.1. For any programs K, M and for any formulas o, B of the first order predzcate
calculus

(1) the following formulas ate Fyj-existential:

a. Klao= K@
b. aK=f
(2) the following formulas are Fj-universal:
a, o= Kf formula of correctness,
b. K1 halting formula,
c. K1AM1A (Ka<>Mo) formula of equivalence of total programs,
d. 1K - formula of counter-domain. )

Manna [45] has proved 6.1 for go-to programs (except the points (1)b and
(2)d). The point 2 of this theorem permits in some cases translations of problerhs
for programs into better known problems of first order logic (like the Herbrand
theorem). The question about the translation of the correctness problem into first
order logic can be formulated as follows:

“HYPOTHESIS 6.2. Let A be a recursive set of formulas of the first order predicate
calculus, let T = {&,%, o} be the algorithmic theory and let o, B be formulas
of the first order predicate calculus. The question whether (¢ = Kf) € ¢(s#) is re-
cursively reducible to the problem whether one of the formulas from an effectively
defined sequence of classical formulas does not possess a model.

By 6.1 and the theorem on deduction II, § 1.2 the fact 6.2 is valid when A
is a finite set. Let us observe that if we put “classical theory” instead of “algorithmic
theory” and “classical formula” instead of “(x = Kf)” then 6.2 becomes true on
account of the compactness theorem. This way of reasoning cannot be applied
to algorithmic theories because the compactness theorem fails to hold in general
in algorithmic logic II, § 1.

} formulas of partial correctness;

Chapter V
PROCEDURES

The semantics of procedures is the main topic of this chapter. The first attempt
to explain procedures consists in treating them as subprograms—fragments of a pro-
gram. In other words, one treats a procedure as a recipe for computing. Even this
approach entails several difficulties, mainly due to the various ways of parameter

4 Banach t. TI
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transmission. The notion of formal computation, introduced here, has been pro-
posed in order to obtain a formalized tool for investigations of computations in
in the presence of procedures. -

Another aspect of programming with procedures is the structural way of think-
ing and solving problems. Procedures can be viewed as a tool for supplying the
existing computers with new capabilities. This intuitive, informal view of procedures
correspond to conceiving them as axioms of an algorithmic theory (implicit defi-
nitions). Then the question of models arises in a natural way. This embodies the
fixed point approach to procedures and generalizes it. It will be shown that comput-
ations lead to models of procedures. Using the Gentzen-style formalization of algor-
ithmic logic, we can indicate another way of constructing models, usually greater
than those defined by computations. The theory proposed here does not require
any additional constructions and is straightforward also in proving properties of
procedures.

§ 1. Procedures, formal computations

Let @y, ..., ¢p and gy, ..., g, be partial-functors and predicates which do not belong
to the language .#. We shall assume that the partial-functor ¢; is m-ary (j = 1, ..., p)
and that the predicate o; is n-ary (i = 1, ..., ). By &' we shall denote the extension
of & obtained by adding the partial-functors g, ..., ¢, and the predicates gy, ..., o1
to the alphabet of Z.

Let Ky, ..., Ki, My, ..., M, be programs, ie., FS-expressions, «y, ..., o open
formulas, 7, ..., 7, terms of the language %' such that the free variables of for-
mulas Kjo; are Xy, ..., X, (for i=1,...,1) and the free variables of terms M,
are xg, ..., X, (for j = 1, ..., p); then the following system of equations and equiv-
alences :

¢1(x1a ~'~3xm1) = MlTig
" Gp(X1s o ees Xmp) = M1y,
~( g:1(*1, ---7'xn1) = Kjay,

01(X1, ..\ xn,) =K

will be called a system of procedures defining the notions @y, ..., ®p, @1y - -5 01.
Note that each procedure can be translated into an ALGOL-like programming
language as follows: the equation

QX1 . X)) = M7

turns into the following procedure:
real procedure ¢(x,, ..., X,); value x,,".
real Xy, ..., Xp;
begin “the program M translated into an ALGOL-like language”; ¢ := 7
end of ¢.

ers Xy
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Similarly, the equivalences of the (*)-system can be translated into Boolean pro-
cedures.

Let R be a realization of language .% in a nonempty set ¢ and a two-element
Boolean algebra B,. Given a certain expression w € %', we shall define its value
at a valuation v in the realization R. Obviously, the value of a term will be an element
of the set J, the value of a formula will be an element of the algebra B, of the logi-
cal values truth and falsity, the value of a program will be a valuation of variables.

We introduce the notion of computation. By a computation we shall under-
stand a finite sequence of ordered triplets (v, w, w) where

v is a valuation of variables,
w is an expression of the language %/,
w is a value associated with the expression at the valuation .

We assume that R is a semantic realization [49]. We shall adopt the following
set of computing rules. Each rule has at least one triplet as a premise and exactly
one triplet called the conclusion or result.

{<7)7 Tiaji)}’i‘:l

where @ is an n-ary functor

(F) <7]: ‘P(Tl Tn)’j> of .?, ¢R(jl; ---:jn) =J,
® _{<o, %, jof=s  where g is an n-ary predicate
<'U’ Q(Tl T,,),W) Of"?) gR(j17 ""jn) =Ww,
(v, o, /<0, B, D
e N ATV
@, a0 @, 81"
0D = avpl s A RO VAR
(o, D @, 4l
R R PRV W N T 5
(@, &,/ X, B,/ D (v, 2,
W G @=p., b ) Zw=hLs
@, 8,1 (@, 4,/ )@, B
© o w=p e NI 2 I
BN (v, B
D G wAp ) G @m A
{(’1),&) s Wi>}?=1 oA we if 2=z,
® {v, [z1/w, I... Z,J0,), 0> where  v'(z) = { v(z) otherwise,
©) (v, K, v v, M,v") ®1) (v, o,/ v, K, v

{v, J[KM],2v"> {v, ¥ [«K M], ")

4+
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(v, &, P<w, M, v (v, &,/
@) KM,V O &3kl o
(@) Bl K0 4laK], o)
G, +[aK], 7'y ‘
(v, K, o)<, 7,77 v, K, 03, o, Wy
& =k K = Kawy
) (v, [X4)Tq oo Xyl Tn] MT, W) where g is an n-ary functor defined by the
(o, oty .on Ty, W *  procedure, ¢p(xy ... X,) = M7,
®RY) v, [x1]7y on XplT,] Koty W) where g is an n-ary predicate defined by the

v, 0(Ty - Ta), WY procedure o(x; ... X,) = Ka.

Triplets of the form

(w,z,v(z)) or <v,9,9r),

where v is a valuation, z a variable, #(z) the value of z at », ¢ a zero-argument
functor, g its realization, i.e,, a constant from the set J, will be called elementary.

Let » be an expression of the language %', and v a valuation of variables.
By a formal computation of the value w of the expression w at the valuation v with
the use of the system (x) of procedures in the realization' R we shall understand
any finite sequence of ordered triplets {{v;, w;, wip }I°; such that

(i) the last element of the sequence is identical with (v, @, W),

(ii) for every i < N, either the triplet {2;, w;, w;y is elementary, or it is a result
in a computing rule from some triplets among {vy, ®;, W1 e KBymg, O4— 1, Wing)
which are premises in that rule.

In the sequel we shall use the shorter form “a computation of a triplet
(v, m,w)”,

Obviously, some triplets possess computations, others do not. Observe that
there are some expressions @ of %’ for which there exists no valuation ¥ and no
value w such that the triplet (v, , w) has a computation. Moreover, some pairs
of valuations and expressions of % have the same property.

ExAmpLE 1.1.
Xyuzn
L (w3 yysbl) ©
2 NXyuzon
(ol L2200, @1
3. <2, 1,1), (e)
. om, D, ©
5. (@,n—1,0), ] (F, 3,4
6. ' - Xy uzmn .
<'v,[n/n 1]:'03'2 3 2 2 0>’ (P,S)
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7. {v3,n,0), (e)

8. <(v3,0,0), (e)

9. (v3,n=0,"> (R, 7,8)
10. <v;,1,1, )
11. <-v3,[z/1],v4:%—§-%%% ) (P, 10)
12. (3, x[n = 0 [z/1}[z/nxf(r—1)]], vs>, (B1, 9, 11)
13, {v4,z,1) (e)
4. (w3, 2[n=0[z/1l[z/nxf(n—1)]]z, 1D, (X, 13, 12)
15. K, Infn—11xn = 0 [z/1][z/nxf(n—D)]]z, 1>, (K7, 6, 14)
16. <v',n, 1), ©
17. o, fn—1), 1> (Fv, 15)

In this example % is the language of arithmetic, and R its realization in the
set of natural numbers; the system (*) contains one procedure

fn) = x[n =0 [z/1][z/nx f(n—1)]]z.
The sequence 1-17 is a computation of {2', f(n—1), 1>,

Remark. Observe that the example is effective owing to the simplification
we made when the notion of valuation was reduced to a finite sequence of values
of those variables only that occur in (*) and/or in the expression w.

We can replace the rules (Fv) and (Rv) by the rules (Fn) and

v, [x1/71 ... Xp[Tal Kat, W)
<11, Q(Tls et Tn): W)

(Rn)

where [x,/7; ... X,/7,] Ka denotes the expression—result of the substitution of terms
Ty, ..., Ty fOT variables x4, ..., x, in the expression Ko. The rule (Fn) is similar.

These rules can be applied only if the resulting expressions belong to the language
#'. In this way we obtain the second notion of computation. A computation using
rules (Fn) and (Rn) will be called a computation “by name”. If it is necessary, we shall
call computations of the first kind computations “by value”. Obviously, one can
introduce different mixed types of computations. The following example asserts
that the notions of computations “by value” and “by name” are different.

ExampLE 1.2. Let us consider the procedure
s(x, i) = o[li/i+1][z/x]]z

and the realization in the set of integers. For any valuation v the computations
of the term (1%, n) will give different results. We obtain »* in the case of computa-
tions “by value” and (n+1)3 in the case of computations “by name”.

A triplet may possess a computation “by name” and no computation “by
value”, as can be seen from
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ExaMPLE 1.3. Consider the procedure
Fee,y) = x[x = 022 [2f(x— 1, £tx, D))z

The triplet <31£ _yf’ Jx,», 2> possesses a computation “by name” and does not

possess any computation “by value”.

§ 2. Basic properties of computations
The following lemma indicates that any two computations for a valuation v and
an expression o bring the same result w, even if they are different.
2.1. If two triplets v, ®, w,) and {v, w, w,) possess computations, then wy = w,.
This lemma, can be repeated for computations “by name”:

2,17 If two triplets (v, ®, wyy and (v, w, w,) possess computations “by name”,
then wy = w,.

The following lemma shows that the notion of formal computation is an ex-
tension of the notion of the semantic of a formalized algorithmic language.

2.2. For every expression o€ %, if there exists a computation of {v,w,w)
in the realization R then wg(®) = w.

§ 3. An examp’e of an inconsistent procedure

Making use of the notion of computation, we can define the realization R, which
is an extension of the realization R, by putting

gre =g and pre=opg for p,0e&

and assuming that

Y(i -

if there exists a computation of (v, p(x; ..
undefined otherwise;

2Jn €N Pre(fus wovsdn) = J

. %,), 7y where v(x;) = jifori=1,...,n

|~ if there exists a computation of
<o, 0(x1, - ,x,> 1y where v(x) = j
fori=1, n,

/] otherw1se,

Y(j1s s eJ) @R‘(jl’ N A R

for the remaining functors and predicates, i.e., those defined by procedures.
Orne could sexpect that ‘the réalization R is a model for the system (*). The
following example shows that it is not the case.

ExaMpLE, 3.1. The system of procedures consists of ong procedure

o(x) « Te(x).
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Regardless of a given realization R its extension R® satisfies (Ve J)ore(j) = /-
Coming back to our equivalence we see that gz: is not a model for it. Obviously,
this equivalence cannot possess 2 model owing to its inconsistency.

§ 4. Three examples illustrating the method
Our method of eliminating inconsistencies will be best illustrated by the following
examples.
ExAMPLE 4.1. Let us consider the system of two procedures
Ep(x) < Ep(x),
p(x) = Tp(x).
Obviously, Epge = gge is again the empty set.
Consider the following two formulas

Ep(x) < Ep(x),

Ep(¥) = (p() < Tp())-
Now, the realization R¢ is a model of these two formulas. The procedure Ep “de-
scribes” in a sense the process of computation of the value of procedure ¢. The
procedure Eg can be called the halting procedure of procedure ¢. The second im-
plication is valid in R® since no computation exists. Before we describe the general
construction of halting formulas and halting procedures, two more examples
may be helpful in understanding the idea behind it.

ExAMPLE 4.2. Let us consider the procedure

f(n) = x[n =0 [z/1]lz/nx fln— D]}z
and the expressions
(o) Q) =u,
(ap) )= uvx =y,
The realization is in the set of integers.
We first introduce a halting procedure Ef for procedure f

Ef(n) = x[n = 0 [a/1][a/Ef(n—1)]]a.

Observe that a computation of (v, Ef(n), 1) exists iff there exists an integer w € &

such that there exists a computation of <v, f(n), w).
Let us define

E;): EfDAS2) # u, .
Elor): EfDASQ) = u,

E(y): E%ay) v ENoy) < Ef(2),

E'w,): (EfQ2) Af2) # UAx #y, .
Elw,): (BfOASQ) =u)vx =y,

E(az): E%a) v E'(ap) = 1.
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Observe that a computation of (v, a;, 1) exists iff there exists a computation
of (v, EX(a,), ).

In the construction given below we shall use procedures of specific forms to

replace programs occurring in the procedures of the system (*). The following
example is intended to give the idea.
ExampLE 4.3. Let K: % [x < y [u/x y/y+1]] be a program. Let us denote by
s the substitution [u/x y/y+1]. Let the construction
. ’ if o then w else o’
be an equivalent replacing the expression v [a]z/w][z/e']] where z ¢ V(d)u ¥ (w)u
U (w".
We define the system of twelve procedures
Eh(x,y,u) < 1, hi(x, y, 1) = x,
Ehy(x,y,u) < 1, By(x,y,u) = y+1,
Eh:(xsyau) g la h,i(x, y,u)=X,
EKWE(x, y,4) <= if x < y then 1 else EAZ(x,y+1,x%),
EnR(x,y,4d) <> if x <y then 1 else Ehf(x,y+1,x),
EnR(x,y,4) <> if x <y then 1 else ERf(x,y+1,x),
KE(x, y, u) = if E(K) then {if x < y then x else h¥(x, y+1, x)} else K (x, y, w);
hE(x, y, u) = if E(K) then {if x < y then y else /y(x, y+1, x)} else h¥(x, y, u);
HE(x, y, w) = if E(K) then {if x < y then u else Af(x, y+1, x)} else AX(x, y, u).
Here E(K) denotes the formula
- ERE(v y, ) AEIS(x, y, ) AERE(x, ¥, 1).
Observe the following,equivalences, which hold for every variable x, y or u,
for every valuation v and every value w:
1. conditions (i) and (ii) are equivalent
(i) there exists a computation of (v, Kx, w),
(if) there exists a computation of (v, kX, w).
2. conditions (iii) and (iv) are equivalent:
(iii) there exists a computation of (v, Ei¥(x, y, 1), 1),
(iv) there exists a value w such that.there exists a computation of <, Kx, w).
3. conditions (v) and (vi) are equivalent
(v) the valuation v’ = Kz(v) is defined,
(vi) there exists a computation of (v, E(K), 1).

§ 5. Halting formulas and procedures

The method exemplified in the preceding section is general: namely, for every
system (*) of procedures a new, normalized system (+*) of procedures can be as-
sociated with (¥).
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Four goals are to be achieved by one simultaneous definition:

(1) an extension £” of the language &',

(2) a mapping E that associates with every expression w of %’ formulas denoted
by E(w), E'(w), E%w),

(3) a mapping which with every program that occur in (*) associates a system.
of procedures that replace it,

(4) a mapping which with every procedure of the system associates its com~
panion—a halting procedure.

Every procedure of the system () is replaced by a system of new procedures.
Let the procedure @(xy, ..., X,) = M7 have y,, ..., ¥, as all the variables occurring:
in M and z,, ..., z; as all the variables of the term 7. Then two procedures,
xn) = t(zl/hxojla EEEE) ym); [EEE) Zl/hg(yl 3 e J’m)),
Ep(xy, ..., X,) <> E(M7),

¢(x1: LA}

as well as the procedures h;"
belong to the system ().

The rather lengthy definition of the mappmg E is omitted, see [31].

The aim of introducing normalized systems is explained by the following
theorem:

hy, ER}S ... ER)! associated with the program M,

5.1. For every expression w € &', a computation of {v, w, w) in the realization
R with the use of the system (x) exists iff there exists a computation of {v,®, w)
in the realization R with the use of the system (x%).

If a computation of {v,w, w) in the realization R with the use of (*) exists,
then there exists a computation of <{v, E(w), 1) and if there exists a computation
of v, E(w), 1) then for certain value w there exists a computation of (v, w, w).

§ 6. Computed model of procedures

We define the realization R° as a computed extension of the realization R of the-
language #" in the set ,# and the two-element Boolean algebra B, in the way de~
scribed in § 3 for Z'.

With the system (#+) we associate the following system (w) of conditional
recursive definitions (see examples 4.1, 4.2): :

1. every equivalence of the form

Eo(xy, s X))@  or  Ep(xy, ., Xs) < o'

which belongs to (**) is an element of the system (w),

2. all the remaining equalities and equivalences of the system (¥) are replaced'
by implications according to the following scheme:
, X,) = Kt belongs to (*+), then the implication.
Xn) = K7} is an element of (w);

a. if the equality e(xy, ...
Ep(xy, -0y Xm) = {@(x1, ..,
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b. if the equivalence o(xy, ..., X,) < Mo belongs to (#*), then the implication

Eo(xy, -o.s %) = ((Xy1, ..., Xs) <> Ma) is an element of (w).

6.1. The realization R is a model of the system (w) of conditional recursive
definitions (see [31]).

As was mentioned above, one can construct a system of procedures on the
basis of the computations “by name”. If (w") denotes the system of conditional
recursive definitions obtained from (#+) in the way indicated earlier, then after
repeating the proofs we obtain

6.2. The realization RS (a computed “by name” extension of R) is a model of the
system (W) of conditional recursive definitions [31].

§ 7. Principle of recursion induction

We have proved that R is a model of the system (w) in the set # and the two-element
Boolean algebra B,. R is an extension of the realization R.

The example below shows that a system (w) can possess different models—
-extensions of R.

ExampLE 7.1. Let (W) be the following system of two formulas:
Ef(x, y) <if x = O then 1 else Ef(x~1, f(x, »))A Ef(x, ¥)
Ef(x, y) = (f(x,y) = if x = O then 2 else f(x—1,£(x,))).

Let R be a realization in the set of real numbers with the obvious meaning
of the symbols 0, 1, 2 and —. The realization R® is as follows:

Vv o 2
/’ fR‘(.Il;]Z) = { undefined

Tt is not difficult to observe that the following extension R’ of R is also a model
of (w):

when j; =0, when j; =0,

otherwise.

Efxf (1‘1‘:]'2) = {

otherwise;

V
A
In the sequel we shall consider the set of all extensions of the realization R

‘which are models of (w). It will be denoted by Ext}. The set Ext} is ordered by the

inclusion as follows. We assume that R’ < R" if both realizations are models of
{(w) and

a. for every functor p € &£, .

when j, € N,
otherwise;

2 when j; € A,
undefined otherwise.

B = | feGinid = |

PR < @rr, ie., for all j; ...j, € # if pp(j; ... Jn) is defined and equal to j
then @re(jy . Jjm) =J3

b. for every predicate ¢ € £,

LR < gre, e, for all ji ... jy € 7 oy ... jp) = |/ implies orr(jy --.Ju) = /-
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7.1. The model R° is the least of the models of (w) in Ext} [31].

Theorem 7.1 can be compared with the statements asserting that a function
computed by a procedure is the least fixed point of that procedure treated as a func-
tional equation.

7.2. (Principle of recursion induction). Let (%) be a consistent system of pro-
cedures. Let (%) contain only functional (not relational) procedures. We shall treat
(%) as a system of functional equations. Every solution R' of the system (*) (R' is
a model of (¥)) with the domain equal to the domain of the computed solution R° is
equal to R° (cf. [48]). :

Here, by the domain of a model R’ we obviously understand the family of sets
{Dom g lge gy ... o Where

Dom gz = {(ji, ..{.,j,,) € £ gr(i, .-, Jn) is defined}.

The following example shows that the assumption of the absence of relational
procedures in (*) is essential.

ExaMpLE 7.2. Let us consider the following relational procedure:

e(x,y,‘z) <« if x =0Az =2 then 1 else p(x—1,y,2)Ao(x,¥, z)

and two models, R° and R’, in the set of real numbers:
|/ whenj; =0andj; =2,
/] otherwise,

for all jy,j2,Js €F.

QRC(f1,jzxj3) = {

9R’(j1,j2:j3) =/

The domains of R° and R’ are equal, the models are different. This is caused

by our definition of the realization R°. From the standpoint of two-valued logic

we put egre(jy ... ju) = /| either if this value is computed or if no computation
exists.

§ 8. Final remarks

Tt is not difficult to find greater or even maximal models of procedures. The follow-
ing question arises in a natural way: how do we find the greatest of the effective
models in Ext}?

Another way to find a model of procedures is via Gentzen-style diagrams.
We have no space here to give full details. The idea is as follows: (1) Mirkowska’s
Gentzen-style axiomatization of algorithmic logic (cf. IT, § 6) is adopted and enriched.
(2) Each procedure is transformed into a scheme according to the following example:

o(Ty, oor, Tn) = Ko
is transformed into

I, 50(1,y ooy 7o), IV = 4
T, 5[%, [0y s Xl Tl Kot, I = 4 '

(Ra)
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(3) The diagram of the relational structure described by the realization R is used
to modify the notion of the fundamental sequent and also to generate furthe1
schemes.

Note. The notion of diagram used here has a different meamng from the notion
of the diagram of a formula.

(4) The notion of the diagram of a formula is borrowed from [49].

Now the diagram of a formula of the form ¢(1,2) = # can be used in order
to compute the value of the procedure ¢(x, y) at (1,2). Namely, if in the diagram
of ‘¢(1, 2) = u it is possible to turn all non-fundamental sequents into fundamental
ones by one simultaneous replacement of the variable u by a constant, say ¢, then
the value of g(1, 2) is assumed to be c.

It can be proved (cf. [31]) that the realization R? defined in this way is a model
of a given system of procedures. Moreover, there is no an algorithm which could
produce models larger than RY. Obviously, there are larger models but no general
algorithmic procedure of constructing them exists. This can be seen from a theorem
contained in [31].

From the example given by W. Dafiko [7] it follows that there are functions
definable by procedures which are not programmable. The relational system in the
example is not a constructive one; on the contrary, in every constructive relational
system, let us denote it by R, all recursively definable functions and relations, i.e.,
R°, RS, R? models of the system (w), are programmable in R. From this an analogue
of the Beth definability theorem can be proved:

Let all models of an algorithmic theory J = (¥,¥, /> be constructive
relational systems. If a relation (a function) is implicitly definable in ~ by a system
of procedures, then it is programmable in 7.

Another (the third) notion of computation, closer to the computer practice,
can be introduced. We call those computations algolic (cf. [31]).

Chapter VI
CONSTRUCTIVE AND SEMICONSTRUCTIVE RELATIONAL SYSTEMS

Let us compare the notions of programmability and of recursiveness. It is intuitively
clear that programmability is a generalization of the notion of recursiveness, 3This
can be proved formally (Theorem 3.1). The question for which relational systeins
the notions of recursiveness and of programmability coincide will be solved by
introducing the notion of constructive relational systems (CRS).

The aims to be achieved by introducing the riotions of CRS are:

—a uniform approach to different theories of algorithms (recursive functlons,
Turing machines, normal algorithms of Markov, etc.).

—a generalization of the notion of a finite functionally complete relational
system to the case with a denumerable universe.

—an exact estimation of recursiveness understood as a special case of program-
mability,
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—a base for a theory of data structures relevant for (applicable) programming,

—a step toward an algebraic characterization of the notion of effectivity.

The last two sections deal with the notion of a-semiconstructive relational
system (SRS). In a SRS the stack mechanism can be implemented. The connection
is shown between data structures an semiconstructive relational systems.

§ 1. Constructive equivalence of relational systems

A system B is said to be a strongly programmable extension of a system A if B is
an extension of ¥ and all the operations and relations of B are strongly programmable
in 9. In other words, B is a strongly programmable extension of % if it arises from
A by adjoining certain functions and relations which are strongly programmable
in 2.

ExampiE 1.1. The system (4,0, S, +, X, <, =) is a strongly programmable
extension of the system (4,0, S, =) since the operations + (addition) and x
(multiplication) and the relation < (less than) are strongly programmable in
{AN,0,8, =).

We shall say that a system U’ is definable within a system W iff it is a reduct
of a strongly programmable extension of .

ExampLE 1.2. The system (A, +, x, <) is definable within the system
{AN,0,8, =).

A system U is strongly programmable on a system B iff it is isomorphic with
a system U’ which is definable within B.

Exampie 1.3, The system of integers (Z,1, +, ,=) is strongly
programmable on the system of natural numbers since it is posmble to interpret
even natural numbers as positive and odd natural numbers as negative and to give
definitions of proper operations by non-looping programs.

Two systems % and B are constructively equivalent iff

(1) A is strongly programmable on B and

(2) B is strongly programmable on .

§ 2. Constructive relational systems

In this and the following two sections we are going to approach Church’s thesis
in a uniform algebraical way. The results obtained here can be interpreted also
as arguments showing that the notion of computability in the sense of recursive
functions theory is a restriction of the notion of function programmable in the
corresponding relational system.

A relational system 2 is said to be constructive iff it is constructively equivalent
to the system {.#", S, 0, =) of natural numbers.

In other words, a system ¥ = (£, {0;}iers {ru}rex is constructive iff
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(1) there .exist functions (a) g—a constant, g € 7, (b) f: ./ =i # such that
(VjeNHQie) j=r1g);

(2) systems A and B = {#, g,f, =) are mutually definable in one another.

Examples of constructive relational systems.

2.1. The set of nonnegative integers with O (zero), S (successor), = (identity).

2.2. The system of integers (%, 1, +, —, =).

2.3. The system of rational numbers <&, 1, +, —, X, /, =).

2.4. Malcev's system. Let A = {ay, ..., an} be a finite set called the alphaber.
‘We shall consider the set 4* of finite sequences called words over the set A4, together
with l-argument operations {f;}L,, 4 and relations {r;}/.,, e in A. Let w denote
a word from 4; by 2 we shall denote the empty word (the sequence of the length

zero). The concatenation of words a and &' will be denoted by aa’. The primitive
notions of the system I are as fqllows:

fiwy=wa;, i=1,...,m,
dwa) =w, dA) =1,
wer, iff @wedY)w=wa, i=1,..,m,
wee iff w=A4.

We first shall prove that the system (4*, A, k, =) is definable within M. The
definitions are as follows:

def

A= w [ew) [w/d(w)]]w;

identity is defined by the recursive equivalence

m
Wi = wa S elw) aeOn) v \/ re) Ari(mm) nd(w) = d(wa),
which can be translated into an iterative one
Wy = W, < °[[C/1 uy (W ty [ws] % [e(ul)/\ e(u,)
[elears@)ari@)Vr@OAr()V . V() ATn(Uz) ufd(uy) uz/d(uz)]]] c.
The elements of 4* can be ordered in the following sequence: .

l’ iy o5 Oy 181,028, <05 A1 Oy A2y oovy GOy G181y, o005

hence, the function k should satisfy the following conditions:

fiw) if w=A24,
k(w) = fir1(dw)) if wer,i=1,..,m—1,
filk@w))) it wer,.
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We shall give the program defining the function k for the case m = 2; a generaliza-
tion is easy. :

k0 = o o 0211 [ [ecov e [
» [efulf, (A@)LE1A.@ wfd@]]
o [ [el Ju/fu @] % [e@u/fi @) z/d(z)]]]]]u.

The compatibility of this definition with the conditions established earlier
can be proved from the axioms of Malcev’s system. This, however, is beyond the scope
of the paper. Instead, let us see the schematic representation of the program used.

I7=f2(d(u)) I |z:=fi(z) u:=d(u)|

I while 7 e(2)

otherwise ldu

u:=fiu)
z=d(2)

Fod [

2.5. The Markov system. The-universe of a Markov system is the set (4u {: })*
of words over the alphabet 4U{- }. Given words w and w’, we shall consider rela-
tion r,, and operation £’ (both unary):

for every word v € (Au{-}),

ver, if and only if there exist words «, § € A* such that v = awf,

aw'f  when v = awfl and o is the shortest
foo = word satisfying v = awf,
v otherwise.
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A Markov system is thus a relational system with infinitely many relations
and operations of the form described above.

Markov's limitations. We are able to use only-one variable v in a program.
Consequently, we shall write £} to denote the substitution [v/f »'(2)] and r,, instead
. of ry(v).
All programs have to be of the following form:

o[*[ [rw S8 e[y [

Remark 1. It is easy to verify that such a program is in fact a normal algorithm
of Markov.

Remark 2. Limitations are inessential since (1) any given n-tuple of words
can be encoded as one word in a properly extended alphabet, (2) every program
can be equivalently transformed to one of the normal form (cf. I, §5).

2.6. Turing’s system. Two alphabets are given: 4 = {ay, ..., @} and Q = {go, ...
. qn}. The universe of the Turing system is composed of all words w of the form

- v

b, b' where b,b' e A%, ie {0, ..., n}.
The relations are
WE T < W=Dbgra,b', k=0,1,..,n,m=1,..,p.
Let w = ba,qeanb'; the following operations are considered
R,(W) = bayanq,b,
L(w) = bg;aya, ¥,
Py(w) = bayq;aq;b', where i=1,..,n,j=1,..,p.

It is not difficult to prove the constructivity of the Turing system.

Turing limitations. In a program we are able to use only one variable v. Con-
sequently, we shall write 7y, R;, L;, P;; to denote the formula 7,(2) and the sub-
stitutions - [v/Ry(@)], [¢/Li(9)], [v/P,;(v)], respectively. Let ro be the union of re-

P
lations rom, m=1,...,p, ro= | Fom. Let I stand for one of the symbols R;,
m=1

L;, P;;. All Turing limited programs have to be of the following form:

*[ro_\L [rqux [rquy_ [ [l 1] ]]]]

The remarks from the previous examplebcan be repeated. There exists a one-
-one correspondence between Turing machines and Turing limited programs, The
restriction to one variable is inessential.
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§ 3. Enumerated relational systems
Let & = {#, {0:}ter, {"e}rer) be a relational system. A mapping o: A 22 g

will be called the enumeration of #.
Let 0 be a k-argument operation. A k-argument function g: A% — 4 will
be called a function representing the operation o if the following equality holds

o(any, ..., 0m) = a(g(ny, .. m))

for arbitrary ny, ..., 1.

Let us notice the symmetry of the definition above; one can say that the oper-
ation o represents the function g in .

The operation o is called R-recursive in the enumeration o if there exists.an
R-recursive function representing o. (R stands for one of the words: primitive-,
total-, partial-).

A relation r is R-recursive in the enumeration o if there exists an R-recursive
function.g such that

0 if{any, ..
1 otherwise.

a“nk>er5

' gy, ...,m) = {

. In the case where R means partial we do not require
glny ...mp) =1 {ony, ..., ame ¢ 13

namely, relation r is partial recursive if there exists a partial recursive function g
such that

when

0 ifony ...amyer,
1 or undefined in the opposite case.

g(nl ) = {

; It is easily seen that parhal—recurswe relations are in fact recursively enumer-
able.

3.1. Given a relational system W = {f, {0:}ier, {ri}er.y and an enumeration o
of its elements. If all operations o, (i € I) and all relations r, (k €I') are total recursive
in the enumeration o them all programmable operations and relations are partial-
recursive in the enumeration o. )

COROLLARY. With the assumptions of Theorem 3.1 every strongly programmable
operatzon (relation) is total-recursive.

The theorem states that the notion of programmability is a generalization
of the notion of recursiveness. For every relational system it is possible to consider
programmable relations and functions. If the assumption of 3.1 is satisfied, then all
programmable functions and relations are recursive. Similar statements were proved
by Shepherdson and Sturgis [54], and others. All of them assumed the system of
natural numbers or an extension of it as the universe.

It is easy to observe that every constructive relational system satisfies the as-
sumption of 3.1. There are other systems which satxsfy the assmnptlon and are
not constructive. : . C '

5 Banach t. IT
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ExampLe. The algebra of terms of a given countable signature satisfies the
assumption of 3.1 if the set of variables is countable. The simple case of the example
consists of a free semigroup 4* over a countable set 4 with a concatenation of words
and the empty word A.

§ 4. Main theorem on constructive relational systems

The fundamental property of constructive systems is expressed by the following
theorem. .

4.1. A relational system W is constructive if and only if there exists a one-one
enumeration o of its elements such that )

(a) every programmable (strongly programmable) function or relation is partial-
recursive (total-recursive) in enunieration o,

- (b) every recursive function of natural numbers represents a certain relation

or operation which is programmable in . If the function in question is total-recursive,
then the corresponding relation or operation is strongly programmable [31].

§ 5. Products of constructive relational systems

It seems quite natural to ask what kinds of algebraic operations perforimed on
constructive relational systems lead again to constructive systems. We shall first
observe

5.1. The Cartesian product of constructive relational systems is not itself a con-
structive system [31]. )

The theorem indicates the need of a product operation which is performable
on any two relational systems even if their signatures differ and which preserves
the property of being constructive.

Let A and B be relational systems

A =4, {fi}ier, {"j}js;);
B = (B, {8}k, {Pr}ier)-

We introduce relations and partial operations in the set 4 x B, the relational
system obtained in this way will be called the full product ‘JI}< B of A and B.

For every j € J, an my-ary relation 7 in (A x B)y™ is defined as follows
(((11, bl)’ LR} (amJ: bm;)) Eﬁl <« (als [EXF) aml) € rj;
similarly, for every I € L,

{(ay,by)s vy (@ D)) €F5 <> (By, ..

For every i e I we define a partial ni-ary operation f, in A x B as follows:

» bm) €11
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the value of f:((al, ny)y ooes (@mys b,,,)) is defined iff b; = ... = b,, and if it
is defined then is equal to. (filay, ..., @u); by)-

For every k € K we define a partial m-ary operation gy in 4 x B as follows:

the value of & ((a1, B), ..., (@n, b)) is defined iff a;, =
is defined then is equal to (ay, g(by, .-.» bap))-

Constants, i.e. zero-argument operations, are treated in a slightly different
way: namely, any pair of constants from the set 4 x B is a constant in the system.

A x B.
T

... = ay, and if it

Remark. Let % and B be two systems. If there exists a Cartesian product 2 x B,
i.e. if the two systems are similar, then the system A x B is definable within A x B.

5.2. A full product of constructive relational systems is a constructive system [31]..

Let U and B be two relational systems. By the disjoint sum A IB of the systems
A and B we shall understand the following relational system: the universe of the
system B is the AL|B—disjoint sum of the universes 4 and B, operations in
A B are partial operations defined on the elements of the corresponding subset
of the sum A| |B, relations are defined in an obvious way.

From this as an easy consequence follows

5.3. A disjoint sum of constructive systems is a constructive system [31].

§ 6. Semiconstructive relational systems

In this section we shall consider a certain class of relational systems containing
all constructive relational systems. As we shall see, the systems of this class will be
characterized by possessing the stack mechanism.

A relational system U = {4, {0;}ier, {ri}ser) is called semiconstructive pro-
vided the following conditions are fulfilled:

(1) the unary relation defining a certain subset S — A is strongly program-
mable in U;

(2) the operations binary c, unary A, t and constant e are strongly program-
mable in U;

(3) for every natural number n € 4, the n-ary operation (x4, ..., X,) is strongly
programmable in 2 and the following conditions are satisfied:

(30) every element s € S can be uniquely represented as (xi, ..., X,) for some
Xy oees Xpin A,

Bn()=e,

(32) h(e) = e and h((xy, ..., X)) = x, forn > 1,

(33) t(e) = e and t((x1, ors Xp)) = (%2, ooy Xp) for M 2 1,
B4 c(x1, (g, ooy Xa)) = (Xg,s Xay eevs X)

5=
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The standard model” of arithmetic (4", S,0, =) is an example of a semi-
constructive system, In the next section we shall consider systerns which are semi-
constructive but not constructive.

6.1.- Every constructive system is semiconstructive.

As a consequence of possessing the stack mechanism we obtain

6.2. In every semiconstructive relational system, every system of non-functional

procedures with parameters called by value can be replaced by a system of non-func-
ttonal non-recursive procedures.

At this moment the question arises whether we can accept Church’s thesis
in the following form:

In every semiconstructive relational system, every effective algorithm can be
represented as an FS-program.

" The results of Dariko [8] show that this formulation of Church’s thesis does
not hold for every relational system.

The next lemma shows that condition (3) can be replaced by a condition not
referring to n-ary operations (xy, ..., %,).

6.3. A relational system W is semiconstructive iff it satisfies (1), (2) and the follow-
ing condition:

(4) for every xe Aand y € S,
@) Tex,p) =,
@) y # e= (c(h0), t0)) = »),
@3) h(c(x,»)) = xnh(e) = e,
@44y t(c(x, ) = yni(e) = e,
@5) U I = e).
The opérations mentioned in (3) can be defined as follows:
(s Xay ceey Xg) = c(xl,c(xz, ey 60X, €), 10 ))
By these definitions if s € S— {e} then s = (k(s), h(¢(s)), ..., h(1""1(s))) where

n is the least natural number such that t"(s) = e, The existence of such an » results
from condition (45).

()=e and

§ 7. Relational systems of data structures

We can conceive a data structure as a finite directed graph. The terminal vertices
can be identified with atoms of information. The rion‘terminal vertices can be
identified with the names of fields of machine memory. For example,
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POSITION 1 POSITION 2

POSITION 3

We shall choose another equivalent way of defining the notion of a data struc-
ture (see [4]). The definition will have a linguistic character oriented for input-
output processes.

We shall form data structures over a finite nonempty set J of objects (entities
of information) and over an enumerable set N of names (of memory locations)
disjoint with J. By a form we shall understand either a name or an object or the
empty form [ ] oraform [¢; @, ... ¢l where in turn ¢, , ..., ¢ are forms. By a mem-
ory state we shall mean a finite sequence of pairs ny — @y, ..., 7 — qﬁ,, where

(1) ny, ..., my are distinct names, .

(2) @y, ---» @i are forms different from names and such that every name occur-
ring in any form @; appears also among the 7, ..., 7.

By a data structure we shall mean the pair [ = {@; m) where ¢ is a form, m
=Ry = @y, ..., B —> @ IS a memory state and moreover, every name occurring
in @ appears also among the 7y, ..., m i T

ExaMpLE. The ring

ny - i Tg-1
—=1 )

Jo o0 Jp-1

i B

can be represented as the following data structure

I={no; {n—> [na—x)modqfi"(i+1)modq]}o<i<q>
where ng, Ry, ..., 1,-4 are names of fields, jo, i, ..., /-1 are objects.

In the set L"' we shall distinguish atoms a; = {j; m ) for j e J. Now we shall
define LISP-like operations in the set L™ Let m = n; — @3, .., iy — @-bea mem-
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ory state and let I = (p;m), I’ = {p;m) be data structures over m. We need
the following auxiliary function:

_Je if @¢N,
19(1)—{ oy if @=mnforsomei=1,.. k.
Let ¢, h, t, ¢ be the following operations in L™:
e={[);m
WD = {pyymy if D =Ips...¢Jandk =1,
= e otherwise;
Ly o @lsmy i 9D = [p; ... o] and k=1,
t(l) = .
e otherwise;
@ = Uyey ... @l;my i 00 = [py ... @] and k 20,
o, h= [yl m> otherwise. :

By a relational system of data structures over the state m we shall understand
the system DS™ = (L", {a;};es0{e, h,t, c}>. When m = @ is the empty state,
the system DS@ is called the relational system of trees.

7.1. For every state m, DS™ is a semiconstructive relational system (with e, h,
t, ¢ as the required operations, S being DS™— {a;}jes).

The system DS™ is constructive only in the case of m = @ (i.e., only in the case
of a system of trees).

Chapter VII
MULTIPLE-VALUED EXTENSIONS OF ALGORITHMIC LOGIC

The idea of extending systems of algorithmic logic in such a way that programs
with recursive procedures would be expressions of their formalized languages may
be realized by applying w*-valued logic and by an approach to the programs by
means of Mazurkiewicz’s algorithms, as proposed in [33). The first attempt at such
a solution has been formulated in [25] and [24]. In the first part of this chapter
a modified version (see [26]) will be presented, to be called extended algorithmic
logic (EAL).

It is worth mentioning that w*-valued logic is only used in EAL to describe
the control functions of push-down algorithms, which are realizations of procedures,
whereas their actions are described by means of two-valued logic. This means that
neither m-valued predicates nor m-valued propositional variables for m > 2 occur
in formalized languages of EAL. On the other hand, -they contain label variables
and label constants interpreted in w*-valued logic. The iteration sign + is replaced
by the sign o* of a procedure operator and the iteration quantifiers are replaced
by the infinite disjunction sign and by the infinite conjunction sign. Generalized
formulas may have infinite length.
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The generalized Post algebra P, of order w*, which for the logic under con-
sideration plays an analogous part to that of the two-element Boolean algebra
for classical logic, is introduced in § 1. The formalized languages of EAL and their
realizations are presented in § 2. The FS-expressions are equivalent to certain pro-
cedures (corresponding to finite control algorithms) in the formalized languages
of EAL. This question is discussed in § 3. The fundamental theorems concerning
programs and generalized terms of EAL, including a theorem on the normal form
of a program, are formulated in § 4. § 5 is devoted to a formalization of the systems
of EAL with a completeness theorem.

In § 6 m-valued relations, for m > 2, are discussed. It is shown that they may
be treated as certain (m— 1)-element sequences of characteristic functions of rela-
tions in the usual sense.

§§ 7 and 8 are devoted to a presentation of w*-valued algorithmic logic. It is
an extension of algorithmic logic which includes expressions interpreted as case...
of begin...end statements. In the formalized languages of this logic there may occur
n-valued predicates and n-valued propositional variables for all n>2. If 2<n
< m for an established integer m, then we obtain a mixed-valued algorithmic logic
with logical values restricted to m. With regard to the connéltion between n-valued
relations and relations in the usual sense, as indicated in § 6, the multiple-valued
extensions of algorithmic logic mentioned above may be considered as formalisms
which permit a complex treatment of two-valued predicates, and accordingly enable
us to write complicated programs and generalized formulas in a simpler way.

A formalization of systems of the w*-valued algorithmic logic and those of
mixed-valued algorithmic logic is given in § 8. The completeness theorems and
a theorem establishing relationships between systems of «?-valued algorithmic
logic and systems of mixed-valued algorithmic logics with logical values restricted
by an m > 2 are also formulated. The last theorem may be considered as a weak
separation theorem for the w*-valued algorithmic logic.

The investigations in Chapters I-VI may be extended to systems discussed
in §§ 7 and 8. :

It is worth mentioning that the construction of systems of EAL may be easily
extended to systems of w*-valued algorithmic logic and those of mixed-valued
algorithmic logics.

§ 1. The generalized Post algebra P, of order o* ’

Let By = {(By, U, N, =, —, where B, = {],|/}, be the two-element Boolean
algebra. Consider an infinite chain

<em=[/

of order w*, i.e., isomorphic to the chain of ordinals less than or equal to w.

SN =e<e < ..
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Extend the operations U, N, —, — on this chain as follows:

(6] i ] &€ = Cmaxt,jy»  €iMNE€ = €minci,j)»
Voot i<y, 7 if i=0,
@ e"’e’”{ej i isj AT ETRS\ 4 i iso.

The algebra{#,,|”",u, n, », —>, where Z, = {e,}oﬁ,w,isalinearpseudo—Boolean
algebra (see e.g: [49]).
- In the sequel let A" stand for the set of non-negative integers and ./V o for the
set of positive integers.
In the algebra defined above introduce ome-argument operations d, ieN 0>
by adopting the following definition
: 7 for i<,
@ e = { A for i

The algebra B, is then defined as follows:

g‘Bm = (g)au V, U, N,y —, (di>i54"n; (ei)0<i<m>'
It is easy to see that i;{ 8, the following equations hold:

0<j<w.

: di(e;ue) = di(ej)Udi(ek)z di(ejne) = di(e)ndi(er),
()] di(e; — &) = (d1<ej) ind d1(ek))ﬁ e 0 (di(ej) - di(ek)):
’ - di(—e) = —dy(e).
Moreover, )
® : di(e)) > dy(ep) >
Notice that by (3)-
d,( A = difes) = and  d(/) = djes) = |/ for each ie. Y,

thus the operations d,, szV 0, are the identity mappings on {7, /]} :
Let us set for each m > 2, Py = {eo, w5 €m—2, o). The algebras P, = (P,
Vsu, o, >, —,dy, ooy dy_1, €0, ey €2, €y, being subalgebras of the reducts

{ZPaos l/: U,n, =, —,dy, .
of P, are m—element Post algebras of order m >
;'BZ = <{30,ew}, Va U,Nn, —+, — dls €o, en)>;

where d; is the identity mappmg and {{eg, €0}, U, N, =, — is the two-element
Boolean algebra.
The following operations j;, i € 4", are definable in B,

if =k,
® e = o

A i itk
the definitions being thus - -
g ~Jolew) = —dy(e),

> €m-25 €0

> 2. In particular,

> @m1s €gy oo

0L k< w,

Jie) = —diy ((edndifer), for ieAo.
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Observe that P, is isomorphic to the algebra of all decreasing sequences
(b1, by, ...) of elements in B, = {/],|/}, the operations u,n, =, —,d; for
ie N, being defined as follows: for any b = (by, b2, ...) and ¢ = (cy, €2, Lo

buc = (byucy;s byUe,, ...), - bne = (biney, bancs, .2,
b= (by = c1, (b = cIN(b2 = €3, -..)s
—b = (=by, =by,..), d®) = (b, bi, ).

Clearly,
A=e=0b A s =0l A e)s v V==,
X R i-times

For the theory of generalized Post algebras of order w* the reader is referred
to [50].

§ 2. Formalized languages of the extended algorithmic logic (EAL) and their
realizations

Roughly speaking, the alphabets of the formalized languages of EAL differ from
those of algorithmic logic by the elimination of the iteration sign % and of the
iteration quantifiers, and by adopting new sets of signs: a set of label variables,
a set of label constants, and moreover by introducing a procedure operation sign
o*, the infinite disjunction sign V and the infinite conjunction sign A.

Instead of FS-expressions there occur in the formalized languages of EAL
F, S-expressions interpreted as programs with recursive procedures. Generalized -
formulas in these languages describe properties of programs, as in the case of’
algorithmic Iogic.

More exactly, any alphabet 4 of a formalized language of EAL is the union
of disjoint, at most enumerable sets - -

A = V;uV,uV uSUPUL UL UL,UIcOIT' VU,
where ¥;, V,, @, P, L, are defined as inI §2; Uy = {[,],/}; the elements of ¥,
i.e., the propositional variables will be denoted in this chapter by p, ¢ with indices
if necessary; Vp = {a;}is, and @ for ie #, are called label variables; Lg
={Ei}osices Where E, and E, occur, respectively, instead of 0 and 1 in algor-
ithmic languages, and E; for 0 < i < w are called label constants;
{—l}U{Di}iano: I = {", M, .0
By a formalized language of EAL under A we shall understand the system .

Ic = {v;a};

&L =<4, TuF"USuFLSuFLSTuFL SF,

where the sets T, F° and S are defined as in algorithmic languages (see I, § 2y
and TUF'USUF,SUF, STUF,SF is the set of all well-formed expressions in £

The definitions of the sets F,.S, F, ST and F,SF will be given simultaneously
with the definitions of realizations of expressions belonging to these sets.

.
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By a realization of & in a set U # @ we shall mean, as in the case of any algor-
ithmic language, a mapping R assigning to each @ € &, k € A", a function ¢g:
U* > U, and to each g e Py, k € &, afunction gr: U*— {|/, /1}. Let Wy be
the set of all valuations of free individual variables and propositional variables.
By a label valuation we shall mean any v: Vg — {e;}ies such that

(1) there is n € &y, such that v.(a,) = e,
(2) for each n e Ny, if vr(a,) = e, then v,(@+1) = €.

The set of all label valuations will be denoted by W,. We shall often identify
a certain o, € Wy, with the sequence (.(a;), 1(az), ...). Observe that any valu-
ation is either (eo, €9, -..) OF (€k,, +--» €ky» €0, €0, -.-), Where ky # Ofori =1, ..., n,
Any pair (vr,v) € Wy x Wy will be said to be a state.

Let us set
(1) 7tp(vy,?) = tx(v) foreachterm v el, and .
oag(@r, ©) = agr(r) for aelke.

Similarly, let us set
{2) sg(vr, v) = (v, 5x(v)) for each substitution s € S.

Atomic FyS-expressions are substitutions in S, label substitutions and label
supervisors. .

The set S? of label substitutions consists of the following expressions:

(s.1) [al/Ekl azla], k; #0,

(s22)  [a1/Bi, -, OBy Guyyfa2), n= 1, kg#O0fori=1,..,n,
(sc3)  lai/an],

(524 [a/Eo), - o

5 [

'Sy, will denote the set of all label substitutions except (s 4).

Realization Ris now extended on S as follows. For any s* € S, s& is a mapping
Sk WX Wy = Wy x Wy defined thus:

sh@r, ) = (@f, ),

where
Gerl) oy = (er,, ve(ar), vi(as), ...), if s* is in form (s.1),
($212)  vp = (ks -oes Oy 00(a2), Vi(a3), ...),  if #* is in form (5.2),
(Gr13) v = (vr(a2), velas), ...), if * is in form (s.3),
(s.14) vy = (eo, €, ...), ifs*isinform (s 4),
{(s.15) if s* is in form (s.,5).

Since, for any s* in S?, s does not depend on v € Wy and does not change

v € Wy, it may be treated as a mapping from W into Wy. Therefore we shall
also write s¥(vy) = vz and s§(vz, ) = (s%(vr), v).

’
UL =YL,
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Assume that
@ Joa,
and
4  Jia, will be written instead of (T\Diy10,ADra,), for neAy, k e 4.

will be written instead of 71Dya,, forneA,,

The set Sp of label supervisors consists of the following expressions:
(sp) Vead, ke, neN,.

We extend R on Sp by adopting the following definition:

(v, 9) if ji ("’L(an)) =/, ie,if v.(a,) = e,

Gp)  Dianlav,©) = {undeﬁncd otherwise.
Thus [Jxa,] is the identity mapping on the set of states (v, ) for which v.(a,) = e
and is undefined on any other state.

On applying o, &, o* we form of atomic F, S-expressions certain new FS-
expressions, to be called instructions and procedures.

The set I, of instructions of order 1 is the set of the following expressions:

(1)  ofe[[feads*]s], keN,, s*€8;, s€S,

(12)  o[radx[ae [stsi)e [s#5.]]], where ked,, el

where

s¥,s%5e8., 81,5, €8.

If Hel,, is in form (il1), then We define

Sr (S;([Jk alr(vL, ‘U))
undefined

if this is defined,
in the opposite case.

(irll)  Hg(ve,v) = {

It follows from (spr), the definition of s% for s* in S, and (2) that

(53(01.), SR(‘U)) if  wou(a)) = ex
Hy(02,0) = undefined otherwise.

If Hel, is in form (i12), then we define
S1r (STR( [Jeair(or, 7’)))

Hg(ve,v) = | S2r (Sfx([-rkaﬂn(‘vl.: ‘0)))
undefined

if this is defined and ax(®) = |,
if this is defined and ag(®) = /1,

otherwise.

(ir12)

1t follows from (spr), the definitions of s for s* € S;, and (2) that

(STR(WL); Sm(’”)) if  wr(a) = e and ap(®) = s
Hy(vy.,v) = (an('vl.), -sz(‘U)) if  o.(a;) = & and ag(@) = A,
undefined otherwise.
In the case of instructions (i11) and (i12), e; will be said to be their label.
The set P; of procedures of order 1 is the set of expressions

(pl)  o*[Hy, Hy, ... He,H}, n2z1,
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where

() Hy,, ..., Hy, €I, and have different labels ey, ..., ex,,

(ii) E, does not occur in Hy,, ..., Hy,, and e, is called a terminal label of this
procedure,

(iii) Hiye = of o [[Jklal][al/E,cx @ /E; as/as]]l 1] and is called a preparatory
instruction, .

(v) H, = o[ o[[Las][as/a]]l 1] and is called a terminal instruction.

If Hin P, is in form (pl), then e, is said to be-its label.

It follows from (ir1l) that

s @y s )y if = ¢,
Hy 4z (v, v) = ((ek‘ R CORACEY) 'U) ! (@) 1

undefined ‘ otherwise,
Hon(op, ) = ((velar), velas), o), 'U) if woa) =6,
e undefined othérwise.

In order to extend the realization R on P; we introduce the notion of a computa-
tion of any H in P,.

If Hin P, is in form (pl), then a computation of H by realization R for a state
(v, v) is understood as any finite sequence of states

© HR@.,v) = @2,9%), ..., Hg* (v, 0) = (F*, 0™

such that
() (@2,v%) = Hklm(’”m ),
(c2) for each 0 < i< m—1, (¢, o) = Hyp(eh, o¥) for some j=1,..,n,

(03) ('UE“, vm+1) = II:R('DL, ‘U_)y
(c4) all states in (c) are defined.

The number 7 is said to be the length of a computation (c).
The following statement holds (see [26]).

2.1. For every H € P,, realization.R in any set U # @ and state (vr,v) e Wrx
X Wy, there is at most one computation of H by R for (v;,v) and it is effectively
defined, Moreover, if (c) is that computation, then v+t = (ziL(az), v(as); ... )-
Now we define for H eP

Hi* (v, v)  if (c)is a computation of H by R for (vy, 2),
(prl)  Hy(vp,v) =y undefined if a computation of H by R for (v, v) does
not exist. )
ExampLE. The following procedure H € P, is an implementation of a.recursive
program F(x) <= if x = 0 then 1 else x. F(x—1), over 4.

H = o*[H3 Hy H, H;],
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where
His = oo [aille/Es a3/Es as/a]]l 1],
Hy = o[ Viadx[x = 0o [l /ally/1]  [[a:/E: a:/E; as/asdlx/x—11]]]
Hy = o[ o[ aillas fa]] [x/x+1 y/(x+1)- 3], '

|

Hy = of o [[Msaillas/an]]l 1]- -

H,, is a preparatory instruction in H and Hj; is a terminal instruction. Let R
be the standard realization in 4". The following sequence of states is an example
of a computation of H by R for (v;,?) € Wy x Wy, where v, = (ey, €2, €3, €, -.+)
and o(x) = 3, v(y) € A, v(2) € A for z € V;. In this computation we shall only write
the values of variables in ¥;UV, which occur in H.

v = (€1, €3, €3, €35 €0, --), 2°(x) =3, 2°0) = v(y);
o} = (ey, €2, €3, €2,€3, €0, +.2), oi(x) =2, 2'(») =220),
v =i(e1, €2, €2,€3, €2, €3, €, --.), v(x) =1, 22(»)=(»),
v} =(ey, €2, €3, €3, €3, €2, €3, €0, --), 23(x) = 0, 23(y) =2()),
ot = (05, €3, €2, €3, €3, €3, €0, o) v*(x) =0, 2*(y) =1,

2§ = (23, €2, €3, €32, €3, €0, -.), @) =1, 2°50)=1,
2§ = (ez, €3, €3, €3, €5, ...), 25(x) =2, 2°(y) =2,

‘v}" f_(ea,vez, €3, €05 -.2)s 27(x) =3, 27(») =6,
98 £ (ey, €3, €05 -+)s 25(x)- = 3, 28()) = 6.

It can be proved that Hg(v,v) is defined for each state (v, v) i Wyx Wy
such that v.(a;) = e;. Moreover, if Hg(v;,v) = (o, 0), then 3(y) = (zz(x))! .

. Suppose that foreachn, 1 <n<m, the sets I, of instructions of order n and P,
of broéedures of order n have been defined and that realization R has been extended
to I, and P,. Then we define Z,44 and Ppyq @8 follows

The set I, consists of all expressions
A1) of o[[eais*] Hy], where k €4, Hy € Py, €, is-the label of H,, ge Ao,
S e Sy and s* is in one of the following forms: -
(seq)  [a/EQ,
(Squ) [2./E, 62/a],
203 (0B By o lBy Grisfadd, > L, Kay Ky €A,
G2 o[[Jeas]fo olst H, ] ols% qu]]] where k e 4y, o € F°, H, , H,, are pro-
v cedures of ordeérs: < m and at least one of them is of order m, e, and e,
are the labels of H,, and H,,, respectively, s* and 5% € Sy and -each of them
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is in a form corresponding to (spg1)—(s.43),

(@3)  ofMeadyaols*H] o[sts,]]], where k € 4, a € F?, s* and H, satisfy the
conditions in (il), s¥ € St, 51 €S,

(i4)  ofWhadx[oelst si]ols* H,]]], where all conditions in (i3) are satisfied.

The set Py, ; of procedures of order m+1 consists of the expressions

(p) °*[Hk1tHk1 e Hk,.Hr]a n E./V.D,

where

()  Hy,, .., Hi, are instructions of orders < m+1 and at least one is of order
m+1, the labels e, ..., e, Of Hi o, Hin respectively, are different,
and ¢, is said to be the label of (p),

(pii) conditions (if), (i), (iv) of the definition of procedures in P, are satis-

fied.

In order to extend the realization R to I,., we adopt for any instruction H
of order m+1, which is in the form (il), (i2), (i3), (i4) the following definitions,
respectively:

] Heux (st (Veasla(ve, ©)))  if this is defined,
(1) Ha(oz,0) = undefined otherwise;
Hyz (st (Jxailr(vr, ©))) if this is defined and az(2) = |/,
(2)  Hp(vp,) = | Hyr(stx (Ueair(@r, ©)))  if thisis defined and ag(@) = 1,
undefined otherwise;
Hyr (s% (Veasla(or, ©)))  if this is defined and xx(@) = |/,
(ir3)  Hp(or, v) = {sta(s1z (Vxailr(or, ©)))  if this is defined and ar(@) = /1,
undefined otherwise;
sta(sir (Vearlr (@r, v))) if this is defined and ag(v) = |/,
(ird)  Hp(vr,v) = | Hor (s (Vhaidr(os, ©)))  if this is defined and ag(v) = /),
undefined otherwise.

In order to extend the realization R to P,., we adopt for H € Py, the defi-
nition of a computation of H by R for a state (., ¢) the same as for procedures
of order 1, The following statement holds (see {26]).

2.2. If theorem 2.1 holds for all procedures of orders i, 1 < i < m, then it also
holds for procedures of order m+1.
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Theorems 2.1 and 2.2 enable us to extend R to P, .
For any H € P, We set

(pr) Hy(@p,v) = (g, v), if (¢) is a computation of H by R for (v, ),
and Hg(vy,v) is undefined if a computation of H by R for (v, %) does.
not exist.

Letus set P = () Pn.

meA"o
The set FS of programs (F S-expressions) is the least set of expressions under
A satisfying the following conditions:

(fsl) SuSLUSpUP < F.S,
(fus2) if H,, H, e F.S, then o[H,H)] e F.S,
(fys3) if Hy, H, € F,.S, then for each « € F°, v [aH, H;] e FL.S.

In order to extend realization R to F.S we adopt the following additional
definitions:

Hyg (Hix(or, 9))

- oH if this is defined,
Ees2)  o[H: Holr(vr, @) = undefined otherwise;
Hig(vp,v)  if this is defined and or(v) = [V
(frsr3) v [aH, Hy)r(vy,v) = Hap(vp,v)  if this is defined and (@) = 1,
undefined otherwise.

Notice that (irl1), (ir12), (irl), (ir2), (ir3), (ir4) are conformable to these defi~
nitions.

The set F; ST of generalized terms is the least set of finite sequences of elements.
in A satisfying the following conditions:

(gt
(2t2)
(et3) ifpedy, k>0, and 7y, ..., 7 € FL. ST, then @(ty ... ) € FLST.

T < F.ST,
if He FyS and 7 € F ST, then Hr € FL.ST,

Realization R is now extended to F. ST thus: For each v € FL ST, tg is a partial
mapping from Wy x Wy into U which is defined as follows:

(gtrl)  g(vp,v) = r(v) for v e T,

(€2  Hra@s,9) = 1o (Hr(or, ) if @z, 7) = Ha(@s,v) and 2@y, 0) are de-
fined, and is undefined in the opposite case,

(&tr3)  @(zy .. wrlvr,0) = ¢r (Tm('l’u'v), weos Ter(VLs '1’)) if all 7gr(or,v) for

i=1, ...,k are defined, and is undefined in the opposite case.
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The set FySF of generalized formulas under 4 is the least set satisfying the
following conditions:
(f1)  if g€ P and 7y, ..., 7 € FLST, then o(7y ... ) € FL.SF,
{2) ifpeV,,thenp eF,_SF,
({3) EeF.SFfor0< w,
(f4) aeF, SFfori e‘./Vo,
(£5) ifo, e F.SF,then(avp), (@A pf), (& = B), Tla, D;a for i € & are in Fy, SF,
6) if « cF_SF, He F,S, then Hx e F,SF, ‘
{f7) if oy, oz, ... is a sequence of generalized formulas in F; SF and the set of
all individual variables and propositional variables (i.e. variables in ¥; and

in ¥,) which occur in these generalized formulas is finite, then v (¢ o, ...)
and A (oo, ...) are in FySF.

Generalized formulas satisfying one of the conditions (f1) where 7y, ..., 7 & T,
(f2), (£3), (f4) are said to be atomic. The set of all atomic generalized formulas will
be denoted by F,.. The set of generalized formulas satisfying one of the con-
ditions (f1), (£2), (f3), (f4) will be denoted by F,,.

Given realization R in U # 0, generalized formulas will be realized as mappings
from; Wy x Wy in P, . Notice that P, is a complete lattice, i.e., that for each infinite
set of its elements there exist a least upper bound (Lu.b.) and a greatest lower bound
(g.l.b.). The inductive definition of realizations of generalized formulas is as follows:

@r (Tuz(ﬂu V), s Tkx(’ULa '0))
if 7;r(vr, v) fori =1, ..., k are defined,

/] in the opposite case;
(f12)  prlve, o) = v(p), for p e Vs,
fr3) Er(vr,7) =¢,for0<i<g o,
(frd)  ar(or, v) = v(a), forie Ho,
@r5) - (2VPr(vL, ) = op(vr, ©)Upr(v,, ©);

(«A B)r(vr, v) = op(oy, )N fr(@r, v);

(o= B)r(vr, ©) = ap(vr, v) ~ Brlor, v);
Tag(vr, v) = —ag(oy, 0);
Dyog(vr,v) = dyog(vy, ), i ey,
ar (Hr(vp, ©))  if Ha(vp, v) is defined,

(x6)  Hon(or, v) = { A in the opposite case;

@D o(r: - Waler, ) =

&) v (e . )alvr, ©) = Lub. ar(vy, v), i€ p:
LA (g L )r(r,0) = glb. ar(vr, v), i€ Ny,
All operations on the right-hand sides of these equations are in PB,.
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Let BF SF be the least subset of F,SF satisfying the conditions (1), (2),
(£5), (£6), (f7), in which F,, SF is replaced by BF, SF, and moreover, E,, E, € BF, SF.
Then the following holds.

2.3. For each « € BF. SF, ax(vy,v) € {|/, A}, D;og(vy, 0) = ocR(vL, ?),ieN,,
and U, N, =, —, Lub., glb., which realize v, A, =, T, ¥, A, respectively, occur-
ring in o, are Boolean operations in the two-element Boolean algebra B,.

§ 3. FS-expressions

A procedure He P, H= o*[H; ,H, ... Hy H], is said to be equivalent to K € FS'
if, for every realization R in any set U # & and every state (v, v)-such that z),_(al)
= €&,

(1) Hy(vy, v) is defined if and only if Kx(2) is defined,

() if Hg(vy %) = (@, D) is defined, then Ky(v) = o.

A procedure H € P, is said to be a finite control procedure if all label substltu—
tions occurring in Hy, i =1, ...,n, are in forms [a,/FEd], k eNy, la/a), [ 1
The set of all finite control procedures in P; will be denoted by FCP,.

3.1. For each FS-expression K there is an H € FCP, equivalent o K.
The easy proof is left to the reader.

"It follows from 3.1 that F..S may be treated as an extension of FS.

§ 4. Fundamental theorems on programs in F.S and generalized terms

41 Tet H = *[Hy Hy, ... He,Hy] be a procedure in P. For each realization
Rin any set U+ & and any states (v, v), (W, w) in Wy x Wy, such that vi(a;)
= wy(a;) and v = w,

() Hr(vp, v) is defined if and only if Hg(wy, w) is defined,

(ii) if Hr(vr, ©) = (0, ) and Hy(wr, w) = (Wr, W), then o = .

For a probf of 4.1 see [26]. ‘

4.2. (Theorem on the normal form of programs in F,S). For every He F.S
there.is a program nor(H) €.F. S, effectively defined, such that for every realization
R in any set U # @ and any (vy,v) € Wy x Wy,

() Hr(vy, v) is defined if and only if nor(H)g(vy, v) is defined,

(i) if Hr(vr, v) = (U, 0), then nor(H)g(vz, v) = (vz, )

Fort the proof of 4.2 see [26].

4.3.klf H e P and e, is the label of H, then for each term v € T, any realization R
in U # & and any states (vr, ), (wy,v) such that vi(ay) = wilay) = e,

Hry(vy, v) = Hrg(wg, v). .

This equation means that either both sides are defined ‘or both are undefined,

and if both are defined, then they are equal. Theorem 4.3 follows from 4.1 and the
definition of Hrg(vL, v).

6 Banach t. II
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On applying generalized terms we may define the notion of the programmability
of partial functions by means of procedures. Let R be a realization of & in a set
U # @ and let f be an n-argument partial function from U into U. We say that f
is programmable in R by means of a procedure if there is an H € P with a label ¢,
such that xj,...,x, are all free individual variables in H (i.e., Hg depends on
2(xy), --.» (%)) and X, occurring in H is not free, moreover, the following con-
ditions are satisfied: for each (v, v) € Wy x Wy such that v (a,) = e,

(1) f(o(xy), .., (%)) is defined if and only if Hx,,1r(v1, ) is defined;

(2) if Hxy41r(vy, ¥) is defined, then Sloxy), ...,'v(x,,)) = Hx,.1r(0L, ©).

1t follows from 3.1 that programmability By means of procedures is a generaliza-
tion of programmability.

On applying 4.2 and a method similar to that used in the proof of theorem
1.1 in [22], we can prove that following theorem on generalized terms.

4.4. For every generalized term © € FL ST there exist a program H in F.S and
a term ©' € T, both effectively defined, such that for every realization R in any U#@
and for each state (vy,v) in W x W

7r(ve, ¥) = H7r(21,7),

i.e., either both sides of this equations are defined or both are undefined and if both
are defined, then they are equal.
Theorem 4.4 is applied to prove the following theorem.

_ 45 There is a mapping y effectively defined which assigns to each o(%y ... %)
eF, a formula Ho(zy, ..., ©), where He FLS and T, ..., 7, € T, such that for
every realization R in any U # @ and for every state (v, v) € W x Wy,

o(zy .. TR, ) = Z(Q(’ﬁ Tk))R(‘ULs”)-

§ 5. Formalization of EAL

Let & be a formalized language of EAL. A realization R of & in U is said to be
a model of a generalized formula « € F SF if for every state (v, v) € Wix Wy,
ar(0z,?) = |/. A realization R is said to be a model of & < F.SF if it is a model
of €ach o € /. A generalized formula « is said to be a tautology of EAL if every
realization of % is a model of «. A generalized formula is said to be a semantic
consequence of a set o < FiSF if each model of & is a model of a. This will be
written as & = a. The set of all semantic consequences of & will be denoted by
Cn(s¢). In particular, instead of @ = a we shall write |= «, and Cn(@) = {o e F.SF:
k= o} is the set of all tautologies of EAL in £. -

The semantic consequence operation will be replaced by a formal consequence
operation C. For this purpose we shall introduce a set &/, of logical axioms and a set
of rules of inference.

Let us adopt the following definitions and notation.
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Every label substitution s* in ¢ determines a mapping 5* which is defined ,

as follows: If s* = [a,/E; a,/a], then 5*(a,) = Ej and E*(a,,+,)'= a, for neNy;

if s* = [ay/Ey, ... Gu/Ey, Gyy1/as], then 5%(a) = B, for i=1,...,n and §*(a,;)

= a;,, forieNy; if s* = [a,/a,), then §*(a;) = a;.., for i e #y; if s* =[a,/E,),

then 5*(a,) = E, for each n e A'y; if s* = [ ], then §*(a,) = a, for n e #,.
Observe that the following equation holds:

s*ap(vr, ©) = §*ar(vy,,v), neA,.
For any well formed expression 6 in %, and s* € §2, let 5% denote the expression
obtained from 0 by the simultaneous replacement of each a,, ne .4y, occurring
in 0 by s*0. Similarly, for any substitution s € S, s = [X1/7; ... X,/ Ta P1/ts -+ P/}
and any 6, let 50 denotc_: the expression obtained from 6 by the simultaneous replace-
ment of x; by 7;, i =1, ...,n, and of p; by o, fori=1,...,m.

Instead of (( = B)A (B = )) we shall write, for brevity, (x<>p) for any
generalized formulas «, .

As the logical axiom schemes for EAL we adopt the following ones.

Group A (Axiom schemes for intuitionistic logic).

AN @=E=)

@) (@=E=m= (@=p= =),
A (@=@vh)

A)  (B=@vp),

@A) (@=n=(B=n=(@BhH=7)
A (@rp)=a),

A)  (@rp=8)

@A) (@=B=(c=n=@=>E)
A (@=TH=E="1),

(A0 (_](05 =) = .5)

Group B (Additional axiom schemes for the w*-valued logic).

(By) Di(av p) < (DiavD;p)), ie Ao,

(B.) (Di(an By = (DianD;B)), €N,

(B3) (D.»(oc = f) < ((Dia= DA (... A(Dix= Dif) ))), ieN,,
By (D e ‘?—]Dla)s iedo,

(Bs) (D;Djo <> D;o), i,je Ny,

Bs) DiEforig<k ieN,,0<k<<w; |D;Efori>k,ietNy, ke,
(6:5)] Dy 0= Dia), ie N,

6*


GUEST


84

(Bs)
(Bo)
(B10)
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EO)’
(DluVTDla)
(DiarE) =), ieAo.

Group C (Additional axiom schemes for EAL).

(]
(&)
(&)
(%)
(Cs)
(Co)
(C)
(&)
(Co)
(C10)
(&)
(S
(1)
(€1

(Cy9)
(C1e)
C
(Cie)
(C19)
(Ca0)
(Cay)
(C22)
(Ca)
(Ca4)
(Cas)
(CZG)
(C)

(Dip<p), Vs,

(D1o(zys oos ) <> 0(Tas oo ), 0 € Py, ke N o, Ty, .o, e FLST,
(a=>v (... ), ie N,

(A(ay v o) = ), i€ Ao,

(A (@2 =>Bl2=P) )= (v(goe )= B)),
(A ((a = B = p2) )= (a= A (BB, ))),
1A (asa; ..,

1A (Dya, Dya,..), n€No,

(Tlay = ansr), neHNo,

(5o <>50), € Fyy, SES,

(s*o <> 5%a), aeF,, s* €SP,

(s*so <> ss*a), s € S, s* € SE,

(Ho(zy, ..., T) <> 0(Hry, ..o\ Hty)),

((e(ves - ))<= 0(Tes oes ™), 0 € Py, ke Ng, 71,5 oo, e €FLST
(see 4.5).

(H(xvp) < (Hav H)),

(H(aA B) < (Han HP)),

(H e = T Ho),

(HE, = (T Ha = H}a)),

(H(x = §) = (Ho = HP)),

(HE,=> ((Ho= Hf) = H(x= )

(HD;o <> D Hua), i € N,

(Hv(ay s ) <>v(Hoy Ha, -.)),

(HA(ay o ...) < A(Hay Has ..)),

(Vxaal B < (kann ), .
(o[H,H,]f < H, H, f),

(2 [aH  H1B < ((an HiB) v (Tlen H.H)),

(o*[H,: Hy, ... Hy, H]B <>V (o[Hyy Hy Hi) ... o[Hy, Hy Hy, .

H, H]1f..)), where iy,.., 1, aré in {ki, v ky}, meNy and
o[Hj, ... H;] is writtén instead of o[Hho[... o [Hy_ H;]...]] for any

H, ..., H,inF.S.
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The following rules of inference are adopted

o 2Ezh,

@ A

® ,
) Daiew

(r5) D.-oc,ide./if”o '

For any set o < F.SF we define C(«f) as the least set of generalized for-
mulas containing the union of &/us/; and closed with respect to the inference
rules (r1)-(r5). In particular, C(0) is the least set of generalized formulas contain-
ing logical axioms and closed with respect to the inference rules (r1)- (rS)

5.1. (Completeness theorem for EAL). ; 4
Cn(0) = C(0).
Thus the set of all tautologies of EAL coincides with the set C(0).
As in algorithmic logic, various properties of programs with recursive pro-
cedures may be expressed by means of generalized formulas in ¥, SF. For instance,

for any H e F.S, HE, descnbes the stop property of H, i.e., for any realization
R and state (v, v)

HE g(v1,7) = Epr (HR('v,_, 9)) = |/ if and only if Hg (v, ©) is-defined.

In particular, if H € P, then HE,,z(vy, v) = |/ if-and only if there exists a computa-
tion of H by R for (v, v).

Let H e P and let e, be the label of H. Consider the formula (J,a; A (¢ = HB))
for some «, B in F°. This generalized formula describes the correctness of H (with
respect to an initial condition o for data and.a terminal condition.f for the results
of computations of H). '

Let H and G be any procedures in Phaving a common label ex. Then the general-
ized formula

(Jka1 A ((HE,,, = (GE,,,A (Hrlv = G1))) A ((G};m 2 (HE, A (Hn» = G'L'z)))))) ,

where 7y, 7, € T, describes an equivalence of H and G. ]
On applying generalized formulas in FySF we can define the notion of re-

lations programmable by means of procedures. Let R be a realization of Zin U # .0

and let r  U". The relation r is programmable i R by medns of H € P if ther¢'is
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a formula « e F° such that all its free individual variables are x,, ..., x, and such
that the following holds:

(v(x1), ..., (%)) € r if and only if Hog(vy,v) = |/

for each state (v, v) in Wp x Wy such that v.(a,) = e, where e is the label of H.
We can also introduce the notion of strong programmability of relations by
means of procedures, as in Chapter I, § 6.

§
§ 6. Multiple-valued relations and mixed-valued relational systems

By a k-argument m-valued relation (2 < m < w) on a set U # & we shall under-
stand any mapping r: U* —» &,,, where #,, = {e,, ..., €n_2, €, is the set of elements
of the m-element Post algebra &, of order m, e, = /|, e, = |/ (see § 1). In par-
ticular, any k-argument 2-valued relation on U is meant to be a mapping r: U*
- {/, /1}, ie., the characteristic function of a k-argument relation on U in the
usual sense.

ExampLE. Setting r(0) = ey, r(2n—1) = e; and r(2n) = ¢, for ne Ay, we
define a one-argument three-valued relation on 4.

Everyr: U* — &, determines uniquely m — 1 two-valued relations d, r, ..., dp_ 7

defined as follows: for each (uy,...,w)e U¥ and 1 <i < m—1,
L ifruy, ..., w) = e,
/1 in the opposite case;
Voo, ., w) = e,
/] in the opposite case.

dir(ul, ...,uk) = {
o

dyrQug, ..., w) = {
Moreover, the following holds:
(03] dp_ i r(ug, .. ) S e < dy(uy, ., ).
In fact, if dir(uy, ..., m) =}/, i > 1 then r(u;, ..., w) > e > ¢;_;. Thus

diyr(uy, .. m) =1/,
It is also easy to verify that

B rluy, .

o U) S dpy o Uy, ..

) = dir(uy, ., w)ne U L Udy ot (Uy, e, w)O
Nemoa Uy 1(Uy, .., ty)
where N and U are operations in P, (see § 1).
Conversely, given m—1 two-valued k-argument relations on U
re U {7 A vy Pmen: UFS {7, )
such that ry_;(uy, ..., ) < ... < riQuy, ..., ) for each (uy,...,u) e U¥, the
equation
Pgy s ) = Py, oo, WYNELY oo UF_ 2 (g, -., U)o Iy Uy .y Ug)

defines a k-argument m-valued relation » on U such that dyr = r;,i=1,...,m—1.
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On the other hand, each r: U* - 2,, determines also m—1 k-argument two-
valued relations jor, ..., jm—27 defined thus:

. L iy, e, w) = e,
Jir(ug, .. ) = /| -in the opposite case,

The following equations hold (see Sec. 1):

Jor@ss oo ug) = —dir(uy, ..., w),
JirQuy, o) = —dpp Uy, w0 dir(uy, . u), 1<i<m=-2.
ExAMPLES. Let & be the set of integers and let r: & — 2, be defined as follows:
{eo=_, for u<0,
r(u) =1e for u=0,
ep =/ for u>0.
Then
|/ for u>0, I/ for u>0,
dir() = { /] otherwise; &) = /| otherwise;
r(@) = dyr(wne,vd,r(y),
. |/ for u<O, . |/ for u=0,
Jor) = /] otherwise; Jar = /] otherwise.
Let # be the set of real numbers and let r: #* — 2, be defined thus:
eo= 1 if u<u,,
) = €1 if u=u,
s, Ug) = e, i oup, <uy <up+l,
e =1/ if u+l<u.
Then
° Voo u <, i up <uyg,
dyr(ug, us) = {A otherwise; dyr(uy, ) = {/] otherwise;
Vi uptl Sy,

dyr(u;, uy) = {/] otherwise;

i u <uy, if  u =uy,

. V
otherwise, Jir(s, u2) = {/]
/i uy<uy <up+l,

/] otherwise.

Jor(uy, ) = {?

otherwise;

Jar(uy, uy) = {
Moreover, ‘
F(uy ) = dyr(uy, w)ne,Udor(uy, u)neUdsr(us, uy).
A system U = (U, (0ier, (ndrer), where U # & and
(1) for each i e I, o; is a m-argument operation on U, n; € A,
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(2) for each k eI’ r, is a my-valued w-argument relation on U,

me=2, mgety, WweEN,

"is said to be a mixed-valued reldtional system under U.

It is worth mentioning that each mixed-valued relational system determines
a relational system if each v,-argument my-valued relation r, is replaced by my,—1
veargument two-valued relations dyre, ..., @p—17%, as defined by (1), (2).

§ 7. Formalized c*-valued algorithmic languages

Formalized w*-valued algorithmic languages are extensions of algorithmic ones.
Let A = V;uVPUuPUPPUL,LL, UL, uQUITUU, be the alphabet of an
algorithmic language
L = {4, TUF°USUFSUFSTUFSF).

" We assume that V§? is an enumerable set of two-valued propositional variables,
to be denoted by pz, ¢ with indices if necessary, P is a set of two-valued predicates,
to be denoted by ? with indices if necessary, L, is composed of two elements de-
noted by E, and E, instead of 0 and 1, respectively, and corresponding to any
false statement and to any true statement, and V;, @, Ly, L,, Q, I, U, are defined
asin I, § 2. Let us set 4, = AU{D,;} and .

Ayyy = AUVEHOUPEOU(E, YU{D,}, for

nx2,

where VP is an enumerable set of (n+1)-valued propositional variables, to be
denoted by p*!, ¢"*! with indices if necessary, P¢"*D is a set of (n-+1)-valued
predicates, to be denoted by g"** with indices if necessary, E,_, is a propositiona

0
= ) 4,.
n=2
The algorithmic w*-valued language under A, is a system
» = {dg, TUFSUS,UF,SUF,STUF,SF)
to be defined as follows. The set T of terms coincides with the set T'in & (séé 1, § 2).

constant and D, is a unary connective. We define A4,

The set Fy of open formulas in %, is the least set such that
(f1) prekF] foreachp"‘e M om=2 medy,
(f2) EeFyfor0<ig o,

£3)  ¢"(z1s o
and any 74, ...

, Tk) € F“ for each k-argument (k e #) @" € P™, m > 2, me N,

> Tk € Ta

(f4) if a, B € F3, then o, D;a for ie Ny, (@V ), (@Ap), (a= ) are in Fg.
Open formulas satisfying one of conditions (f1), (f2), (f3) are called atomic.

The set of atomic open formulas will be denoted by F&. Among the formulas in

F3 we distinguish the Boolean ones. They assume under any realization and any
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valuation only Boolean values [, |. The set BF2 of Boolean open formulas is-
the least set such that: (1) V§» < BF?; (2) E,, E, € BFS; (3) 0*(7y, ..., Tx) € BFS
for each k-argument (k € A",) predicate p? € P and any 7y, ..., 7 € T; (4) e,
D;aforie N, (w= B)arein BF" for any a € F3 and 8 € BF3; (5) (@Vvh), (aApy
€ BF} for o, 8 € BFS,.

. By ord(a) for o € F3 we shall understand the least m > 2, m € A", such that
« is composed of elements in 4,,. For instance, ord(E,) = 2, ord (Ds(E, = p*)) = 4,
ord (D, 0*(x)) = 3.
. We shall write, for any o € F3, Jo« instead of ~]D e, and Jkac for k G./VD
instead of (T[DiyiaADyo). It follows that if ord(e) = m, then ord(Je) =
fork=0,..,m—=2. -

The set S, of (mixed-valued) substitutions consists of the expressions

@ - [ee/T1 oo XafTa P 0ty ... PEE[0],
where Xxi, ..., X, are different individual variables in V;, 7, ..., 1, € T, i, for
i=1,...,k, are different m;-valued propositional variables in ¥,™?, a;eFS and
satisfy the condition ord(e;) < m,

The set F, S of programs is the least set such that

n,meN,

(fs1) S, cF,S,

(fs2) if K, MekF,S,then o[KM]eF,S,

(fs3) if e BF and K, M € F,, S, then v [«xKM] € F,,S,

(fs4) if aeFgy, ord(@=m>2, a¢BF3, and Ky, ..., K,_., K, €F,S, then
v [eK, Ky ... Kyl € F, S,

(fs5) if @ € BFS and K e F,, S, then #[aK] e F,S.

The set F, ST of generalize& terms is the least set such that

(fstl) V,< F,ST,

(fst2) if p €® is a k-argument functor (k € A7), and <y, ..., 7€ F, ST, then
@(T1, vy Ty) € Fp ST, .

(fst3) if KeF,S and v e F,ST, then K7 e F,ST.

The set F,SF of generalized formulas is the least set satisfying the following:
conditions:

(fsfl)  p"e F,SF for each p"'e Vi, mz2,m E./Vo,
(fsf2) EeF,SFfor0<i<w,
(fsf3)  ¢"(zy, ..., ©) € F, SF for each k-argument (k eJV 0) m-valued predlcate
"€ P™, m>2, meA,, and any Ty, ..., % eF ST,
(fst4)  if o, f € F,SF, then™] a, D;a for i e /o, (aVP), (@A pf), (= f) are in
_F,SF,
(fsf5) \ if KeF,S and « € F,;SF, then Ku, |_JKa, ("\Ka are in F,SE.
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Realizations of &£, in U # @ are mappings R which assign to every k-argument
functor ¢ € @ (k € #) a function @z: U*— U and to every k-argument (k € A4)
m-valued predicate ¢" € P™, m > 2, a k-argument m-valued relation o%: U* - 2,
on U (see § 6). Notice that every realization of %, in U determines a mixed-valued
relational system

U= <U’ (‘Pk)quédh (QR)gEP>s

where P = G P (cf. § 6).

m=2
Valuations in U are mappings v assigning to each x € ¥; an element v(x) € U
and to each p™ € V{™ (m = 2, m € Ay) an element v(p™) € Z,, = {eg, ..., €m—2, €o}-

The set of all valuations in U will be denoted by Wy.
For each term v € T, 7x(v) is defined by (tIR), (t2R) in I, § 3. The following
-equations extend R to Fg.

{frl) pi@) =o(P™), p"eP™, m=2, meN,,

(fr2) Ep@)=e¢,0<i<o,

{fr3)  ¢"(vy, ..., Tr(®) = ¢} (Tu((‘”): s TkR(‘U)),

{frd) Tar(@) = —og(®), Diag(®) = dioag(w) for ie /7y, (aVvPr(®) = ax(v)u

UBR(®), (24 Br[) = ar(®)Nfr(®), (@ = fr(®) = agr(v) — fr(v), where the
operations —, d; for i € &y, U, N, — are those in B, (see §1).

The following statements are easy to prove by applying (frl)~(fr4) and (1),
{2), 3)in§ 1.

7.1. For each a & BF, ax(v) € {/, /}.

72. If « € F3 and ord(a) = m, then ap(v) € Py,

Programs in F,§ are realized as partial mappings from Wy into Wy. If VU

o0

U V& is considered as a set of addresses and Uué, as a set of data, then
m=2

Wy may be considered as a set of state vectors. Thus programs in F,, .S are realized
.as partial mappings from a set of state vectors into itself. The exact definition is

.as follows:

{fsrl)  if s €S, and s has form (1), then sg(v) = o', where v'(x) = v(x) for x # x;,
i=1,.,nxeV;,v0)=1r@),i=1,..,n,9(®) = o(p) for p # p,
i=1,.,k pelJV™and v(p) = ag(@) fori =1, ..., k.

m=2
) My (Kg(@)) if this is defined,
«(for2) olEMIx(e) = {undeﬁned otherwise;
|
' Kg(v) if this is defined and ar(e) = |/,
«(fsr3) ¥ [aKM(v) = 1 Mg(v) if this is defined and ag(v) = /],
. undefined otherwise;
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(since a € BF;, by 7.1, ar(@) € {7, 1});

Kip(v)  if this is defined and ogx(v) = e,
(ford)  x[aKoKn—s .. Kola(2) = {undeﬁned otherwise,
where 7 = 0, ..., m—2, o (since ord(ex) = m, hence by 7.2, ag(v) € 2,);
Kio, if i is the least j € /" such that ag (K&(2))
(fsr5)  #[aK]p(v) = = /|, and all K}(v) (j < i) are defined,
undefined  otherwise,

where KR(v) = v, and K§{**(v) = Kz (Kd(»)) for j € #,. Since « € BFS, ax
@) e {7, /|} for each T € Wy.

It follows from (fsrl), (fsr2), (fsr3) and (fsr5) that the translation of the F,S-
expressions: s € S,, o[KM], v [aKM], %[«K] into an ALGOL-like language is
analogous to that of FS-expressions (see I, § 2).

Suppose that K,, K,_,, ..., K, have been translated into programs I,
Hm—z s

case Dy, 05 J_s0a; ...; Joo of begin I1,; IT,,_,; ..

oo, Iy, then ¥ [0K, K, _, ... K;] may be translated into
I, end

For example, let us consider x[g*(xy)[x/0][x/y][y/11[x/y+1]] by the standard
realization R in the set % of real numbers, where (cf. § 6)

e, if u+1<u,
e if w<uy < u+1
4 2 2 1 > +1,
Uy, Uy) = .
Or (U, Uz) L wy =y,
e if  w <uy.

Then the program written above by this realization should be translated into

case y+l < x;y<x<y+lx=y;x<yof begmx:=0; x:=y; y:=1;
X = y+1 end.

The extension of any realization R on F,ST is defined by means of (fstlR),
(fst2R), (fst3R) in I, § 3. :
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In order to extend R to F,SF we adopt (frl), (fr2), (fr4) and, moreover,

(fot3) Qm(rla e Tk)R(v)
Jg’,’{(-rm(v), oy Teg®))  if Tir (0) are defined for i =1, ..., k,
=1 /| otherwise;

o (Kr(@ if Kr(v) is defined,
(fsfr5)  Kog(o) ___{ R( R( )) . r(®) is defin
/] otherwise,
U Kozr(v) = 11113’ Klag(®); (N Kogp(v) = glb., Kk(),
V1 . leN
where K%« = o, Ko = KK'a for ie A4, and Lub., gLb. denote the least upper
bound and the greatest lower Bound in PB,,, respectively.
" The following examples of definable program operations explain the sufficiency
of including # in the sense adopted by (fs5) and (fsr5) among the primitive ones.
ExampLE 1. For each m, 2 <m < @, i =0,...,m—2, », let us define ' as
follows: if aeFg, ord(e) = m, a¢BF) and Ky, ..., K,.,, K, e F,S, then
P[0 Kz oo Kol £ w[ N0 [0Ky Ky o Ko]]  for i=0, ..., m=2,
*oloK, Ky ... K] & *[_|Dm—1°‘¥[“Kme-2 Ko]]-
These programs in F, S may be illustrated thus:

7 €{0,m—2,0)
: Jj*i

je [(),...,m—'l,w]‘
J#i
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EXAMPLE 2. For each m, 2 < m < o, let us define %%;, i=1,...,m—2, as
follows: if « € F3, ord(&) = m, a ¢ BFS, and Ko, ..., Ky—o, K, € F4S, then

#3 (0K, Koz . Kol & *[_-‘IDiOC_V. [0k, Kp—sy .. Ko]].

These programs in F,$ may be illustrated thus:

J €10y, m—2, )
j<i

Observe that o[#%;[0K, K-z

oo Ko [0K, Ko .. Ko]] may be illustrated as
follows: ‘

J €{0,,m—2, 0}
j<i

EXAMPLE 3. Let 0 < 1) < ... < iy € m=—2 or i = w and §_; € m—2, where
2 <m<a. Define #f', ,, as follows: If aeF3, ord(®)=m, «¢BF] and
KOs "'DK"-—Z:KN GFwSa then : -
*;':.,,,,ik [aKy K-z ... Kol &

*[ @ av (o V(W @V T,0) o)) X (0B K - Kol] for i # o,

and if i, = o then instead of Jy,« we set D,._yo in the definition written above.
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These programs in F, S may be illustrated as follows:

i ¢{0,.,m—2, w)
ixﬁij l‘orj=1,...,7c

Observe that
o[#lt i [0KoKoes .. Kol [0K Ky s ... Kol

may be illustrated thus:

i € {0y, m—2, )
i%4) for j= L,k

Givep a formalized w*-valued algorithmic language %,, we can introduce
a semantic consequence operation Cn in £, as follows: A realization R of 2,
in U # @ is said to be a model of o € F,, SFif og(v) = |/ for eachv € Wy. A realizam—
tion R of £, is said to be a model of of F,SF if it is a model of each o & o,
A generalized formula « e F,, SF is said to be a tautology in %, if every realization
of £, is a model of a.
. A generalized formula « is said to be a semantic consequence of sf < F,SF
if every model of & is a model of «. This will be written as & |= a. We s'::t,m for
each o < F, SF, °

Cn(#) = {¢ & F,SF: & |= a}.

In particular, Cn(@) is the set of all tautologies in .%,,.
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The systems &, = (L, Cn), where £, is a w*-valued algorithmic language
and Cn the semantic consequence operation in .%, as defined above, are systems
of w*-valued algorithmic logic. :

Each %, determines uniquely, for any m > 2, m e A", a mixed-valued algo-
rithmic language &, = {An, TUF,US,UF,SUF, STUF, SF), where Fj3, Sy,
F,S, F, ST, F, SF are obtained by restricting Fg, S,,, F, S, F, ST, F,, SF, respectively,
to the expressions which are constructed of elements in A,,.

Realizations of %,, are defined analogously to those of %, and the restric-
tions of the realizations of %, to &, are realizations of %,,. The same concerns
the valuations. On applying the realizations of %,, we define the models of generalized
formula « € F,,SF, of any & < F, SF, the notion of a tautology in %, and a semantic
consequence operation Cn in &,, in the same way as for &,. We write & |= o

m
for any & < F,,SF and o € F,,SF if « is a semantic consequence of & with respect
to Cnin &, .

The following statement holds.

7.3. If . € F,,SF and o/ < F,SF, then
A f=o ifandonlyif o= a.
m ©

The systems &,, = {Z,,, Cn), where &,, is a mixed-valued algorithmic language:
and Cn the semantic consequence operation in %, are said to be systems of mixed-
valued (with values restricted to m) algorithmic logic.

It is worth mentioning that investigations and results concerning algorithmic
logic and its applications to the theory of programs as developed in Chapters I-VI
may be generalized to w*-valued algorithmic logic and to mixed-valued algorithmic
logics with values restricted to m > 2.

Moreover, it is possible to extend EAL to the extended w*-valued algorithmic
Jogic, the first version of which has been formulated in [24] and [25], by introducing
to its formalized languages m-valued propositional variables and m-valued predicates
for 2 < m < w, and by adopting S, instead of S as well as on generalizing branch-
ing . In instructions and procedures s € S,, and generalized branchings may occur.
A formalization of the extended w*-valued algorithmic logic may be given and a com-
pleteness theorem analogous to 5.1 holds.

§ 8. Formalization of the co*-valued algorithmic logic

Adopt the following notation. For any substitution s € S,, in form (1} § 7, and
any well-formed expression @ in &, let 5@ denote the expression obtained from &
by the simultaneous replacement of x;, i = 1, ..., n, by 7, and of pI", i = 1, .., k.
by ;. The same concerns s € S,, and @ in %,,.

For every « € F,SF, let ord(x) be the least n, n > 2, such that o € F,SF.

8.1. There is a mapping y effectively defined which assigns fo each @"(Ty v Ti)s
where Ty, ..., T € F, ST, a generalized formula Ko™ (7' ... 7y), where KeF,S and
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Ty s Ty € T, such that for every realization R of &, in any U # @ and every

v e Wy,
0"(71 . wr(@) = £ (" (71 ... w))r(@).

Moreover, if Ty, ..., © € F,ST, then K € F,S.

For a proof see [22].

The logical axiom schemes in %, (in .Z’,,,) are:

Group A—axiom schemes (A;)-(A;o) in § 5.

Group B—axiom schemes (B,)-(Bg), (Bg), (Bo) in § 5 (where for 2y, i,/
€{0,...,m~1} and k€ {0, ..., m—2, w}), and

(B,) (u < ((D1 AAEYV (oo V (Daz €A Ey_3)VD,_1 ) )) ~ for every
« € F,SF (¢ € F,SF) suchthat ord(®) ==n (n< m for %,).

Group C—additional axiom schemes for w*-valued algorithmic logic (for the
‘mixed-valued algorithmic logic with values restricted to m).

{C) (su<-50) for s€8,, acFs (sesS,,uecFINF),

(C,) (KQ"(Tl, s ) > QKT KTk))
(n<m,KeF,S, t,.., 7 eF,ST), .

> Tk EFmST)’

{Cy) (" (x4, s ) = (21, s %) (< my,..
{Cy) (K(oc vp) < (Ka VKﬂ)),

©)  (K@Ap) = KurKp),

{Cs) (KT]a= TIKa),

{C7) - (KB, = (T1Ka = K™]a)),

(Co)  (K(x=p) = (Ka= Kp)),

{Cs)  (KE, = ((Kau=KB) = K(o = A)).

(Ci0) (KD;o < DiKa), ey (iefl,..,m—1}),

(Ci) MUUKx < (MavM(JKK9)),
(Ci2) (MM K < (Man M KKx)),
{Ciz)  (o[EM]a < KMa), '
Cu)  (x[eKMIB = ((ocAK/S‘)v(_laAMﬂ))) @ € BF? (x € BF3NFY),
€19 (%[KoKros . KolB < ((Drra A Kuf)V (Tpoz ot AKroaB)V ...
eV (haaKk,p) .. ))) aeF2, ord(x) = n, aéBF‘ (xe Fy,
ord(a) = n < m, o ¢ BFY),
{C6) (*[K]B < | [aK] N(TleAB), oeBFS (a e BFANEY).
Inschemes(C4) (Cie)K, M eF,Sand a, B eF, SF (K, M cF,S, «,pcF, SF).
We adopt the followmg rules of inference in &, (in &,): (tl), (r3), (t4) in L, § 11,

the rule (r2)

ing one

5y %
@) Dia,ie Ny,

—T‘”—bemg analogous to (r2) in 1,'§ 11, and moreover the follow-

A<i<m~1,for Z,).
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For any set & < F,SF (& < F,SF) and o € F, SF (« € F,,SF) we shall write
o |— o (& |~ o), if « belongs to the least set of generalized formulas in F,SF

o m
(in F,,SF) containing the union of &/ and of the set of logical axioms in %, (in Z,,)
and closed with respect to the rules of inference in .#,, (in %,,). Roughly speaking,
we shall write &/ ]; o (o |; ) if o can be deduced from o and the logical axioms
in £, (in Z,) by means of rules of inference adopted in %, (in .%,,).

The following completeness theorems hold.

8.2, For every set of < F,SF and « & F,SF,

A =a ifandonlyif oA «.
(] @

In particular, o is a tautology in &L, if and only if « can be deduced from the logical
axioms in £, by means of rules of inference adopted in &,,.

For a proof of 8.2 the reader is referred to [23].
8.3. For every set & < F, SF and « € F,,SF,
AE=o ifandonlyif o |- a.
m m

In particular, o is a tautology in L, if and only if « can be deduced from the logical
axioms in &, by meadns of rules of inference adopied in £,

Theorem 8.3 can be proved in the same way as 8.2.
1t follows from 7.3, 8.2 and 8.3 that

8.4, For every set sf < F,,SF and o € F,,SF,
A\—o ifandonlyif o |—a

Theorem 8.4 may be treated as a weak separation theorem for formalized
systems of w*-valued algorithmic logic.
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