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Summary. In this paper the axiomatizations of relational systems over dafa structures are considered
by means of algorithmic logic [3]. The categorical axiomatization for the system of trees is given.
The constructivity [4] of the system of trees is proved. The connections between data structures
and regular languages are examined. In order to systematize the knowledge of the theory of data
processing it was attempted to give a uniform model covering various types of data structures, for
example [2]. In the present paper we accept the model first introduced in [l

1. Formalized model of data structures. Let # be a finite nonempty set of objects.
Let N be an infinite set disjoint with #. Its elements will be called names.
The set of forms @ is the least set of expressions satisfying the following conditions:
) NuFU{T}Co,
2) if @y, .. @ are forms and @, #[ 1, then [p; ¢, ... g,] is a form.
By M we denote the set of all partial functions m:N—® such that:
1) the domain of m is finite,
2) if ne Dom (m) then m(n) ¢ FUNU{[ I},
3) every name occurring in a form m (1) for some 7€ Dom (m) belongs to Dom (m).
Elements of M are called memory states. Let m be a memory state. By L™ we
shall denote the set of all pairs {(¢; m) such that:
1) ¢ is a form,
2) every name occurring in ¢ belongs to Dom(m).
Elements of L are called lists with a memory state m. Let L be the set of all
lists, ie. L= 1_J L™

meM
Lists possess the following two interpretations:

1) Data structures. Forms represent fields of memory which can be named by
names from N. For example, the following ring
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can be written as I={no; {m—~> G- 1ymoaa % n(Hl)moM]} 0<i<g), where
Ty My, ooy Fg—y ATE NAMES of fields, aq, @y, ..., @,—1 are objects.

2) Graphs with ordered edges. Names and objects can be considered as vertices
of a graph. Objects are terminal vertices. For example the list 1 quoted above repre-
sents the following graph:

The set W () of all occurrences of subforms in a form ¢ is the least set satisfying
the following conditions:
1) each element of W (p) is a pair (i, y), where iew*, yed,
2) (e, x) is in W(p),
3) if (i, ) is in W (p) and w=[y ¥, ... u], then foreach j=1,....,m, (i}, y;)€ W (p).
By a grammar of a list /={po; {=@:}1<i<my We mean the quadruplet G,=
=V, T, P, no) such that:
(1) V=oUNU J,
(2) T=0U /4,
(3) no is a name different from ny, ..., My,

@ P={n—july e NUJ, (j.y) € W(p), 0<i<m}.

By an information of a list 1 we mean the language [, generated by the
grammer G,

Two lists /, I’ e L are equiva'ent, [~/', provided I;=1. Since the information
I, of a list [ is a regu ar language, then the equivalence of lists is decidable.

Tt is proved [2] that for any list / we can effectively find out a list /' such that:
(1) I is equivalent to /,
(2) I' needs the least arca of memory to be placed among all the lists equivalent
tol.

For example, the following two lists are equivalent:

1 :<1[uhj c[ld] [ah]]l: ®>
and
L=Cng; no—lny enyl,  nmy—labl,  na—ns nl, m—[al.
Namely,

I, ={11a, 12b, Jc, 311a, 3213, 322b}.

Dlammamte Af tha cat T9 will he called trees. Lists of the set A" ={(j;m) | je f, me
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2. Systems of lists. We shall impose an algebraical, LISP-like structure upon
the set of lists.
Let v and g be the following auxiliary functions:

: s if p=neN,
2@ T\ ¢ otherwise;

V{k if o (=[g1, ..., %l
8=

otherwise.
Let nil, car, cdr, cons be the following operations in the set L*:

nil=<[ ; >,

car (1):{<(_”1; s> o ()=[p1. 0l o
nil otherwise;
_Klpz e pdss> iFo(D=lps . ol k=1,
cdr (1)~{nil otherwise;
o Klpws wdisy O 0 =Tys - wil k20,
cons (1, )_{<[f/’]; Y otherwise.

The algebra #5=(L%, 4°U {nil, car, cdr, cons}) is called the algebra of lists
with the memory state s.
Now we shall extend the operation cons on the whole set L. Let /={¢p; s, k=
{w; m)y be two arbitrary lists. Let y: Dom (m):% N-Dom (s).
If 2 is a form then by yA we denote the form obtained from 2 by the simulta-
neous replacement of all occurrences of names #.€ Dom (1) by x (n), respectively.
Let I'={¢p"; 5"y, k'={y"; s> be the following lists:
W ¢'=y,
) y'=xv,
(3) Dom (s") =Dom (s) U x (Dom (m)),
(4) if ne Dom (s) then 5" (n)=s(n),
(5) if ne y (Dom (m)) then s* (n) =ym (X"f(;r)).
We put cons (I, k)=cons (I, k") where the value cons (I, k) is calculated
in 2%,
Let A=A4".
The algebra £ =(L, AU {nil, car, cdr, cons}> is called the algebra of lists. If
Xc(fUw)*, jeo then by X|jwe denote the set {xe(fVw)*|jxe X}
We shall consider the following relational system of regular languages over
the alphabet £ U, Z2=(R, {{j}};c,V {9, 1, |, @}, where:
(1) R={1,1lcL},
(2) @ is the empty language,

@ Xli=U (=1 - X},
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The following lemma is fundamental:

LemMA 1. Let ™ (me M) and r be the following mappings:

rm()=1 for leL"™,
r()=1, for leL.
(1) The mappings r™ are h phisms from L™ into R.

(2) The mapping r is an epimorphism from & onto R.
(3) The relation ~ is a congruence of the systems &™ and £ .
Let |/| denote the equivalence class of the relation containing /. By | =L,
AU {e, h, t, ¢}y we denote the quotient algebra of £™ by ~.
By |Z|=(|L|, AU {e, h,t,c}> we denote the quotient algebra of £ by ~.
In the sequel we shall concentrate on an examination of the algebras [.£”] and .
The following lemma justifies such an approach.
LEMMA 2. Let @™, 2, |Z™| and |Z) be the following relational systems:
Pm=(L", A"V {nil, car, cdr, cons} U {~}>,
P =(L, AU {nil, car, cdr, cons}U {~1}>,
|Zm =L, AU {e, h, t, e}V {=1),
1@I=(ILl, AV {e, h, 1, c}U{=}),
where m is a memory state in M.
For every algorithmic formula « (xy, ..., X,)
“_Q,,, (iswets =a i) Qhils s i)

% U5 s IA):“IQ’I (s - 1D

for any lists Iy, ..., [, L™,

for any lists /4, ..., e L.

The above lemma follows from a theorem on isomorphism for the algorithmic
logic [5].
By Lemma 1 we get

LeEMMA 3.
3.1. 9| is isomorphic with 2.
3.2. Fvery algebra |¥™| is a subalgebra of |Z|.
3.3. 7 is isomorphic with |£7|.

In || we can construct only trees by means of canstants of [Z], i.e. by means
of atoms and the empty list &. Hence the system | %] is not constructive. However,
|Z] possesses properties similar to those of constructive systems.

For example, the natural numbers are definable in [Z]. Namely, let je 2,
i =KH;/‘]; Bl

i-times. .
As zero we take 0 and as a successor the following function

S@H=c (< DL D).
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In the system || a stack can be formed. Namely,
empty stack=¢,
put x onto stack y—y: =c(x, ),
take the top of stack y=h(y),
delete the top of stack y—y: =1()).

Hence recursive procedures with parameters called by value can be replaced by
cquivalent nonrecursive ones.

In the sequel we shall assume that A={qay, ..., a,} for some r>0 and we shall
use the abbreviation a (x) for x=a, v ... Vx=aq,. i

3. Categorical axiomatization of the relational system of trees.

LiMmA 4. The system of lists | L] is a model of the axioms for identity and of
the following formulas:

Al) [ _/r\1 (@#a),
i)

A2) TVa@ATa (e ))ATa (),
A3) c(x, p)=eex=cn(y=2eva(y),
Ad) TTarTla@nac(x, y)=c(zu)=>x=zry=u,
A5) a(y)=c(x,y)=c(x,e),
A6) a (@)= (h(x)=ent(x)=e),
A7) h{c(x, p)=x,
A8) Ta)=t(c(x )=y,
AY) Ta(x)=x=c(h(x), 1 (x)).

The system of trees 7 is a model for the following formula.
7) Ky (01,
ity

Ky (x): e [xey|a (h (D)) vh (x)=elx/t ()] [x/(: (h (@), e (e (h(x)), 1 (\)))]”
Let us observe that K, (x) 1 is equivalent to the fact of halting of the following
recursive procedure

Tree (x) <= if a (x) v x=¢ then true clse Tree (4 (x)) A Tree (¢ (x)).
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The proof of Lemma 4 can be carried out by applying either the definition of the
system [#| or Lemma 1. For example, we shall prove by the second method
that | is a model for A4).

Let I, k,I', k' be any lists such that:

(1) I.NJ=0,
(@) L,NJ=@,
3) L®L=1,Q1,
ie.

1-4,U Q(m) =1+ T, U le) ).

Hence I,=1,, ie. |I|=(I'| and for every j, L/i=1I/j. From the last equations by
(1) and (2) it follows that
L=I, e [k|=]k"].

THEOREM 1. Formulas A1)—A9) and T) form a categorical axiomatization of
the system of trees.

Sketch of the proof. Let B=(B, AV {e h,t,c}> be a model for A0)—A9)
and 7). We shall define an isomorphism from 27 onto 8. We use the fact that L®
is the least set satisfying the following conditions:

[¢)) Avfnil}cL?, -
(@) ifleL”, keL” 4 and (/#nil  or k=nil) then cons (LLk)eL”.

Now we put:

0] f@*”)=a® for each ae4,
(i) S(nih=¢,
(iii) J(cons (1, k))=c (f(, f(k))  for trees I, k satisfying the condition in
(2) above.

The only more difficult case is to prove that /s a mapping onto B.

Axiom T) secures that every element x € B can be decomposed into elementary
components of the set AU {e}<f(L”). Axiom A9) makes it possible to compose
x of elementary components by decomposing it beforchand.

THEOREM 2. The system of trees is constructive.

Sketch of the proof. We shall use the shorier motation of the system
| 7| which is iscmorphic with # 2. We can regard trecs of the form ¢ (/, k) as pairs
(I, k). We can order all trees analogously to the ordering of all pairs of natural
numbers, ie. as shown in the Table.
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The successor and the predecessor of a tree in this ordering can be defined as
follows:
(@i if de=ty; i=1, vy P
g if d=a,,
¢ (ay, ) if d=e,
Sd)=} c(ay, c(a, o) if d=c(a,e),
c(S(a),») if d=c(a;,»),i=1,..,7,
¢ (ap, S (%) (x, ),
le (S P ) (),
[ undefined if d=ay,
i it d=a,,
a, if d=e¢

if d=c (ay, c (a1, ),

if d=c(ay, x),

if d=c(x%;1); =35 .35 6;
if d=c(x, y).

Pd)={c(a,e)
c(P(x),¢)
¢ (P(),y)
c(P(x), S()

Since in #? we can define the system of natural numbers and use a stack then the
successor S is programmable in &7,

Conversely, in the system (L?, S, a;» which is isomorphic with the system of
natural numbers we can calculate the numbers of the trees ¢ (X, »), & (x) and 7 (x)
from the numbers of x and y.

Since the number of a tree is this tree, then the functions ¢, / and ¢ are program-
mable in (L%, S, a;).

In algorithmic logic we can express the finiteness of lists by means of the following
axiom analogous to axiom 7') for trees:

L) K, (x)1, where

Kp(x):o0 [[v/’c(x, )] = l—] a(xX)Ax#eo0 [[u/lz (x), x/t (x)]v
vl[u=eva@)[ lo[ls u,o;z)v|z[ o[f/c (4, %)) Append (4, -
o iz00, yfel e[y 1z v [u=h () BT Dy e O],
Append (u, x) : #[ure [x/e (h @), x), uft @)]]-

To prove that |Z| is a model for axiom L) it is sufficient to observe that for any
regular language X € R, the set {X/ala € w*} is finite. This implies that the program
K; halts in # for any XeR.

By Lemma 3, K, halts in |#] for any [/|e|L].

Since the system of lists possesses subsystems not isomorphic with it, hence

there is no categorical axiomatization for it in algorithmic logic. However, such
axiomatization may exist in algorithmic logic extended by classical quantifiers.

Is (u, v;

I'he

should be adjointed (o || in order to obtain a constructive system

em [ i not constructive and the question arises what operation

I'would like to thank Dr A. Sawicki for his valuable aid during the preparation
of this manuscript.
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JL Banaxoncii, ARCHoMaTHYeCKHi HOAX0/A K TEOPHH CTPYRTYDP RAIMMBIX

Copepaanne. Ha Gase aliropuTMIYECKOH JIOTHKM PACCMATPHBAIOTCS aKCHOMATH3ALMH anrebpi-
HUCCKHX CHCTCM 1AL CTPYKTYPaMA MaHubiX. TIpUBOAMTCA KaTeropuyHas akCMOMATH3ALMS CHCTEM
jpepennen. JLokasniBacTes  KOCTPYKTUBHOCTh  CHCTEGMBI  JIepeBheB. VICCIeayloTest  COOTHOLIEHHS
MEICLY CIPYITYPAMA JIAHHBIX W PETyTSPHBIME SIBLIKAMA.



