= piE

SEMANTICS AND IMPLEMENTATION OF PREFIXING AT MANY LEVELS™

W.M, Bartoel

A. EKreczmar
A.I. TLitwiniuk
H. Oktaba

Institute of Informatics
University of Warsaw
Q0-901 Warsaw, P.K.,i N, Poland

Abstract

A generalization of Bimula’s prefixing of classes is presented,
The notion of one-level prefixing is first introduced by means of
the example of Simula 67; the semantics of a programming language
with prefixing at many levels is then discussed and analyzed,

The principles for efficiently implementing programming languages
with prefixing of classes at many levels are described, A genera-

lized display mechanism is introduced and the correctness of a dis-
play update algorithm is proved, A new data structure for efficient

identification of dynemic objects is also presented,

Ke¥gords= block structured programming languages, classes, prefixing,

methods of implementation, Simula 67,

*This research was Bupported in part by "Zjednoczenies MERA"™ of Poland,

46

1., Introduction

The prefixing of classes ig one of the most attractive and power-
ful mechanisms incorporsted into the programming language Simula 67
(cf [4]]. This tool allows a programmer to design a program in
a structural, sbestract way. To present briefly the main ideas of pre-
fixing we start with the notion of a class.

Let us congider the following scheme of class declaration:

¢lass A;
attributes aq,...,an;
11;...;Ip; inner; Ip+1""‘Ir
end Aj;

where Bqse.038y are attributes (variables or, perhaps, other synta-
ctic units like classes, procedures, functions etc.)and Iq,...,Ip,
Ip+1""'1r are instructions of the class A. With the help of an
object generator ("new A") one can create an object of the class 4,
i,e. create a frame (activation record) in the memory for attributes
Byseesarly and execute the instruction list Iqi-'-!IvaP+1"'-vIr'
When control returns to the object where the expression "mew A" has
been execubed, the freme is not deallocated and a reference o that
frame is trensmitted as the velue of the expression "new A", Hence,
a reference to the object may be retained in a reference variable
(e.g,X:—new A, where X ig a peference variable qualified by the class
).

The attributes of objects are aceemsible from outside as well as
from inside the object. Remote acceasing (e.g.x.ai] allows one Ho uwse
the attributes a s..« 8, from outside. Internal access occurs wnile
executing the jnstructions of the object of A and any unit nested
within 1t or during calls of the class's procedure attributes.

Congider now declaration scheme of a class B:

9
4 class B

attributes b1,...,bm;
Jq;...;J ipner; Js+1"";Jt
and B;

gl

47

Class B is prefixed by A, i.e, B has attributes aq,...,an,b1,...,
bm and the instruction list 11""’Ip’J1""’Js'Js+1""’Jt'Ip+1""’
I, and B is called a subclass of 4, One can create an object of class
B in a similar way as was done for 4, i.e. by Y:-pew B, Here Y may be
a reference variable qualified by class B as well as by class A {for
the general rules of this kind of assignment statement see [4]) .

The following class C is a subclass of the classes B and A:

B class C;
attributes CqsesesCpi
Kq;...;Ku; inner; Ku+,|;...;Kv
end C;

and it has the attributes a,l,...,an,b,,,...,bm,c,l,...,ck and the in-
struction list I1""’Ip’J1’""Js'K1""’Ku'Ku+1""'Kv'Js+1’""Jt'
Ip+1""'Ir' The sequence of classes A,B,C is called the prefix
sequence of the class C, Class C may in turn be used as & prefix of
some other class, and so forth, but no class can oceur in its own
prefix sequence. Hence prefixing has a tree structure,

Blocks may alsc be prefixed, For instance, a block:

A begin
attributes CqrensyCyi
K'i;"'iKu.

end

ls prefixed by the class A, i.e. it has the attributes BqsevepBly,
CqreresCy and the instruction 1list I1""’Ip'Kﬂ!""Ku’Ip+1""’Ir'

In Simula 67, perhaps because of the method chosen for the origi-
nal implementation, there is an important restriction on prefixing;
namely, & class may be used s a prefix only at the block level at
which 1t has been dsclared. Before we explain the reasens for this
restriction and possible ways of abolishing it, let us look at some
examples which illustrate the difficulties arising from this restri-
ctien,

Suppose we have a declaration of a class PQ which provides the
data structure of a priowrity gueue of integers with maximal capacity
defined by an input paramstr n:

class PQ{n); integer n;
begin

48

integer procedure deletemin;

end deletemin;
procedure insert(x); integer Xi
end insert;
end PQ;
In the following program:i
begin
class PQ(n); integer n;
end PQj

begin integer nj
read(n};
PQ(n)begin
end
end
end

the declaration of PG is not at the same level as the prefixed block,
hence this conatruction is incorrect in Simula 67.

If the class PQ were translated separately and treated as being
declared in the block at level O, it would never be possible to use
this detsa structure as a prefix in other block except the outermost
one.

In Simila 67 this problem has been partially solved, because &y-
stem classes like SIMSET and SIMULATION mey be used at any level.
But the user is not able to extend the library of system classes,
which still forces him to rewrite the declarations at relevant block
levels.

Thisg situation becomes even mora cumbersome if we want to meke
use of-two data structures simultaneously and both of them are sub-
classes of one class. Congider for instance, the data&ﬂructures A
and B using lists as an auxiliary data system. Fence they ought to
be subclasses of a class 1L.IST. We have the following declarations:

class LISTj

49

end LIST;

LIST class 4;
end A;

LIST class B;

end B;

and now we would like to open two prefixed blocks:

4 begin
B begin
end
end

Because of the restriction ome must redeclare classes B and LIST at
the level where B is used as prefix, Thus, redundancy is unavoidable.

Observe that with the possibility of separate translation and allo-
wing prefixing at many levels we can develop software ia a structural
way. Any system or wser class may be easily extended by the user and
attached to the catelog of system ¢lagses without the necessity of re-
compiling already compiled units and without the redundancy of the
program text, Moreover, as we showed before, the user is eble to make
use of arbitrary data structures simultaneously by weans of a prefi-
¥ing mechanism ingtead of remote accessing (what speeds-up run-time
of a program and clarifies its source code).

To conclude, we emphasize that prefixing at many levels is not me-
raly a sophisticated technical problem in progremming languages, butb
an esgential step forward in developing an effective software metho—
dology.

The structure of the peper is the followlng. In section 2 we give
an Informal insight, illustrated by examples, into some important se—
mantic questions concerning many-level prefixing, Section 3 contains
definitions and facts concerning the block structured programming lan-—
guages, which are well knmown but necessary. Section 4 contains the
formal definition of access to attributes in one-level prefixing
(Simula 6?). In section 5 we prove that the proposed semantics of the
rules for many-level prefixing is correct. Section 6 gives a descri-
ption of addressing algorithms for many-level prefixing. In particu-

AT
Ry

50

lar, a generalized display mechanism is iantroduced, a mecharism which
realizes an efficient access to attributes. In section 7 we discuss
the various strategies of storage management and their impact on the
semantics of the proposed consbtruct.

2, Many-level prefixing (informal presentatiunl

The prefixing in Simula-67 1is subject to an important restriction:
a clags may be used as a prefix only st the syntactic level of its
declavation. Hereafter we shall call this prefixing "at one level”,

In this paper we consider a Simula-like language, in which there
is no such restriction and "many-level" prefixing is possible il.e.
a class may be used as a prefix whenever its declaration is visible.
To speak about such a language we must be able first to determine its
gemantics. One might think that prefixing gt many levels® is a tri-
viel generalization of prefizing "at one level", but this is not the
case. ‘

The semantics of such a language is not obvious: in particular the
rules defining access to object ettributes cannct be deduced from the

analogous Simula rules,
Consider the followlng program scheme (we foliow Simula syntax):

L1: begin
class A; begin real Xx;

\

end
12: A begin r
class Bi D

@ |

3
al yi

HI=TH

@
=
e

new Bj

1
i

51

L3: A begin real y;
B cless C; begin

.

Fi=x;

end C;

end;

This program has the following bleck structure: the class 4 is decla-~
red in the outermost bleck of the Program. It prefixes two blocks
(one contained in the other] labelled L2 and L3, respectively. Note
that the use of the same prefix for two blocks - ome nested in the
other - is not allowed in Simule-67.

The first prefixed block contains the declaration of a claas B,
while the second containg the declaration of a class C prefixed by B.
Let us consider the structure of objects created during the exe-
cution of the program, Every object of a prefixed class or block cone

tains all attributes belonging to classes from their prefix sequen-
ces, In the above program the first object is created upon entry to
the block labelled L. Denote this cbject by pl. The second, denoted
by p2, is created upon entry to the block labelled L2, This object
contains two local real variables: x and y. The execution of the sta—
tement new B yields e thira object {denoted by p3) corresponding to
the class B, As indicated in the Drograr scheme, variables x and ¥
occur in the statements of B. Both variables denote attributes of the

52

object p2.

Upon entry to the block L% a new object p4 containing two varia—,
bles x and y is ereated. The exscution of the statement new C yields
a new object p5 (see Fig,1) of the claess C.

|
class 4

P -

real X
p2 real ¥ & ———-

class B p3 [object of B)
A

l —

real X
4 real ¥
class B Eadal

B class C jel) (object of C)

Fig.1.

According to the definition of prefilxing the instruction list of C
contains the instruction list of B. Therefore we must determine for
esch occurrence of the variables X and y in the instruction list of C
the object from which the appropriaste attribute is taken.

Consider first the statement y:=x in the body of C of the object
p5. Note that none of the occurvences of the variables x,y 18 local
in ¢, The objsct p5 belougs to class C and the nearest block conta-
ining the attributes X,¥ and the declaration of ¢ is the block L3,
Hence, both variables denote attributes of the object p4, which re-
presents the block L3. v

There are, however, different ways of defining the semantics of
the aﬁatemant x:=y from the elass B of the object pS5. The semantics
of the stetement can be based on a purely textual concatenation of
the bodies of classes, &s in g8imula-67. We treat the declaration of
class ¢ as if it vere concatenated with class B and declared in the
block L3, Therefore both variables denote attributes of the object ph4.

The semantics of the statement can be also defined in the following
way! the synbactic unilt to which the veriable x is related is the
class A, aince A is the class in which x is declared; the syntactic
unit to which the variable ¥ is related is block L2. During the exe-
cution of statements in the object p5 the seqguence of objects stati-
cally enclosing p5 is the following: p4,»3,p2,p1. In this sequence

53

p4 is the first object having attributes of the class A. Hence the va-
riable x denotes an attribute of p4, The first object representing
block 12 is the object p2, therefore the variable ¥ denotes an attri-
bute of p2.

From the above example it follows that there are some alternative
ways of defining the semantics of assignment statement x:=y executed
in p5.

In this paper we chose the one described above as the second, and
we present its precise and formal definition in Section 5.

Why is this way of defining the semantics preferable?

There are several reasons for this choice, The most important is that
we are able to define it in a precise and formal way and we are able
to implement it efficiently {cf Section 6).

In the semantics based on a purely textual concatenation we see no
way of addressing attributes which would depend only on the place of
variable declaration, In particular we are not able to assign a rela—
tive displacement (offset) to an identifier occurring in a class sta-
tement, Note that esn identifier may relate to attributes with diffe-
rent relative displacements depending on the place where a class is
uged, Compare with the example: in the statement x:=y of B the varia-—
Dle y relates to an attribute of p2 or p4 and these attributes may
have different relabtive displacements. To illustrate the chosen seman-
tics let us consider the program scheme structurally analogous to the
example of Section 1.

begin
class LIST;
begin
rof (+..)head;
procedure into{...);... head:=,,.; end;

end LIST;
LIST class QUEUE;

begin
procedure intoqueus; ... into(...) vesd sse endj

nd QUEUE;

LIST clags DECEj;
begin
procedure intodeck; ... into(...) vasi ass end;

end DECK;
I1: QUEUE begin
12: DECE begin
51: intoqueue;
82: intodeck;
end;
end;

end

The sbove program contains declarations of classes: LIST, QUEUE,
DECE, The class LIST describes the general structure of lists and
contains the declaration of the variable "head" and the procedure
"inte", where that variable is used.

The ¢lasses QUEUE and DECK use the structure of LIST to describe
the structures of queues and decks. In partlculer, they oall the pro-
cedure Minto" declared in LIST, and they use the varlable "head" as
its local attribute.

If we want to use both classes: QUEUE and DECE in a program, we
mey need two blocks prefixed by QUEUE and DECK, respectively.
Moreover we wish the procedure "intp" called in the body of
"intoqueue" to be taken from the object representing the block pre-—
fixed by QUEUE; similarly, this procedure when celled in the body of
wintodeck” is to be taken from the object representing the block pre-
fixed by DECE. Otherwise they should use the same attribute "head",
which might destroy completely the proper execution of the program.

Denote the objact created upon entry to the outermost block by pi.
Objects created upon entries to blocks 11 and 12 will be dencted by
p2 and p3, respectively.

The call of the procedure "intogqueue” (statement 81) ¥ields a new
object denoted by p4. The procedure "intogqueue' is an attribute of
p2, so that the sequence of objects which statically enclose p4 is
as follows: p4, p2, pl. The procedure "intogueue™ calls in turn the

G

e b

55

procedure "into'", which is declared in the class LIST: The first ob-
ject in the sequence p#, p2, pl which contains attributes of LIST is
p2, thus in our semantics "into" is an attribute of p2 and "head"
will be taken from p2. Analogous reasening shows that the procedure
"into" when called in the body of "intodeck" is an attribute of p3.

Thus the discussion shows that such informally presented semantics
suifts our purposes. In the subseguent sections the precise definition
of this semantics end its implementation will be given.

3. Syntactic environment in programming languages without prefixing
Static containers

Consider first the case of a programming language with block structu-—
re and without prefixing. By a syntactic unit in such a language we
shall mean a block or a procedure. Arbitrary syntactic units will be
denoted by U, V, W with indices or dashes, if necessary,

From the point of view of its block structure, any program may be
treated as & tree T. The root of this tree R(T} is the outermost
block and for U,VeT,U is the father of V iff V is declared in U (in
definition blocks are treated as declarations in units where they
appear). For the sake of simplicity of notation we shall write V decl
U when V is declared in U (or alternatively, when U is the father of
V in T),

Let decl® denote the transitive closure of the relation decl and
let decl™ denote the transitive and reflexive closure of decl. So we
have, in particular, U dect® U and U deec1® R(T) for any U, :

The level of a node in a tree T is introduced as usual, i.e,
1evel(R(T)) =1 ana 1evel(U) = level(V)+1 if V deci U,

Any variable and any syntactic unit except a block has a name,
called an identifier, introduced at the moment of its declaration,
The identifier is then used to represent the variable or the unit in
a program, The question of distinction between identifiers and syn-
tactic entities (variables and syntactic units) is essential, beca-
use the same identifier may be introduced by different declarations
in the program text,

Let id denote an arbitrary identifier., We consider now an occur-
rence of an identifier id in a stetement of & program, Since a decla-
ration associales an identifier with a syntactic entity, for the oc-
currence of 14 one must determine s unit U such that a syntactic en-
tity named id is declared in U, For the semantics of a program to be

56

unambiguous, the correspondence befween occurrences of ldentifiers
and syntactic entities should be unigue, i,e. only one syntactic en—
tity may be associated with the given occurrence of an identifier id.
Let us assume that id occurs ia a unit V, i.e. V is the innermost
unit containing the considered occurrence of id. In the following de-
finition we make precise what is meant by scope of declarations or
visibility rules.

Definition %.71.
By a static container of the otcurrence of an identifier id in a unit

¥, denoted by SC(id,V), we mean a syntactic unit U such that

(a) id is declared in U,

(b) Vv decl® U,

{¢) there is no unit U’ such that V decl® U’ and U* decl™ U and id
is declared in U’ (i.e. U is the innermost unit enclosing V such
that id is declared in U),

If SC(id,V) does not exist, i.e. if there is no U such that {a)
and (b) hold then of course the program is incorrect. Otherwise we -
say that the occurrence of id is local in V if V:SC(id,V), and non-—
~local in V if V#SC(i&,v).

Dynamic containers

During a program's execubtion we can deal at the same time with
many objects of the same syntactic unit, hence = computation of any
ingtruction in an object requires identification and access to all
the syntactic entities that it uses. In 4lgol-60C instances of blocks
and procedures may be treated as the examples of objects,(in Simu-
la-67 this is sugmented with the objects of classes). The collection
of objects of a svotactic unit U will be denoted by |U[+ The obje—~
cts themselves will be denoted by small latin letters p,q,r with in-
dices, if neceasary.

Consider an object pe 'U . If the occurrence of an identifiler 14
ig 1local in a unit U, then the syntactic entity identified by 1d is
situated within the object p., Hence there 1s no problem either with
identificetion or with access to this syntactic entity., In general,
however, for any id such that SC(id,U) exigts, we must determine a
unique object q such that qe [5C(ia,U)| . Then during the execution
of the inmstruction list of U in the object p, the syntacvic entity
jdentified by id will be taken from g. Such an object g will be cal-
led a dynamic container of 1d with respect to p, and will be denoted
by DG(id,p). Dynamic containers are unequivecally determined by means

szl

57

of static links,

Upon a unit U is entered an object of this unit is allocated and
initialized., It contains some system pointers in addition to declared
attributea, for example the dynamic link (DL) which points to the cal-
ling object and the static link (SL) pointing to the object which is
its syntactic father. We shall write p.8L=q when SL link of the obje-
ct p points to the object q. [If p.SL is not defined, then we shall
write p.$L=gggg.)

An object q is called the syniactic father of an object P, Since
g must be the object of a unit V where U is declared, l.e. if p.5L=q,
pe |U] , qev], then U geca v.

4 sequence Py evesPy of objects is called the SL chain of the ob-
ject 2 if Pas Sl=none and Py SL:pi-1 for izk,...,2. The SL chain
of an object p will be denoted by SL(p).

The SL chains define completely and uniguely syntactic environ-
ment of objects. This follows from the well-known results quoted
below:

Lemma 3.1,

(a}If SL{p£]= Pyresespq and p;e |0y for i=k,...,1, then the sequ-
ence Up,...,U; is & path from U, to R(T) in the tree T,

(b)zet SL(py)= pyserssp, and pke'VI . If 8C(id,V) exists, then
there is 2 unigque i, 7€ i<k, such thet p, e[sc(id,v) . .

Lemme 3.1 (b) shows that the SL chain of an object defines comple—
tely and uniquely its syntactic environment, A1l syntactic entities
which can be used in V are uniquely situated in SL(pk). Consequently
the dynamic container DC(id,pk) of the occurrence of id with respect
to the object py is defined as a unioue object p; belonging to sL{p,)
such that p; € ISC(id,V)'.

The way 8L links are defined during a program’s execution induces
the semantics of identifiers, The following algorithm determines
exactly what should be done with SIL links in order to obtain the
most natural semantics (cf [?]).

Algorithm 2.1.
We can assume the only one object of the outermost block R(T) may be

entered and, of course, for that object SL= pone., Consider now the
call of a unit U in an object rk:elvl. If id identifies U, then acco-
rding to the definition 3.7 U is declared in SC(id,V). The syntactic
father of p €|U| must be the object of the unit 8C(1a,V), i.e. the

58

unit where U is declared., Let SL(r,) = ryy.se,2q. By Lemma 3.1 (v)
there is a unique i, 1€ i k, such that r; €|SC(id,V)|. Then define
D.SL=r,, i.e. xy becomes the syntactic father of p. fef Fig.2).

R (T}
A
H
1
|
Iy sc(ia,v) L s > denotes SL link
B — > denotes DL link
l 5,
| N
| Y
Ty v U D

Fig,2.

4, Prefixing at one level

Prefix structure of a program
In this section we shall consider a programming language with block

structure and one-=level prefixing,i.%. exactly the case of Simula 6%.
From the point of view of its prefix siructure, any program may be
treated as a forest of prefix trees {fi} . Each prefix structure of
a program 1s a tree Pi where for U,V ePi y U is the father of V iff
U is the prefix of V and the root of Py is a unigque element of Py
without any prefix. Simllarly to the relation decl we introduce the
relation pref,i.e. U pref V iff U is the prefix of V.
By a prefix sequence of a unit U (denoted by prefseq(Uﬁ)we mean
a sequence V,,... V) of units such that V) = U, V, has no prefix and
vy pref Vi 4 For 1 = “1yess,k=1. The example of the block and the pre~
fix structures of a program are illustrated in Figure 3. :

A: begin ref D Zj
class B; begin ref(c)x1,x2;
class C; begin
elass I; begin
end I;
end G;
end B;
B ¢lass D; begin
C clasg B; begin ref(I)¥1;
¥1:- new I;
end E;
¢ class F; begin ref (I)¥2;

T2:- new I;
end F;
X1:- new B; X2:-
end D3
Zi- new Dj;
end Aj

scheme of a block structure

2
& D

Tree P1 Tree P2

59

tree T

60

B
2 p2‘5|DI
/a F\
// \\
~—— 3 denotes SL link
c ¢
E | pye |5 | P | pg€ |F[——> denotes DL 1link

F.3
[} 1
Paelll 56 €|

Graphs of SL' and DL's
Figs 3.

Let pref+ denote the transitive closure of pref and let pref* de-—
nobe the transitive and reflexive closure of pref. Ther, in particu-
ler, U pref‘ U for any U, U pref* V for any U € prefseq[v) etc,

Note now that if U pref* V¥, then an attribute of U is an attribute
of ¥ as well, In particular, a syntactic unit W may be an attribute
of U and, hence, it will be an abttribute of V. Let us denote this ex-
tension of the relation deel by atbtr,i.e. W attr V iff there is a
unlt U such that W decl U and U pref‘ V. While the relation decl &al-
woys defines a tree, the relation attr meed not define a tree,
Denote by G the graph determined by the relation attr. Since the re-
lation attr is the extension of decl, thk tree T is & subgraph of the
graph G.

In Figure 3 the syntactic unit C is the attribute of the syntactilc
unit D, because C decl B and B pref D. Thus C being the attribute of
D may be used as & prefix of the syntactic units E and F. Finally,

I decl C and C pref E implies I attr E, similarly I decl C and C pred
F implies I attr F.

One-level prefixing is characterized by the folleowing restriction:
(5.1) I U pref V, then level(U) = level(V}.

(In words, U may prefix V only if both have the same level in the
tree T.) This restriction has meny interesting consequences which
meke the implementation problem almost trivial, First, as an immedia-
te consequence of (4.1} we obtain the following lemma.

61

Lemma 4.7.

{a) If U attr v, then level(U) = level(V) + 1,

(b) G is a directed acyclic graph with one sink R(T),

{¢) Every path in G from U to R(T} has length level (). []

The definition of a static container for the occurrence of an
identifier in & unit is generalized in the following way:
Definition 4.1,

By a static container of the occurrence of an identifier id in a
unit V denoted SC(i@,V) we mean a syntactic unit U such that id is
declared in U and there is a syntactic unit W such that
(a] U pref* W,

(b) v deel™ w,

{c) there is no unit W' such that V decl® W’ and W* decl®™ W and id
is the attribute of W' ,

{a}l +there is no unit W' such that U pref® W’ and W* pref™ W and id
is declared in W' .

In block structured languages without prefixing we search for the
innermost unit W such that id is declared in W and W contains a unit
V with the occurrence of id. However, according to the definition of
prefixing, the attributes of a prefixing unit are contailned in the
set of attributes of prefixed unit, This implies that the relatien
pref is stronger than the relation decl in the following sense: in
the process of searching for a static container, we search for it
first in the prefix seguence and then in the lower levels of the
block structure of a program. Conditions (a)-{c} of definition 4.1
require that we search for the innermost unit W such that id is the
attribute of W (U is a unit where the searched syntactic entily is
declared). Condition (d) says that U is the nearest prefix of W sati-
sfylng the conditions {a)—(c).

We now present an algorithm determining the static container
sc (ia,v).
Alporithm 4,1.
Etart from V. If there is no declaration of id, look for 1t in pref-
séq(V) reading from right to left. If id is not an attribute of V,
then take V' such that V decl V! and repeat the above process for V?,
If 14 is not an attribute of V*, then take V'’ such that V* decl V*?
and s0 on. When the algorithm terminates on the outermost block wit-
hout finding the required declaration, the static container SC(id,V)
does not exist and & program is incorrect. []

62

Look at Figure 3. We nave 8C{I,®) = ¢ = sc(1,¥}, sc(y1,E) = E,
so{y2,®) = 7, scl{x1,0} = sc(x2,0) = B and s¢(p,4) = sC(2,4) = 4.

According to the definition of prefixing, the attributes coming
from a prefix sequence are the attribubtes of a prefixed unit, hence,
all of them are local in that unit. Thus we say that the occurrence
of an identifier id is local in U if SC(id,U) pref* U, otherwise the
occurrence of id is non-local in U,

In the example on Figure 3 all occurrences of ldentifiers are
local.

Dynamlic containers

Let prefseq{Uk) 5 U,],...,Uk and let us consider an object p EIUkI.
This object consists of layers corresponding to the syntactic units
Uq,...,Uk. (In Figure 3 pq has a layer A, p, has layers B,D, P has
layexrs C,B, Ps has layers C,F, and p,,pg have a layer I.)

Now consider the execution of the instruction lists of units
U,],...,Uk. If an identifier id occurs in a unit Ui,1Si <k, then for
any object p E,Uk we must determine a unigue object g such that
q_e|V|‘and SC(id,Ui) pref™ ., Tt means that the object q has a layer
which corresponds to the static container for the occurrence of id i
a uwnit U,. The object g will be called a dynamic container of the
occurrence of id in & unit U, with respect to the object p, and will
be denoted by D¢(id,U;,p). Dynamic containers will be uniquely deter-
mined by means of static links, as before. However, the definition o
a syntactic father is more gemeral., In fact, if p.SL = q, D e|U|,

q £|V|, then U need not be declared in V. g

Look at Figure 3. The object Ds is created by the insbtruction
Z:-new D, its syntactic father is, of course, the object P In this
case D decl A, The object p3 is created by the instruction X1:- new I
and its syntactic father is p,. In this case E decl D. The object py,
is created by the instruction Y1:- new I and its syntactic father is
evidently py. In this case I is not declared in E but in C. Hence th
simple rule of Algol 60 does not work, The syntactic father of Dy 1is
the object p, such that I is the attribute of E (not necessarily dec.
lared in E). Similarly, the syntactic father of Ps is Py and F decl
D, finally the syntactic father of pg is Pcs and I sttr F.

The example shows the necessity for a more general definition of
syntactic father of an object: if pe|U| and p.SL = q, then g should
be an objsct of a unit V such that U attr V (previously U decl V).
The definition of SL chain remains the seme as in Bection 3. Before
we present an algorithm of setting 5L linke, we prove & lemma ana-
logous to Lemma 3.7 which is of basic importance for the whole con-

struction.

Lemma 4.2,

() I SL{p,) = Pys...,p; and p; e|Ui] for i=k,...,1, then the sequ-
ence Up,...,U; 1is & path from Uy to R(?) in the graph G,

(o) Let SL(p,) = Dyse+sPq @04 Dy € |Uy | for ick,...,7. If 5C{id,V)
exists and V pref® Uk' then there is a unigque 1, 1<igk, such
that SC(id,V)pret¥ vU,.

Proof

By the definition of the syntactic fathera, if P eri+1l and

Py e]UiI, then U, , attr U;, for i = k-T1,...,1. Hence Uy,...,U, is

a path from Uy to R(T) in the graph G. Thus (a) is proved.

Now by Lemma 4,1 level(Ui):i for i=K,...,1. Assume that there are
two such integers, i, j, 1€i<Jigk, that ¢ (1a,vV)pret® U, and
8c{id,V)pref® U., By the restriction 4,1 level(SC (id,V)) leve1(u;)
and level(sc(id,v)) = 1eve1(Uj). Hence level(sC(1d4,v)) = i = j, which
is impossible.

The proof that such an i exlsts is given in Section 5 (Lemma 5.3).
where the more general case is considered; namely the case of prefi-
xing at meny levels. For this reason we do not repeat this proof in
e much simpler case and leave it to the next section,

Now we are able to present an slgorithm which is an immediate genera-
lization of the algorithm 3.1.
Mgorithm 4.2,
We assume the only ome object of the outermost block R(T) may be en-
tered, and for that object SL =~ none.

Consider now an object p EIU’ created in an object LS Vk .
Let prefseq(Vy) = V,,...,Vy, and let the instruction which creates
P oceur ir a unit Vi, 1Ligk. If id ldentifies U, then according to
the definition 4.1 U is declared in SC(id,Vi). The syntactic father
of p should be an object c¢ontaining SC{id,VQ as a layer,
Let SL{xr)) = TosesesTq. By Lemma 4.2{b) there is a unique j, 1< jgm,
such that SC(id,Vi) is the layer of r,. Then define p.SL = Ty

L]

4
-Figure 4 shows this general situation. When the statement of a
unit Vi with the occurrence of id is being executed, in the SL chain
of rn there is a unigue object r. which mey be the syntactic father

J
of p.

; r, R{T)
> \
% I
il :
; i
) |
b |
-
T 56{14,7,)
LN =
| e
i T
1 T
] ki —
V4
L) :
I I‘m * * P
' '
Vk U
.
; Figure 4
3
5. Syntactic enviropment in g programming language with prefixing at

many levels,

o Existence of a syntactic environment

In this section we shall snalyze the situation when Simule'’s res-
:E triction (4.1) is left out. A programming languags with bleock struc-
: ture and prefixing at many levels, i.e. when (4.1) is not binding,

? possesses Some amazing propertiles. Firat we are not able to prove

& lemma snalogous to Lemma 4.2, where the exisbtence and the uniqu~

65

ness of the syntactic environment for prefixing at one-level is pro-
ved, In partieculer, the analogon of Lemma 4.2[1)) does not hold.
However, we can show that for a static container SC(id,V} and

V prer* Uy there is at least one i, 1g i<k such that SC{id,V)pres®
U, where SL(pk\zpk,...,pq, U; . Lemma 4,2{b) shows the uniguness
of sach an i, and thus there is nc problem with definition of
Simula’s semantics, Here the situation is not so clear.

The proof of the existence of such an i, 1£ 1<k, is given in the
following three lemmas, Lemma 5,7 is auxiliary and justifies the im—
plication whick is used later in the proof of Lemma 5.2. Lemma 5,2
is erueial for the whole proof. It shows that graph G satisfies the
.desired property. The proof of this lemma is carried out by double
induetion, with respect to the length of a path Uk,...,U,1 in G, and
with respect o the length of the prefix sequence of Uk'— At last
Lemma 5.3 is a simple corollary of the Lemma 5.2,

Lemma 5.7.

Let the sequence Uk,...,U,1 be a path 1r the graph G from Uk to R(T).
Assumption If V pret™® Uy and V decl W, then there exists j, 1< i<k,
such that W pref* UJ-.

Conclusion If V pref® Uk and V decl™* W, then there exists t,

1< tgk, such that W pref™ U,

Proof.

First note that the above implication has the following meaning.
Assumption says that for any V from prefseq(Uk) and declared in W
there is U; on the path Up_;,...,U, such that W pref*uj {ef Fig.5.).
Conclusion generalizes this property, Namely, for any V from
prefseq(Uk) and for any W such that V decl®™ W there is U, on the
path Up,...,U; such that W pref® Uy, (cf Fig.s).

We shall prove the conclusion by induction on the length of path
from V o W in the tree T. If V=W and V p:c'efa'E Uk’ then W pref™ Uk'
Hence t=k in this case,

Now congider units V end W such that V decl W, Hence there
exists a unit W' such that V decl W' and W' deci® W, If V prer™ Uy
and V decl W', then it follows from the assumption that there is
1& J <k such that W? pref‘ U.. Now W' prefr® Uj and W' dec1¥ W, where
the length of the path from W? to W is less than the length of the
path from V to W. Hence by inductive assumption there exists 1<t

such that W pref¥® U, . B

66

u,=R (1] 3,=r(r)
T)
U U
2 2
1 i
3 Us
U, U
=1 =1
19 1
o o=y U,
) o
v d+1 17}
: T 3t+1 — denotes decl
I%k-B i Ifk—B — denotes pref™®
V-2 : Uy
I T
EI{ I%11:-—’1 T %k—’?
v :% Uy V% Uk
Figure 5

Lemma 5.2,

Let the sequence Up,...,U,; be & path in the graph G from U, to R(T).
It v Pref* U and ¥V decl™ W, then there exists b: 1<igk such that
w pref* Us.

Proof.

First note that the lemms is simply the conclusion of the previous
one. However, it should be proved without the assumption. Since
Lemma 5.1 has just been proved, it is sufficient to prove its assum-
ption, i.e.

(5.1) if V¥ decl W and ¥V pref’ Uy, then there is j, 1€ J<k such that
w pref' Uj'

The proof 1s carried out by induction om the length of the sequ~
ence Up,...,U;. For k=1,U.=R(T}. Thus V pres™ R(r) iff v=R(T) and
V decl W for no W.

Assume now that {5.1) holds for all sequences of length less than
k, k2. For a sequence TpreonsUy let V pref™ U, and V decl W,

We shall now use induction on the length of the prefix sequence of
the unit U, to prove that ¥ pref¥ Uj for some j<k.

67

The beginning is simple since for V=Uk we have Uk decl W and con-
sequently W pref‘ Uk-1 (by the definition of the relation attr).
Agsume that (5.1} holds for all prefix sequences of the length less
than h, Let V pref* Uk end suppose thai the length of the prefix se-
quence from V to U, is h>2, For some units V’, W' we have V pref V*
pref® Uk and V' decl W'. The length of the prefix sequence from V'’ to
Uy is b=1. We infer from the inductive sasumption that W? pref® Uj
: for some j< k., Now, since V pref V*® and V' decl. W', the syntactic con~
: tainer SC(id,W‘) exists, where id identifies V (V occurs in W’).

By Definition 4.1 and because V decl W, there is a unit W'’ such that
W pref™ W'’ and W' decl® W'r, The length of the gsequence Uj,...,Uq is
less than k and W' prer™ Hj s0, from the inductive assumption on k,
we infer that for a unit W such that W’» decl W there is m<j and

W pre£® U .

By Lemma 5.1 if W* decl® W end w? pref™ U;.| there is Tgmgj such
that W prefr® U . Since W’ decl®™ W' and W' prefr® Uy teking W as w*’,
we obtain W?? pref* Um' Finally, W pref* W' and W*? pref' Um’ hence
w pref* Um where 1< m<k. Thus we have proved (5.1) andé the lemma.
Lemma 5,3, =

Let SL{py)=pyses.,pq 2nd p, € [Ui| for i=1,..,,k. If SC(id,V) exists
and V pref* Uy, then there is i, 1<ig k such that SC(id,V) pres™ Uy

Proof.

From the definition of the SL chain, Uk""'U1 is a path in the
graph G. Since SC(id,V) exlsts, there is a unit W such that V decl™w
and 8¢ (14,v) pret® W. We have V pret® U, and V decl™ W, and by
Lemma 5.2 there is i, 1<ig k such that W pref™ U,, But G (id,V)
pret™ W and W pref® U, implies 5C(ia,V) pref® U,.

Dynemic containers

During the executlon of the instruction list of en object p EIUW.
we must be able to indicate the dynamic conteiner DC(id,V,p) for any
1dentifisr id occurring in any unit V belonging to prefseq(U).

To achisve this goal we wish to use the BL chain of the object p, as
in Bimula 67. Unfortunately, in the case of many-level prefixing the
8L shain does not uniquely define the syntactic environment of Ps
since the same unit may occur more than once as a layer in SL(p].
(Lemma 5.3 quarantees a dynamic container belongs to SL chain but not
exachly once).

This new complication ig well illustrated orn Figure 4, The SL
chain of the object p5 elc] contains the layer A twice, in the object

Dy and p,.

68

Hence it is necessary to introduce a uniform rule for determining
dynemic containers. It seems that there are only two concurrent
choices. We may take the nearest or the farthest from the given ob-
ject on its SL chain, However, fthe second choice iz lmpossible beca-
tse it contradicts the stendart understanding of locality. Consider
an ocourrsnce of id local in V and an object p € |Uf containing a
layer corresponding to a syntactic unit V. Assume the chain SL(p)
contains another object g with a layer corresponding to V. Then, of
course, & dynamic container DC(id,V,p) ghould be the objeect p, not
the object g (for a concrete example see Section 2, where the progrem
with two data structures QUEUE and DECK is considered).

From the above discussion we can infer a new definition of a dy-
namic conbeiner as well as an algorithm which computes SD links.
Definition 5.1.

Let SL(r)=rm,...,r1 be the BL chain of an object r € vk| and let pre—
fseq(vk)=V1,...,Vk. Consider an occurrence of an ldentifier id in

a unit Vi. We shall say that Ty ig the dynamic container for the
occurrence of id in a unit Vi with respect to the object r if r, is
the nesrest object to r in SL(r) such that sc(ia,vi} is a layer of r
Algorithm 5.1,

The start is the same as wsual, Consider an object p e|U| created in
an object r € Vk'. Let prefseq(vk)=v1,...,vk and let the instruction
which creates p occur in a unit Vi, 1€1i £k, If id isentifies U, then
according to the definition 4.1., U is declared in SG(id,Vi). Let
SL(I):Im,...,r1 be the SL chain of r. By lemma 5,3. there is J,1£jgm,
such that SC(id,Vi) is the layer of Tse Let j*® be the largest j se-
tisfying this condition i.e. rj, is the dynamic container of the
oceurrence of id in the unit Vi with respect to r, Then define

O

J

p.SL=rj,.

6. The addressing algorithm and ity correctness.

In this section we shell describe an addressing algorithm for
a language with meny-level prefixing, The correctness of this algo-
rithm will be proved.

Addressing in A)gol gnd Simula
Let us start with some remarks on an addressing algorithm for the

Algol-like language invented by E.Dijkstra ([6],[7]). Let id be
a name of & variable v occurring in U and let 5¢(14,U)=¥. Then the

89

variable v is ldentified by a pair:
(1ever(v), offset(v})

where offset(v) is a relative displacement of v ir a memory frame,
Fote that both quentities level(V) and offset(v) may be computed at
compile time. The run-time address of v is evaluated by a simple
formula:

DISPLAY[1evel (V)] + offset(v)

where DISPLAY is a running system array updated during run-time,

When an object p €|U| is being executed, DISPLAY[i] for

i=level(U),...,1 must point to the members of the SL chain of p,
When an object p GIUI is being generated, it is sufficient to set

pIsPLAY [1evel (U]] :—p;

since for m'zlevel(U), DISPLAY{hﬂ must be well defiped. But when p is
reentered the next time (i.e. through DL or goto statement), the fol-
lowing DISPLAY update algorithm is used:

Xi-p;
for ki-level(U) step -1 until 1 do
begin
DISPLAY (k] 1- X; X:-X,SL;
end

For & lenguage with many-level prefixing we postulate that the addre-
ssing aigorithm is efficient as in the case described above.

However, from the discussion given below, it follows that the same
method of attributes identification as in Algol-60 (and Simula-67)
ls not possible.

Let U be an arbitrary unit with prefix sequence Uq-"'!Un' It is
gasv to observe that the prefix sequence has the following propexrty:
for every i, 1g£i<an, level(Ui}_g level (Ui+‘1)’ where level{Ui) ig de-
termined from the tree T, Due %o this property it is not possible to
assign one level to all attributes of a given object p since they mey
be declared in units of different syntactic levels., Hence the local
attributes of the object p should be asddressed relative to many ele-
ments of DISPLAY. (Note that in Simula 67 the equality level (u;)=
=levelfUi+1} holds for ail Ui belonbing to the prefix sequence of U.
Thus, the addressing algorithm is exactly the same as in Algol 60).
Congider the following example:

70

B1+thegin
class Aj... end A;
B2:begin
A class B;... end B;
new Bj;
end;

end

When the object r of class B (generated by new B)is executed, the SL
chain of r is described at Fig.6.

q
;
:

Pig.6,

&
The Algol-like rule, thab DISPLAY[B]:r and DISPLAI[E]:q, is not valid
becsuse the attributes of the object r declared in the unit A ought
to be addressed with respect to 1eVe1(A]=2.
Tn order to avoid these difficulties the apslgnment of numbers to
syntactic units is modified so that levels determined by the program
tree T must not be used.

Generalized DISPLAY

To every unit U of a given program we assign a unigue number, cal-
led a unit number nr{U), determined by eny eoumeretion of tree T.
To every id occurring in a unit U we assign a pair of numbers
or (8¢ (id,U)) and en offset, where the offset is evaluated taking into
account a1l attributes of prefseq(SC(id,U))n

A prefix number sequence pns(U) of a unit U is a sequence

71

nr(Uq),....nr(Un), where Uq,...,Unzprefseq(U).

The vector DISPLAY is replaced by the vector GDIBPLAY, the length
of which is equal fto the number of vertices of T.

Now we present an algorithm which computes relevant items of
GDISPLAY every time an object p € |U| is entered. Let SL(p}=pm,...,p1;
then the GDISPLAY update algorithm has the form:

Algorithm 6,71,
for k:=1 gtep 1 until m do
update CD{p,):

The instruction update GD(pk) consiats of the assignment:

GDISPLAY [n;] ¢~ GDISPLAY [n, J:- ... :~ GDISPLAY [n dka-pk.

where Py E‘Ukl and the prefix number sequence of Uk ils pns(Uk\z
ShgyeeeyBy .

Observekihat for every object p eIUI the cost of update GD(p) is
congtant, depending only on the unit U prefix sequence length,
The correctness of the GDISPLAY update algorithm can be proved with
the help of the following lemma,

Lemma 6.7,

Lot SL(p):pm,...,pq, where p; eIUiI for i=m,...,1., If id is non-local
in V, V pref™® U, and py is a dynemic container for id (pjznc(id,v,p)),
then 1d is non-locel in any Uk £or k=j+1,eee 0.

Proof follows immediately from the definition 5.1 of a dynsmic con-
tainer,

Theorem 641 (GOrrectness of the GDISPIAY update algorithm)

Let SL(p}=p;,...,p s where p; e[UiI for i=m,...,1, and assume that
th~ GDISPLAY update algorithm has been executed for an object Pe

If the occurrence of id is represented by a pair (n,offset) and id
occurs in ¥ such that V pref® U, then GDISPLAY[n] =p; (m2iz1),
where pj=DC(id,V,p).

Proof:

. When id is local in Um’ then the dynamic conbtainer of id is equal
to p and n belongs to pns(Um). It follows from the algorithm that
GDISPLAY [n] =p_=p.

When id is non-local in ¥V, V prer® Um and pj=DCfid,V,p), then by
Lemma 6.7 for every k=j+i,...,m 1d is non-local in Uk' kence
nr(SG(id,Vﬂ =n deoes no¥ belong to pns(Uk). Since p,; is & dynamic

container of id, 1%t follows that SC(:f.ti,V)p_":ef“E Uj; thus n bslongs

72

to pns(U.\. Therefore, after executing the update algorithm loop
upor ki=j"we have GDISPLAY ﬁﬂ =P and b¥ the Lemma 6.1 this walue
will not be changed for k=j+Ts... M.]

This theorem implies the correctness of the run-time addressing
algorithm given by a formulas

GDISPLAY [n] + offset

where the pair (n,offset) represents an attribute in a program.
The followlng example illustrates the use of the GDISPLAY mecha-—
nism. Let us consider the extended scheme of the program given in the

previous example.

Bt [1]: begin
class A[Q]; begin real x[E,m];... end Aj
32[5]: begin real y[B,ﬁ];
4 class B[#]; begin real z[4,k|; ... end B;
new Bj
end;
end
In this program every unit has a unit number given in brackets and
every variable is identified by a pair of numbers: the first is a umnit
number of the static container of this variable and the second is a
displacement in a memory frame. Consider the execution of the state-
ment new B. A new object r of c¢lass B is createg, the SL chain of T
(see Fig.6)consists of the objects ryq {the biock B2) and P (the
block 31). Before control passes to the object r we must execute the
GDISPLAY update algorithm. Fig.7 shows the contents of the vector
GDISPLAY after its execution.

2 T III:EII 1
]
3 | a 5
T
4 T &

Fig.7.

73

Note that the attributes x and z of the object r are identified by
two different unit numbers, However, due to the GDISPLAY update algo-
rithm, sll the elements of the vector GDISFLAY corresponding to the
prefix number sequence c¢f the unit B refer to the object r, Thus, the
addressing formulas:

GDISFLAY [2] + m
and GDISFLAY [4] + k

compute the addresses of x and z respectively in the frame of the
object r,

7. Storage management

In this section we discuss briefly possible strategies of storage
management and their influence on the semantics of the langvwage with
many-level prefixing. We propese a new approach to the problem and
some principles of implementation.

Terminated objects accessibility

Consider first the problem of the accessibility of terminated obje-—
cts. By a terminated object we mean an object in which control has
passed through the final enpd.

Two different cases occur in Simula 67, A block (or a procedure)
object is not accessible after its termination while the termination
of a class object does not affect its accessibility, The property
that a block object becomes inaccessible after its termination re-
sults only from the static properties of the correct program and may
be statically checked,

Note ancther important property of Simula 67, The SL chain of the
object being executed contains no terminated objects. It follows
from the above properties that the activation record for a block

or a procedure may be deleted from a memoIry as soon as this object
is terminated.,

The situation is quite different when meny-level prefixing is
allowed. Consider the following examples

I4: begin ref (A)X;
class A;

end A;

74

L2: begin integer Ji
A class B;
begin

procedurs Pj

end Bj
end B;
X:-new B;
end L2
XquaB,P; comment XguaB.P denotes instantansous qualification which
changes the qualification of Xi
end L3

After the execution of the assignment X:-new B there exist three
objects: p of bleck 11, g of block L2 and r of class B, the latter
pointed by X. Recall that this assignment is valid because X ig qua-
1ified by class A and 4 prefixes B.

Observe now the instruction XguaB.P after the termination of obje—
cts r and g. This instruction denctes & call of the procedure P.

The created object of the procedure would have in its SL chain two
terminated objects: g and r. Note that P may use the attribute J from
the terminated block object g. AS we 8e8, Simula’s access rules are
vlolated. Therefore the semantics of such & call must be determined.
(Is the call of procedure P legal or would it cause a runtvime error?)

Is the access to J of object q legal or would it cause a run-time
error? Two solutions are admissible, each implying & possible sto-
rage mansgement strategy (ef [2]).

Retention semantics
The first semantics 1s called "patention”, The object remains aeces—

gible as long as at least one user’s or systen polnter (e.g. 8L or
DL link)zefers to that object. The retention strategy of storage
allocation corresponds to the above semantics, This strategy may be
accomplished either by the use of reference counters or by garbage
collection.

Observe however, that within the retention semantics the concepts
of block snd procedure become trivieal. A procedure would be a kind
of a crippled class without a remote access mechenism. A block would
only be an gbbreviation of an snonymous class declaration and a gene-
ration st the same time. In this semantics the call of procedure P

75

from the example is legal because the objects q and r mre accessible,
Daletion semantice

Follbwing the Simula principles we choose the other semantics, which
may be celled "deletion". It consists in the principle that a non-
=class object becomes inaccessible after its termination while a
class object remains accessible as long as at least one user’s or
system pointer refers to that object. We regard this semantics pro-
per for two reasona. First, it keeps the distinction between classes
and blocks or procedure, Second, it admits the deletion of terminated
non-class objects from a memory [but whether terminated non-class
objects are actually deallocated immediately after their termination
8till depends on the implementation).

Since we are aiming at the possibility of deallocating non-class
objects, we must provide the following property:

(?.1) The object being executed has no terminated non-class objects
in its SL chain,.

The implementation we propose makes uge of SL links defining the
8L chains for objects, These links are additional attributes of ob-
jects. We intend to treat system reference variables and user's
reference varlables uniformly. Hence, en SL link should become i1nac-
cessible after non-class object termination. (Observe alsc that when
an object contains in its 8L chain a terminated mon-class object, it
can not become an actlve object, because the display update algorithm
(Algorithm 6.1) would fail in searching through the SL chainr. In such
a coge a syntactic environment of the object would not be recovered
even if the object requiring the display updating does not refer to
inaccessible &ttrihutes).

Recall the statement XguaB.P from the example, The new created
instance of P has & terminated non-class object q in its SL chain,
The property (?.1) fails ir this case.

Referencing mechanism
The new method of refarencing must carry the infeormation about the

termination of non-class objects. Thus that methed should realize
the dictionary operations:insert, delete and member on the collection
of mll accessible objects.

In this paper we are not concerned with the strategy of allocating
new frames for objects. Therefore we may omit some details and assume
the existence of the functior newfreame (appetite) ¥lelding an address
of a new allocated frame of length appetite, Similarly we agsume

the existence of a procedurs free(X) which releases the frame
indicated b> an addreas X,

76

The cperation insert corresponds to the creatlion of a new object
and should be understood as making the new object accessible. Insert
does not deal with memory allocation itself,

Operation delete corresponds to the termination of a non-class
object, and member yields information whether a reference points to
an mccessible object,

We will use an auxiliary data structure, an array H, containing
references to objects. Roughly speaking, objects will be addressed
indirectly through array H. It is obvious that the operation member
should be as efficient as possible, for it is the most freguently
used. (In our implementation the cost of member is really low: only
two machine instructions).

Array H occupies low addresses of c¢ore, from O to the position
pointed by a variable LASTITEM. fObjects may be allocated in high
addresses of core). Each item in H is represented by two words, the
physical address of an cbject and an integer called an object number,
The slgorithms presented below also use m procedure "intolist",

a function "deletefrom™ and a boolean function "empty", operating on
the auxiliary list of released items of H., Because of their obvious
meanings, details are omitted. Let the variable LIST be the head of
this list.

Now objects are referenced by the so-called virtual addresses defi-
ned as pairs (addres in H, object number). The object number will be
used for checking whether the object is accessible, while address in
H will be the indirect address of the object (if accessible).

Por s reference X denote the first and the second component of the
virtual address of X by Xadd and Xob. The method of referencing will
satlsfy the following properties: "
(7.2) If X refers to an accessible object, the HEXadd] contains the
physical address of the object,
(7.3) X refers to an accessible object 1Pf Xob=H[Xsda+1] (i.e. iff
object numbers are the same in the virtual address of X and the cor-
regponding item of H).

Hence, the algorithm for the member operation i3 as follows:

boolean procedursg member (Xadd,Xob,physical address);
neme physicel address; intemer Xadd,Xob,physical address;
begin

1f Yob=H|[Xadd+1] then

begin physical address::HEXadd]; member:=true

S

77

end else member:=false
end member;

Consider now delete operation., Following property (7.5) it is
sufficient to change the object number in an item of H to guarantee
that the subsequent executions of a member concerning this item re-
turn value false, All items in R which previously pointed to some
objects, subsequently being made inaccessible, are linked together
into a list (started by the variable LIST)and may be reused for
addressing scme new objects.

The algorithm of delete operation is as follows:

procedure delete (Iadd,xob);
integer Xadd,Xob;

begin lnteger addr;
if member (Xadd,Xob,addr)then

begin free (addr); comment a frame in memory mey be released;
H[Xadd+1) :=H[Xada+1] +1;
intolist (Xadd,LisT)
end
end delete;

Yhen a new achtilvation record is allocated, & new element muat be
ingerted into H. IT the list of released items of H is not empty, one
of the previocusly used elements of H may be reused. Otherwise array
H is extended (LASTITEM:=LASTITEM+2),

procedure insert(appetite,Xadd,Xob);
ngme Xadd,Xob; integer appetite,Xadd,Xob;
begin
if empty{LIST) then
begin ¥Xadd:=LASTITEM+1; H[Xadd+1]:=0; LASTITEM : =LASTITEM+2
end else Xadd::deletefrom(LIST): comment one element has been
taken from the list of released elements;
Xobs:=E [Xadd+1] 5
H [Xadd.] :=newframe (app etite)
end insert;

Moreover we intend to treat uniformly references to terminated obje-

cts of non-classes and the reference to the empty object none.

This is easily accomplished by the following initialization:
none:={0,0); H0):=[1]:=1;

Hence none deoes not refer to any accessible object because i1ts obje-

¢t number equals O and H[ﬁ] squals 1.

78

Finally, we recall now that the SL chain may be cut off. Therefore
the display update algorithm must be modified.

Mgorithm 7.1.
Let SL(p):pm,....p1, then the GDISFLAY update algoritnm has the form:

X:-pj

while X.SL =/= nene do X:~X.5L;

if X élR(T)| then error glse

for k:=1 step 1 uatil m do updateGDip,); 0

Let us now discuss the cost of the proposed referencing method.
Each accessible object needs two extra words for an item in the array
H, Each reference variable needs two words for a virtual address.
Thus, with respect te a standard method we lose two words for each
accessible object and one word for each reference variable. (However,
the pair of integers forming a virtual address may sometimes be pac—
ked intc one machine word; the seme may be done for an item of two
words in the array H.)

On the other hand, we profit in an essential increase of the total
number of different objects which may be used through the program
lifetime without garbage collection, This number exceeds by far the
capacity of H, though the number of objects accessible et the same
time is limited by H, The new strategy has the advantage of the stan-
dard one when a program uses many procedures (what is natural and
very common). Then the terminated objects of these procedures are
deallocated on line and the corresponding space may be lmmediately
reuged by the other objects (as in the case of stack-implementible
language). Observe that the lack of on-line deallocation of termipa-
ted non~class objects was the main snag to efficient lmplementations
of Simls~67., Mereover, b¥ virtue of this indirect addressing fin
cage of memory segmentation}, the memory compactification may be done
without traversing a graph of objects and without updating the refe-—
rence variables, It may be accomplished by removing inaccesslble obje-
cts end chaenging the corresponding addresses stored in the arrav H,

Fiunally the time-cost of these three operations (delete, insert,
member)is as follows, The cost of the operatlon member is constant
and very low. It mey be compared with the cost of testing on nome in
standard implementation. The cost of insert and delete depends on the
cost of other operations like newframs, free, intolist, deletefrom,
which maintain the frames of inaccessible objects., Apart from the
cogt resulting from these operations, the cost of delete and lnsert
iy constent. These operatiocns may be implemented in meny different

79

methods., However, with the use of good algorithms and date structures
(i.e. linear lists, heaps etc.)one can obtain the same time comple-
xity as in the case of standard solutions. Moreover, observe that

due to the property (7.1} Gisplay may contain physical addresses ins-—
tead of virtual onesg, so an access o the visible attributes is not
charged bv the cost of member operation.

Programmed deallocation

To end this section, as a consequence of the reference mechanism
introduced above, we can propose the new operation to be introduced
to the programming language. This new operation is called usually
programmed deallocation and may be dencted by g;;;(x), where X is
a reference. The gemantics of g;;;(x] is as follows. If X is & refe-
rence to an accessgible object, then g;;;lx) makes this object inacce-
sgible (and ip consequence this object may be deallocated). Otherwise
ki13(x) is equivalent to the empty statement,

We got kill operation as a benefit from the referencing method
introduced because of the other reasons, Roughly speaking, kill is
realized by the delete operation deseribed previously. Thus, after
the execution of g;;;{x) the object peolated {if any) by X becomes
inaccessible., Morecover, any remote access to such a being made inacce-
ssible object will cause a run~time error, The realizetion of this
is possible as a result of the operation member already existing in
the set of storage management operations. Here the simple test on
none is extended to the test on being accessible (member operation).
We showed that the cost of member operation is constant and very dlow,
and may be compared wlth the cost of the test on pone, Thus, with
gsome lost of space and a minimal loss of time we can solve the Pro=-
blem of "dengling reference".

We are confident that a programmer when allowing the use of pro-
grammed secure deallocation will be able to perform an efficient sto-
rage management by conscious deletions of useless objects. Therefore
in most cases the time consuming garbage collection mey be omitted.

Acknowledgement

The suthors are very grateful to Tomasz Muldner for many useful
comments and for careful reading of the manuscript,

80

References

[1] Bartol W.M. "Ihe definition of the semantics of some instruc—
tions of a block atructured language with type prefixing.",
manuscript, 1980,

21 Berry D.M., Chirica L., Johnsten J.3., Martin D.F, and Sorkin A.
T "Pime required for reference count menagement in retention
block-structured languages,™ Part 1, Int. J. Comp. and Inf,
Seiences, Vol.7, No.q (March 1978), pp.11-64.
3| Bobrow D.G., Weghreit B. "4 model and stack implementation of
multiple environments", Comm.A.C.M., Vol.16, No,10 (Oct.1975),
DP. 591~603.

[4] Dahl O-J., Myrhaug B., Nygaard K., "Simula 67 Common Base Langu-
age", Norwegian Computing Center 1970.

[5] Dahl O-J., Wang A., “"Coroutine sequencing in a block structured
enviromment™, B.I.T. Vol.11 (1971), pp.425-549.

6 | Dijkstra E.W,, "Recursive programming”, Numerische Mathematik 2,
vol.2 (1960), pp.312-318.

27 Gries D., "Compiler construction for digital computers.”

New York, Wiley 1971.

