
IEEETRANS. SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 1

On ”alien call” protocol of remote procedure calls
and on connecting virtual machines into one virtual

supercomputer
Bolesław Ciesielski, Grażyna Mirkowska, Andrzej Salwicki, Oskar Świda

Abstract—We present an original protocol of remote procedure
calls. It deals with active objects. Its name ”alien call” is to
underline the fact that methods of one active object can be called
from other (alien) objects. It is a protocol since the execution of
the callee’s method is done in cooperation with the thread of
caller. Each active object may be a client (caller) and a server
(callee) too. The remote procedure calls may act as rendez-vous
of two active object or as interruption of the callee’s thread.
Methods can change their character dynamically from private to
public to private...
The second part of the message tells that by establishing connec-
tions among virtual machines one can quickly and efficiently
construct a (virtual) distributed computer. As a consequence
our model applies to concurrent programming as well as to
distributed programming. Moreover, many mixed models ofpro-
gramming are easy to realize. Suppose that we have accounts
on three computers. One can allocate four active objects on
computer A, three active objects on computer B and 7 active
objects on computer C. All of them cooperate not knowing where
its partners are alocated. Modifications of the configuration can
be done in couple of minutes.
These concepts were validated in Loglan’82 object oriented pro-
gramming language. They have however a general and universal
character.

Index Terms—concurrent execution, distributed execution,
object programming, remote procedure call, parallel virtual
machine,

I. INTRODUCTION

We present an original protocol of cooperation among active
objects. It distinguishes from the other approaches: monitors,
rendez-vous, message passing. All these mechanisms can be
easily defined by the proposed protocol.

The ideas we present are of general and universal char-
acter. They may be adapted in various environments. The
methodology of programming active objects ... was validated
by an implementation in Loglan“82 programming language.
Consequently the examples will be given in this language.
Those who prefer the jargon of C++, Java, C# etc. may wish
to consult the web page where the same examples are written
in pseudo-Java code.

II. TERMINOLOGY

Before going into details we need to fix the notions.
active object – an object with a list of instructions to be
executed, see thread,(note, a regular object has nothing
to do)
thread – it is sequence of instructions associated with an
object, in Java, Thread is the name of a class such that

any object instanceof Thread has a seqence of instructions
to be executed,
specification of method – it is what in other places peo-
ple call a heading of the method i.e. a list of parameters
and their types and the type of result,

III. ASSUMPTIONS

We assume that programs and systems of programs are
written in one object-oriented programming language L. Next,
we assume that the language L admits one predefined class
process (The name is of no importance. call it thread if you
wish so) The objects of this class and of classes derived from
it will be called active objects. Each active object o has the
following properties:
• object o has a thread i.e. a list of instructions to be

executed,
• object o is either in passive state or in active state,
• the object may enter an active state (In this state the

instructions of the thread are executed concurrently with
the instructions of other threads. The main program is
also a thread.)

• the active object may enter a passive state. In a passive
state only ...(e.g. when the command suspend() is exe-
cuted),

• each method of the object is either enabled or disabled.
Initially all the methods of any active object are disabled.

• instruction enable 〈list of methods〉 causes that all the
methods from the list become enabled. (One may believe
the enabled methods are public.)

• instruction disable 〈list of methods〉 causes that all the
methods from the list become disabled. (Analogously, one
may believe the disabled methods are private). The status
of a method may change from disabled to enabled to
enabled ...

• instruction accept ...
• alien call instruction –

The effect of synchronized alien call

〈 call X.m(arg1, ..., argn)︸ ︷︷ ︸
in caller Y

‖ accept m︸ ︷︷ ︸
in callee X

〉.

One should conceive as a one instruction executed jointly by
both processes X and Y .

IV. SCENARIO OF ACTIVE OBJECT

CREATION of an active object:
Elaboration of the object expression new

IEEETRANS. SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 2

MyProcess(parameters) returns an object o of
type Myprocess. Hence, the execution of the assignment
instruction

z := new MyProcess(parameters)

leads to a new configuration where, the set of existing objects
is augmented by the object o, object o is the value of the
variable z. One may say also, the object o is pointed out
(is referenced to) by the variable z. Remark, the object may
be allocated on one computer and the variable z may be on
another computer. An active object o after it has been created,
remains in the state PASSIVE. Another active object, owner of
variable z, such that the value of z is the object o may activate
the . Object o of name z becomes ACTIVE when another object
executes the command resume(z). An active object may
execute command suspend() and enter the state PASSIVE.
TERMINATION: an active object may reach the end of its
thread, for example it may reach end Myprocess. In this
case the active object is killed and deallocated. For the object
cannot be activated again and its resources being private will
never be accessible from outside.
AWAITING – an active object may enter the state AWAITING
if it awaits for a partner object to jointly execute a procedure
instruction. It happens if either the current object begins
execution of alien call of a procedure or if the object begins
execution of the instruction accept (see below).

new MojProc(65, ...)

x:=

Initialization
return {MASK=∅}

Passive

resume(x)

Active

enable p:: MASK := MASK ∪{p}
disable p:: MASK:= MASK – {p}
return disable ...enable … ::

call y.p(...)
accept q

between consecutive instructions; ::
 check if some object calls

Fig. 1. The scenario of active object

V. ALIEN CALL PROTOCOL

We shall illustrate the protocol by a series of pictures.

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 accept metoda

call y.metoda()

Fig. 2. Protocol of alien call part1

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 call y.metoda(...)

 {metoda ∉ MASK}

A
W
A
I
T
I
N
G

Fig. 3. Protocol of alien call part 2

VI. PROPERTIES

In this section we attempt to describe the properties of active
objects from the point of view of a user.

P1 An active object is created and memorized when an
assignment instruction z:=new Myprocess() is ex-
ecuted. Note, creation of an active object without as-
signment has no sense, for the newly created object will
become a garbage immediately.

P2 The newly created object will be allocated on a computer
indicated by the value of the first parameter. The value
0 tells that new active object will be allocated and run
on the same computer (concurrency).

P3 Mutual exclusion. If several active objects simultane-
ously execute alien procedure calls of one active object
o (a callee), then only one at the time may execute it.
The following algorithmic formula expresses the mutual
exclusion of n parallel alien calls. The formula abstracts
from the possible other threads.
� ‖ni=1 [o.mij ;Ri]α⇔∨n

k=1 � o.mkj
; [‖ni=1,i6=k [o.mij ;Ri] ‖ Rk]α

The expression o.mkj denotes the body of the method

IEEETRANS. SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 3

new
MojProc(65, ...)

new
MojProc(125, ...)

x:= y:
=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 accept metoda

During execution of instruction accept: MASK (of thread y) := MASK∪ {metoda}.
While no active object execute instruction „call y.metoda;”, active object y is awaiting.

A
W
A
I
T
I
N
g

Fig. 4. Protocol of alien call part 3

new MojProc(65, ...) new MojProc(125, ...)

x:= y:=

Initialization Initialization
return {MASK=∅} return {MASK=∅}

Passive Passive

resume(x) resume(y)

Active Active

 call y.metoda(...)

 {metoda ∈ MASK}

 an instruction;

 next instruction;

Asynchronous case: when active object x calls metoda in y and metoda ∈ MASK, the thread of active
object y is interrupted, object y executes method metoda and returns to its own thread.

Fig. 5. pProtocol of alien call part 4

m in object o, modified by the actual parameters.
P4 Dynamic public/private methods. Each method of an

active object may be public in one moment and private
in another one. A method m is public when its name
is in the MASK of the object, when its name does not
belong to the MASK, the method is private.

P5 When one active object calls a method m of another
active object and the method m is in the MASK then we
have an effect of interruption. The callee interrupts its
own work and executes a service for the caller object.

P6 When one active object calls a method m of another
active object and the method m is not in the MASK and
the callee executes the instruction accept with the name
m on the list, then we have an effect of meeting. The
caller object and the callee object meet and execute the
called method jointly.

P7 Each active object may be once a client calling a pro-
cedure in a remote active object and in another moment
it can be a server, ready to serve one of its procedures
to other active objects.

P8 Distributed concurrency is true fair concurrency.

The programs like [p:=false ‖ while p do x := x+1]
always terminate.

VII. EXAMPLES

We begin with an example showing a couple of threads
printing in the screen.

Listing 1. Three not synchronized processes print on screen
program f i r s t ;

u n i t w r i t e r : p r o c e s s (node : i n t e g e r ,
s : s t r i n g) ;

v a r i : i n t e g e r , A: a r r a y o f c h a r ;
b e g i n

A := unpack (s) ;
r e t u r n ;

f o r i := lower (A) t o upper (A)
do

w r i t e (A(i)) ;
od

end w r i t e r ;
v a r w1 , w2 , w3 : w r i t e r ;

b e g i n
w1 := new w r i t e r (0 , ” a a a a a a a a a a a a a a a a ”) ;
w2 := new w r i t e r (0 , ” bbbbbbbbbbbbbbbb ”) ;
w3 := new w r i t e r (0 , ” c c c c c c c c c c c c c c c c ”) ;
resume (w1) ; resume (w2) ; resume (w3) ;

end

Perhaps you guessed the image on the screen shows a
mixture of letters ’a’, ’b’ amd ’c’. This is so because the
threads w1, w2 and w3 compete for the screen – their
common resource. Our next example shows how to de-
fine a semaphore, the tool for synchronization of processes.
A semaphore s is an active object with three methods:
pass, free and fin. The methods have empty bodies. The
thread of the semaphore s repeats instructions accept
pass,fin; accept free, fin; until one of clients
execute the command call s.fin. If all clients follow
the same scheme call s.pass; critical section;
call s.free, then no interleaving of commands of critical
sections is posible.

Listing 2. Implementation of semaphores using the alien procedure call
program Second ;

u n i t b ina rySemaphore : p r o c e s s (node : i n t e g e r) ;
u n i t p a s s : p r o c e d u r e ;
end p a s s ;
u n i t f r e e : p r o c e d u r e ;
end f r e e ;
u n i t f i n : p r o c e d u r e ;
b e g i n

b o l := f a l s e ;
end f i n ;
v a r b o l : b o o l e a n ;

b e g i n
b o l := t r u e ;

r e t u r n ;
e n a b l e f i n ;
w h i l e b o l do

a c c e p t p a s s ;
a c c e p t f r e e

od ;
end b ina rySemaphore ;

u n i t w r i t e r : p r o c e s s (node : i n t e g e r ,

IEEETRANS. SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 4

nr : i n t e g e r , s : s t r i n g , sem : aSemaphore) ;
v a r i : i n t e g e r ,

A: a r r a y o f c h a r ;

u n i t f i n : p r o c e d u r e ;
b e g i n
end f i n ;

b e g i n
A:= unpack (s) ;
r e t u r n ;

c a l l sem . p a s s ;
f o r i := lower (a) t o uppe r (a)
do

w r i t e (a (i)) ;
od ;
w r i t e l n ;
c a l l sem . f r e e ;
a c c e p t f i n ;

end w r i t e r ;

v a r s : aSemaphore , w1 , w2 : w r i t e r ,
i : i n t e g e r ;

b e g i n
s := new aSemaphore (0) ;
resume (s) ;
w1:= new w r i t e r (0 , 1 , ” a a a a a a a a a a a a a a ” , s) ;
w2:= new w r i t e r (0 , 2 , ” bbbbbbbbbbbbb ” , s) ;
w r i t e l n (” p r e s s E n t e r ”) ;
r e a d l n ;
resume (w1) ;
resume (w2) ;
c a l l w1 . f i n ; c a l l w2 . f i n ;
c a l l s . f i n ;

end Second

The following example is more interesting. We shall analyse
it more closely.

Listing 3. A spooler
u n i t queue : c l a s s (t y p e e l e m e n t ; s i z e : i n t e g e r) ;
(∗ The a u x i l i a r y c l a s s i m p l e m e n t i n g

queues wi th a l i m i t e d c a p a c i t y .
The c l a s s i s p a r a m e t e r i z e d by t h e e l e m e n t
t y p e and t h e maximum queue s i z e ∗)

u n i t i n s e r t : p r o c e d u r e (e : e l e m e n t) ; . . .
(∗ i n s e r t e l e m e n t i n t o t h e queue ∗)

u n i t d e l e t e : f u n c t i o n : e l e m e n t ; . . .
(∗ remove t h e f i r s t e l e m e n t ∗)

u n i t i s e m p t y : f u n c t i o n : b o o l e a n ; . . .
(∗ check i f t h e queue i s empty ∗)

u n i t i s f u l l : f u n c t i o n : b o o l e a n ; . . .
(∗ check i f t h e queue i s f u l l ∗)

end queue ;
. . .
u n i t s p o o l e r : p r o c e s s ;

v a r
Q: queue , (∗ queue o f f i l e s ∗)
f : f i l e n a m e ,

u n i t p r i n t : p r o c e d u r e (f : f i l e n a m e) ;
b e g i n

c a l l Q. i n s e r t (f) ;
i f Q. i s f u l l
t h e n

r e t u r n d i s a b l e p r i n t
f i ;

end p r i n t ;

b e g i n
Q := new queue (f i l e n a m e , 5 0) ;
r e t u r n ;
do

d i s a b l e p r i n t ;
i f Q. i s e m p t y
t h e n

a c c e p t p r i n t
f i ;
f := Q. d e l e t e ;
e n a b l e p r i n t ;

(∗ send t h e f i l e f t o t h e p r i n t e r ∗)
. . .

od
end s p o o l e r ;

Two questions arise:
1) Suppose several active objects simultaneously require

printing by executing
call s.print(f) ‖ call s.print(f’)
commands in two objects p and q. Can we assure that
no request will be lost or improperly queued?

2) Suppose that the spooler takes a file from the queue to
be sent to a printer and simultaneously one or more pro-
cesses require printing of their files. Can we assure that
files will be printed without interleaving their contents
and in proper order?

These questions find the following answers.
Lemma
No request will be lost and the requests will be handled as
first-in first-out policy requires.
The positive answer to the first question is founded on the
alien call protocol. For it will be impossible that two activation
records of procedure print coexist. ROZWINAC?? As concerns
the second question: it is sure that the operation Q.delete will
not interfere with any operation Q.insert. It is so because
we disabled the operation print before attempting to execute
operations delete and isempty.

VIII. A THESIS ON ALIEN CALL

Thesis
Any known mechanism of synchronization and/or communica-
tion is expressible in terms of alien call with low cost.
We can not prove the thesis. Instead, like in the case of Church
thesis, we can present numerous arguments witnessing the the-
sis. Our proof is by natural induction instead of mathematical
one. Semaphores.
Critical regions, ‖ Monitors. ‖

IX. DISCUSSION

Semaphore, critical regions, monitors, ... all tools of con-
current programing are efficiently definable by alien call. Also
all concepts known in distributed programming like space of
tuples(LINDA), cooperation of sequential process in execution
of assignment instructions (CSP), cooperation of two tasks in
execution of a piece of code(ADA), message passing etc. are
defined by alien call easily and efficiently. Comparison with

IEEETRANS. SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2025 5

CORBA. CORBA[?] is a methodology of coupling object built
in various programming languages and residing on different
computers. CORBA has to deal with many problems: one,
the internal presentation of objects may vary, second, objects
should present its methods to any other object – and there are
different formats of specification of the methods.
Java RMI: is similar to CORBA with one simplification. In
Java RMI all objects are defined through some Java classes.
All objects have the same, uniform format. The remaining as-
sumption of CORBA are retained. Namely, the communication
is to be established between objects of unknown classes. The
RMI requires many preparatory stepslike: creation of stubs
and skeletons of classes. We aknowledge that there is some
progress: the stubs and skeletons may be produced by the javac
compiler meking an additional compilation by rmic compiler
not necessary. However the methodology of Java RMI remains
heavier than necessary.
In our proposal we stress that a distributed application is one
program with perhaps classes distributed over network. Hence
the compiler may perform the static semantic analysis of a
program without difficulties. We propose to avoid marshalling
of object over network as much as possible. We accept the idea
of transmitting a clone of an object to another active object,
but the class of active objects of a distributed program

X. A CONJECTURE

We do not know whether the alien call protocol may be
efficiently implemented in Java, C#, or a similar programming
language. It seems that when an object o is runnable and
executes instructions of its thread then no method of the object
o can be called from another thread and executed. Any answer,
whether a positive one or a negative one will be appreciated.
The author of the answer will gain a prize of a box of wine
or its equivalent. The precise formulation requires some space
and consists of an interface and an example.

A. Specification
We ask whether it is possible to declare a class implement-

ing the interface given below. Observe that the comment makes
an integral part of the specification.

Listing 4. Specification of Active Objects
i n t e r f a c e A c t i v e O b j e c t s

e x t e n d s Runnable {
/∗ i n i t i a l l y , a new A c t i v e O b j e c t i s

p a s s i v e , t h e s e t o f Enab led
methods i s empty . ∗ /

/∗ methods c h a n g i n g s t a t u s ∗ /
vo id resume (Spec i f iAO o) {}
vo id s t o p () {}

/∗ t h e i n s t r u c t i o n s t o p hangs t h e
e x e c u t i o n o f t h e t h r e a d ,
t h e i n s t r u c t i o n resume (o) resumes
e x e c u t i o n o f t h e t h r e a d o . ∗ /

/∗ methods c h a n g i n g Mask ∗ /
vo id e n a b l e (S t r i n g m) {}
vo id d i s a b l e (S t r i n g m) {}
/∗ methods o f c o l l a b o r a t i o n ∗ /
vo id a c c e p t (S t r i n g m) {}
vo id a l i e n C a l l () {}

/∗ Let A c t i v e O b j e c t s be a c l a s s imple−

ment ing t h i s s p e c i f i c a t i o n .
Le t P be a c l a s s e x t e n d i n g

t h e c l a s s A c t i v e O b j e c t s .
Le t o be an a c t i v e o b j e c t o f

t h e c l a s s P .
C o n s i d e r t h e i n s t r u c t i o n s o f t h e t h r e a d o .

A) t h e e f f e c t o f e n a b l e : t h e methods m of
t h e t h r e a d become e n a b l e d .

Enab led := Enab led + {m}
B) t h e e f f e c t o f d i s a b l e

Enab led := Enab led − {m}
C) t h e e f f e c t o f a c c e p t

The i n s t r u c t i o n a c c e p t w i l l be e x e c u t e d
i n c o o p e r a t i o n o f an i n s t r u c t i o n o f

a l i e n C a l l , s e e t h e p o i n t E .
I t means t h a t a n o t h e r a c t i v e o b j e c t o f
a c l a s s d e r i v e d from A c t i v e O b j e c t must
b e g i n t o e x e c u t e

a l i e n C a l l (o , m, params)
D) t h e e f f e c t o f an a l i e n c a l l

D1) t h e o b j e c t o
must be i n s t a t e Act ive ,

t h e method m must be Enab led .
E) When a rendez−vous o f two A c t i v e O b j e c t s

i s r e a c h e d t h e n
e1) t h e p a r a m e t e r s o f a l i e n c a l l o f t h e

method m a r e t r a n s f e r r e d t o t h e o b j e c t o ,
e2) t h e c a l l e d o b j e c t o e x e c u t e s t h e me−

t hod m wi th wi th t h e a c t u a l p a r a m e t e r s
o b t a i n e d from t h e c a l l e e o b j e c t .

e3)
F) Asynchronous a l i e n c a l l

When a c a l l e r p r o c e s s e n c o u n t e r an a l i e n
c a l l i n s t r u c t i o n and t h e c a l l e e p r o c e s s i s
a c t i v e and t h e method i s e n a b l e d t h e n t h e
c a l l e e i n t e r r u p t s t h e e x e c u t i o n o f i t s
t h r e a d and e x e c u t e s a l i e n c a l l i n s t r u c t i o n
− s e e E)

∗ /
} / / end of i n t e r f a c e

B. example

kjfkjsfjf Benton, Cardelli, xxx Modern concurrency abstrac-
tions for C#

Journal ACM Transactions on Programming Languages and
Systems (TOPLAS) TOPLAS Homepage archive Volume 26
Issue 5, September 2004 ACM New York, NY, USA table of
contents doi¿10.1145/1018203.1018205

