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6 Dlagra.ms of formulas
" e In this section we shall ‘consider another axiomatization of the set
of. tautologies of the algorithmic language #. We shall follow Gentzen’s

ideas. At first we recall some auxiliary notions. <
~ DErFmNimion 1. Let-I;, I', denote finite sequences (the empby sequence
- s admltted) of formulas in %, Every expression of the form I', - I,
= will be called a sequent.
- .. A sequent 8 of the form a;,...,a, = f1, ..., B I8 called tndecom-
" posable it and only if every formula o, 8 (¢ =1,...,m, § =1,...,m)
is a propositional variable or is of the form g(zy,...,7,) where 7, 7.
. DEFINITION 2. A sequent § is said to be an axiom if and only if there
~ exist indices ¢ and j (1 << n, 1< j < m)such that o; and §; are iden-
tical, or if L e {8, ..., B} or 0 {ay, ..., a,}.
- DEFINTTION 3. By a scheme of inference we shall understand a pair
{8, 8¢} of sequents, a triple {§, 8,; S;} or.an enumerable sequence of
. sequents {8, 8y; 84; 8 ...}. Such a scheme will be written in the form
S 8 8
or or

e S—o_ So; 8y {Si}isf .

- The sequent § 18 called the conclusion; the sequent 8, in the first
- case, 8, §; in the second, and 8, S,, ... in the third case the premises.

) % The paper i a continuation of Algorithmic, logio and ils applicalions in the
. theory of programs I, Fundamenta Informaticae, this volume, pp. 1-17. All unex-
| “'I-.pla.med. nohona and denotations can be found there.
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S ]'.n the sequel we sha.ll cons1der three g'roups of schemes: = -~ ,
< G'roupI o . : - .
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oA ————— 1B —_—
T 8 i Lyspagy Iy Iy > Ty Iy =8y oo 851800, Ty T
{ogg s Ty)y L3 = Iy OB— L= 0y 80(715 00 1), s
‘ 3%(9('-'71: Tn)) Purz—"'rs . F.‘*SX(Q(TU---: n))! I_'z,
34 I,s Ta, P2—>P3 3B Iy Iy,8 Ha, Tl
Iy, Iy ~sa, I : Iy, 80 > Ty, Iy
Ay, 8{anp), I'y > Iy 5B Iy > I3, 8(aUB), I's
sa,8f, I, I3 > I Iy >sa,88, 1%, Iy
7 ' ' 6B > Ty, 8(a = 8), I
sa, Iy —sf, Iy, I
Pl’smKﬂ,Pz‘—)‘Ts SB I’1+Fz’sUKa’F3

1A
- L s\ EB(Ka), I'yy8a, Iy > Iy ; I —>s| JE(Ka), I, 8a, Iy

I'yys(o[KM]e), I'y > I'y Iy = Iy, s(0[KM]a), I'y

N K (M), Iy, s > T B N S E (), Ty T
104 |  10B |
Iy, 8(v[0EM]a), I > T} Ty — Iy, 8(x [8E M1a), T
s((8nKa)yu (180 Ma)), Ty, Iy — Iy Ty — s((6nKa)U{ 160 Ma)), Ty, I
11A | 1B .
Iy, 8(x[0K]a), Iy - Iy C Iy > 1y 8(x[6K]a), [y-

sl v [JK[]] dna), I, Iy >y Il —>sl v [5K[]](_[5ha),f'2,_113
Group II
Iy, 8(auf), I'y > Ty | iB Iy =1y, e{anf), Iy
sa, Iy, Iy = Iy; 88, 'y, Iy » Ty Ty —»>sa, Dy Iy I'y =88, gy Ty
Iy, 8(e 2> 8), s =Ty
111,1-' %Sa Fa,Sﬁ,Fl,I' "‘)'113
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- Group ITT N o
I’l,sUKa,F = . Iy — Iy s\ Ka, Iy
{3 K‘a), Iy, I'a'}Pa}iew‘ {I'1 > s(KE'a), Iy, Tskienr

—Th all ‘the above schemes I3, I'y, I'y denote any sequents, s denotes any
‘séquence of ‘substitutions, K, M — any programs, and a, §, 6 any for-
mu]as such that o, e FSF, de P,



EFINT.TION 4 By a dwgmm of @ formula Gy WO ghall mean an ordered
- paar (9, @) where 2'is a tree and 4. is"a mapping which to every element -
"ot‘ the Trée assigns a certain Tonempty -sequent. The tree @ and the
' mappmg d are defined by induction on the level I of & as follows:
R N if } = 0 then the only element of this level is @ and d(@) is equa.l-
. to the sequent — a,. ,
o Suppose that we have defined all the elements of the tree 2 up to
the Jevel not: hlgher than n. Now we define the elements of the level n+1.
1‘I Let € = (iy,...,%,) and let the sequent d{c¢) be. defined; :
9. if. d(c) is an indecomposable sequent or an axiom then none of
the elements ¢/ == (iy; .-y tny k), k € 4" belongs to Z; ¢ and d(c) are called
. the- e'nd-elemmt and the end-sequent of the tree Z;
3 ‘the sequent d(e): I' - V is nelther indecomposable nor an axiom.
We consider. two cases:

7 Case 1: m is an even number.
A If the ‘sequence V conta,lns only atomic formnlas, then

*D:

(""11---1%7 0)e 2 and d("‘l:- oy bay )—'d(c)1

Bl If ¢ is the first on the right-hand side nonatomic formula in V,
~ then we consider different forms of the formula a:

- 1. if the sequent d(c) is the eonelusmn in the scheme of the group
IB, then (iy, ..., %, 0) €2 and d(@l, ;s ,0) is equal to the only premlse
_ Jn this scheme;

2. if the sequent d(c) is the conelnsmn in the scheme of the group

IIB, then (zl, ceeyin, 0) and (24, - , 1) belong to 2 and d(iy, ..., sy 0);

-~ @84y «aeyty, 1) are the firgt and the second premise in the scheme;

3. 1f the sequent d(e) is the conclusion in the scheme of the group_
: HIB then (4ys...,,, k) are in P for every ket and d(zl, Ty 1)
.18 the Lth premige in this scheme.

" Case 2: m is an odd number.

o Points A and B in the above definition have to be changed as follows:

- the sequence V is replaced by I" and the groups IB, IIB, IIIB by LA, IIA,

- From this definition it follows immediately that for every formula
- its ‘diagram is defined in sn unambigous way.

. Let I be a sequence i ---; ¥n then by A I" we shall nnderstend
the formula (y;n (720 .. ('yn_l Aya)...)) and by V I' —the formula
v (2 «v (PpoiUpn) -o- )) If I'is the empty sequence, then A I" denotes
any valid formula and V I' — any false formula. '

- oo /I8 Is a sequent of the form, 1‘ — I'y then by dg we shall denote the

formula '/\ I = V 1"2
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| LEMA 1, For every reahzatzon B of the language & amd for evary -
; mluatzon v the fouowmg conditions hold: -

SR 1:°4f {8, .8’0} is @'scheme of inference in the group 1, then

Ssp(v) = 5,2 (V)3

2. % {S 8y; 8.} is & scheme of inference in the group II, then

' Ogr(v)} = dg,R(V)A 85 (v);
8. if {8, So; 8u;...} is a scheme in the group III, then

6sr(v) = g. 1. b. (5313(1’))&#

Luvma 2. A formula a, is a tautology if end only if the dmg? am of Qo
zs fzmte and every end-sequent is an axiom.

Proof: Let (2, d) be the diagram of the formula a,.

Part one of the proof. Let us assume that (9, d) is finite, i.e., 9 is
finite (see Definition 3 in §5), and all end-sequents are axioms. Note
that if § is an axiom (see Definition 2) then for every R and for every -
valuation » we have dgp(v) = 1. Suppose that for all elements 6 = (g, ...

cvy BnyJ) OFf the level n1+1 we have Oy, (v) =1, Leb ¢ = (4, ..., 4,);
then ¢ is not an end-element of the tree &, so d{c) == 8§ is the conclusion .
in a seheme of inference. o

1. I §is $he conclasion in & sehenie of the group I, then by Lemma 1
we have dgp(v) = dg(v) where 8" = d(c¢’) and 80 dgp(v) = 1.

2. If 8 is the conclusmn in o scheme of the group II, then the tree
contains ¢’ = (i, .. ns 0) and ¢’ = (iy,...,14,,1). By Lemma 1 wo
have dgp(v) = ad(c)R(w)A daremyp(0). Bince 1 = &y, (v) = Ogemp(?)y We
have dgp(v) =1

3. I 8 is the conclusion in a scheme of the group ITI, then 2 contains
all elements of the set {81y +-vs %y Jljesr- By the mductwe assumption,
Og,r(v) =1 for §; = d(iy,...,4,,4); and so, by Lemma 1, dgp(v) = 1. .

We have thus proved that if ¢ is an element of @ and § = d(e¢), then
_ 8gp{v) = 1 for every realization R and any valuation v. Hence -a, is a-taut-
ology in algorithmic logic.

© Part two of the proof. Let us suppose that a, is a tautology and the
: diagram (2, d) of the formula a, is finite, and. assume that there exists
an end-sequent 8 that is not an axiom. Since § is an end-sequent, § iz
mdecompoaable Denote by P the set of all formulas that oceur in the
predecessor and by N the set of all formulas that oceur in the suceessor
of the sequent §. Now we shall define a realization R, as follows:

1 i elry .y m)el,
0 if ofry,...,7)el;

'/’Ro(fh ceey Tp) = (71, ceey Tn) .

o
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: .'-jf'oi'. .I,e'v‘er'yza n-argument 'pfediéate Q.E_P‘.n -and every n;amgument functor
' ‘p.e @, and for any terms Ty, ..., % in the seb T. S .
--——finicé the sets P and N are.disjoin, R, indeed defermines a realization
- 'of the language %. Let ¢ denote the valuation defined as follows: :(») = @

~for x € V;, and for every a eV,
for acecP,
for a¢P.

By the definition of Ry, dgp (1) = 0. Let d(¢) = S and let @ be a branch
* guch that ¢ e@. By Lemma 1 for every sequent 8§ = d(¢’) where ¢’ €@
" we have dgz(:) = 0. Since @ e G, then ayg (1) = 0, which contradicts our
" afsumption that-a, is a tautology.
 Part three of the proof. Let (2, d) be the diagram of the formula
a.and let @ be its infinite branch. We shall prove that « is not a tautology.
Denote by- N the set of all formulas that occur in. the succesgors and by
 P.the seb of all formulas that occur in the predecessors of all sequents
- 8 = d(c) where ¢ e@. Let 7% denote the set of all atomic formulas from
the set PUN. Jf o ¢ F* then a e P—N or a e N—P, since in the opposite
case we could find a sequent S such that a is in the predecessor and in
the successor of §,i.e. the sequent 8 is an axiom and the branch @ is
finite. Let R, be a realization of the language % in the set of all classical
terms T and in the Boolean algebra B, such that E, agsociates to every
m-argument functor ¢ an m-argument operation @g, in T, or(tas.--
ey Tp) = @{Tyy .-y Tn)y 20d tO oVETY n-argument predicate ¢ the character.-
istic function of an n-argument relation gg,,

P ) ' 3 1
’ - e} = 0

1 it olry,..ryTa) €L,

Tiy snvy T =
0y (T1y -5 Ta) \0 otherwise.

Lt ¢ denote the valuation such that :(x) = « for # € V; and

1 if ach,
t{a) = . ) for all a € V.
0 in opposite case;
'-,S'ee. that for every reT, zg (i) = 7. We shall prove now that for every-
a e PUN we have ‘

1 i eelP,

e .aR"(L):lo if ael.

The proof is by induction.
" Pirst we formulate

_ DermvrzioN 5. Let us consider the set of pairs (ay, as), Where aj,
a, & FPAF such that e, is identical with a, or the pair (ai, e,) i8 of one of
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1((81 .é;_,g(t,_,_, vy r,,,)), (.81 e Sp1850(Tay ooy 73))) T E T, i=1, ..)._,“'n,

:--’i'i-j;‘?,ﬁ‘:fl:(sg'("ri, ey Tn)s SX(Q(TH ey Tn))) T € FSJT—"Ta t=1,..,mn,
3. (s T18,38),

43‘(3(?Uﬁ)3 '5'7’)7 4b. (3(7,Uﬁ): Sﬁ):
 Ba. {srnf) sy), 5b. {s(ynf), 5p),
; 63‘-(3(7’ :'"ﬁ)‘) 5'}’)’ . 6b. (3(7’ = f), sﬁ)s
7. (s(o[EMB), s (K (up)),
& (s(x [BEM]y), s(fr Ky)), 8b. (s(v[BEM]y), s(18n My)),

L (e%([yE1B), s(x[yE[ I'B), i e,

101(3UKI33 S(Eﬂ)), et

118, (s(VEB, s(E*B)), i e,

- where as usual K, M are programs, #, y are formulas and s is a fequence
of gubstitutions s, ... s, ke, '

By > we shall denote the trangitive closure of the 8ot defined above,
If'a> f, then we shall say that g is submatted to the formula a.

Let us notice that the binary relation > is an ordering in FSF with:

- the minimality property, i.e. any subset Z of formulas, Z < F8F, contains
a minimal element. : 8 .
Oome back to the proof of condition (1). I ¢ i3 an atomic formula,
then by the definition. of realization R, and valuation s, (1) holds,
~ Let a be an arbitrary fixed formula and assume that (1) holds for
-all formulas that are submitted to the formula a. We have to prove that
- (1) holds also for a. We shall consider only some of the forms of the for-
- mula a. The proofs in other cases are similar. T
© 1. H a iz of the form 81-:.80(71, ..., 7,), then by the scheme of
inference 1A the formula 8 =5, ... 5;_,5,0(7;, ...y T,) belongs to a se-
quent of the branch &; moreover if ¢ ¢ P then 8 e P and if a € N then
‘deN. So by the inductive asgumption, ¢ being submitted to a, we have

1 if ecP,
0 if geX.

“Ru(") =

2. If the formula ¢ is of the form s ~18, then the formula $8 belongs

~ to N, provided: a belongs to P, and sg belongs to P, provided a belongs -

to . Bince sf is submitted to a, by the inductive assumption we have (1).

- 8a. If the formula o is of the form s(v [fEM]y), then: S

if aeP then at least ome of the following - formulas s(fn Ky),
(7180 My) is in P; | |

- if a’e N, then both formulas s(fnKy), s( " B My) are in N.



Algorithmiq ogio’and s applioations 11 | © 163

7By :the inductive assumption we have (s(fnEy)g () =1 or
{s(N B My (=1 in- the first case and (s(BnEp))g (t) =0 and -
_{8(TTB0.My)R, (2):= 0 in_the second case. So (1) holds. .

10, Let a be of the form sl) Ka. I o ¢ &, then all the formulas s (E'a)
- belong. t6' N by the scheme SB. Since s(K’e) is submitted to the formula
s\JKe, we have (s{JEa)g(s) =lub. {(sE'a)p,(V}iesr =0. T acP,
- then at least one of the formulas 8(K'a) belongs to P, scheme 8A. So by
---the -inductive assumption (sl Ea)g,(s) = Lwb. (sK'a)p, 1) = 0.

"By the induction principle (1) holds for all formulas. Now, since
“ay e N, we have ag (1) =0 which contradicts our assumption that e,
. is.a tautology. So we have proved that if a, i a tautology, then the dia~
- gram s finite. m ' '

E 7. The ‘completeness theorem for algorithmicl theories

- Let 7 denote an algerithmic theory (F, €, A>.
" DEFINIIION 1. By ~ we shall denote the equivalence relatiorr in the
_get of all formulas of the language & such that a ~ f if and only if both
_fofmuilas (a = B) and (8 = a) are theorems in-7, i.e. (a<>f) is in €(L).
" TamorEM 1. For every formulas a, f o, f and for every program K, if
¢ ~va and f ~ B, then (aUf) ~ (a'UB'), (anf) ~ (a'nf)y, e~ "]d,
- Kaw~Ka',| ) Ke ~ | Ko/, () Ka ~ M Ka'. .
 Proof: The proof of the first three equivalences is similar to (101
and is omitted. The proof of the fourth is by induction on the length of
program. : :
1. Let K be an element of the set of substitutions 8. By aziom T13,
‘1 isin @(«). Since {a = o’) and (a’ = &) are theorems, then K(a' = o)
"and K (o = a') are theorems, too. By T21 and modus ponens, Ha ~ Ka'.
. . Let us assume that the theorem holds for programs M, N and any
formulas such that ¢ ~ o' '
" 2. Consider the prpgl:'a,m o[MN]. I ¢ ~ <, then by the inductive
agsumption the formulas (Nea = Na') and (Na' = Na) are in ¥(#) and
therefore (M (Nd)<> M(Nca')) is in ¥(«). By axiom T25 and = modus
ponens we have (e[ MN]a< o{MN]a').
3. Consider the program v [yMN]. If a ~ o/, then by the inductive
assumption- (Na < Na') and (Ma < Ma'). So the formulas ((yn Ma) <
- e (ynMa), ((TTyoNa) < (7] ynNa')) are in (). By axioms T2, T4
. and T26 and by modus ponens we have (v [yMN]a< ~ [y MN]a").
- 4, Tt Temains to consider the program *[yM]. Let o ~ «' then by

~ assumption (Ma < Ma'); so by 2, (M'a< M) for every ieA. By
- axioms T21, T26 we obtain. ((x [yM [ Jf(an TIp)) < (2 [yM [ I['(e"n 1))

e ‘Honce by rl and r3 the formula [J vy M[lenTy) ~
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©have #([yMla< *[yM]a’) is in (). m . .
" . ~Now.let us consider the set F'SF/~ . The set of all formulas such thaf
o ~ § will be denoted by [if]. S -
~ THEOREM 2. The algebra (FSF/ws, A, v, -, —> is & Boolean algebra
and for all formulas a, § the Jollowing equations hold:
L fallv Bl = llaugl, '
- llelialigl = llampl, .
.80 Jlell = 181 = lle = Bl
4. —lia]| = 1 Tall, e '
- lell < 18Il if and only if (a = B) is a theorem in I .
6. lal =1 if .and only if « is a theorem in the theory 7,

T. llall #0 4f and only if "a is not a theorem in 7.

JJte’n T1y) is in €(), and coﬁsequehtly (axiom T27) we

@ ho

G

- Moreover, any program. can be regarded as an operation in the algebra
FSF|~ and by means of this. operation we can define a generalized
. operation in the set FSF/~s. :

THEOREM 3. FSF |~ is a generalized algebra and Jor every.vrogram K

and every formule o
(i) Kfla|| = |Kal,

(i) Lub. (B lal)es =||U Ee

(i) gLb. (E'llal)ies = || Ea ,

Proof: By axioms. T23, T24 we have, for every natural 4, (Ko =
= {J Ka) e¥9(#) and () Ka => K'a) e 4(s/). By Theorem 2, |K'a|

.<||U Edf| and N Ed| < iB%al|l. Let us suppose that there exist for-
mulas y and § such that |K’a| < vl and ||d|| < IK*«¢|. By inference
rules 3 and r4 we have ||| K| < |yl and |8} < || Ealf. Hence | Edll

" is the least upper bound of the set {IE* all}ses and ||N) Ka| is the greatest
lower bound of the set {|K’a|}; . m ‘ .

Let 2 be the carfesian product FS x FS x F&F and let us denote
by @ the set defined in the following way: if a; = b;, = |MK'q¢|), where
¢=(M,K,q)eZ, ienand 4, = Lub. (a,).,,b, = g.lb. (b;)is, then
a, and b, are elements of the set Q. The set Q defined in such a way is
denumerable since the set of formulas in the set {M (K a)};, is denu-

. merable. Hence, by Lemma [10], IL, 9.2, there exists a Q-filter V in
FSF |~ such that V is a maximal filter and for every a,, b,e@},if a,c V

. then there exists j e.# sueh thaf 2 € V and if b, ¢ V then there exists
Jj €A such that b, ¢ V. Let & denote the natural homomerphism from
the algebra FSF/~ into the two-element Boolean algebra B,,

1 i fallev,
B(lla]) = 0 if fo|éV

’
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- DEFINITION 2. By-the camonical realization of the language 2 we
-shall mean the realization R, in the set of all classical terms 7 and in the
~~Beoleah algebra B, such that for any terms z,, re2y 7, from the set T,
 thé rvealization R, associates to every n-argument functor ¢ e @, the
. function gz such that P2y (Tay oo i3 T) = @(7y, --.y 7,), a0d 0 every n-argu-
" ment predicate g e P, the relation er, Such that op (74, ..., 7,} = k(lle(zy, ...
. wrey ?n_)”); ' L : :

T TLEMMA 1. Let V be the Q-filler defined above, R, the canonical realization

of the language & and let « denote the valuation given by

_ 1 ?’f "a” eV,
o aley,

tz) =z  for every z e V,.

Jor every a e V;

t(a)

) Then for every formule a € FSF, ag, (1) = E(jlal).
" Proof: 1. Notice that Lemma 1 holds for all open formulas (see [10]).
. Let us assume that Lemma 1 holds for all formulss that are submitted
"."to the formula « and let us consider the form of the formula o.
2. Tf o is of the form s,...s,8 where § is an atomie formula, then
(8 ... Snﬁ)Ru(‘) = (8. 3n—-13nﬁ)1'io(") = k("-?l;- 815, 80) As (8;...8, 8«
<> 8 ... 8,f8) is an axiom, 50 (s, ... 8, B)m, (¢) = R{lls; ... s, B8I).

3. The formula « is of the form s(fUy), where s is a sequence of substi-
tutions, i.e. ${fuUy) denotes the formula, (s15z ... 8,(8Uy)). By the definition
of realization and by Lemma 3.7, ary(t) = (s8)g, (¢) v (s¥)z, (1) and by

‘the inductive assumption (B, (%) = R (llsfl) and (8%)g, (¢) = R(llspil)-
Since % is a homomorphism, then by Theorem 2 and axiom T17 we have
ag,()) = Rh{lsBllv llsyl) = h(lsfusyl) = h(ls(BUy)l). Analogous consider-
ations for the formulas of the form s(fny), s(f = y), s o are omitted.

4. Let o be of the form se(r,...,7,) and let, for some 1< i< n,
7; € F8T' —T'; then by axiom T16 and by the inductive assumption we.
have

(80(T2s ooy Tallry (&) = (80 (72 + -y 7))y ()
‘ = hﬂsx(e(ﬁ, “eey Tn))” = hlso (v, ooy )l
' 6. Let « be of the form sKp where K is not o substitution. Now we
- must consider the form of the program K.- :
A. E =o[MN]. By Lemma 3.7 we . have ag, (1) = (SEB)g,(e) =
(s M (NB))p,(¢). Bub the formula (sM(Ng)) is submitted to a, so ag, (1)
= h‘(][le_\?’ﬁu). Since the -formula (SM.N‘B%(SO[_MN ]ﬁ)) is a theorem,
g, (1) = h(lls{o{ HNIB)I). | :
B. K = v[yMN]. By Lemma 3.7 we have

agy (1) = (8(y2 MB)Us( Ty NB)) g, (9)
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_' a,nd by the inductive assumptlon L w e - =
h(lls{yﬁﬂfﬂ)ll) = (s(y MB))g, (e);
L (s (TpnNBN) = (s Ty VB, (1)-
- Hence by Theorem 2 and. axiom T26
| i ag,(t) = h(lls(?ﬂMﬁjUS(_I?ﬁNﬁ)ll) = h(lisx [y MN]AN).
O K = *[yM]. It is sufficient to consider the case 6, since

ap, () = (s% [yM1B)z, (0) = (sUJ x [ML I (170 B, (0)-
6. Let o be of the form s|_J K §. By the definition ofrea,]iza,tion(seg§ 2)

ap, (¢) = (sU Kﬁ)Ro(r.) = Lu.b. {(stﬁ)RD OYser -
Now by the inductive assumptlon ag,(t) = Lu.b. (& |sE? B} and by
Cl.‘heorem 3 we have

*' ag;(8) = h{lwb. (I8 fl)es) = s U Eal) = w{lsU KﬂII)
The -analogous proof for the formula s KEf is omitted. m '

Lama 2. For every formula a ¢ FSF and for every valuation v € TV x By
there exists a substitution s, suqh that op, (v) = (sya}g, ()

Proof: Let V(a) denote the set of ail variables that occur in the formula
a, and write V(a) = {&, ..., &} \I{a;, .-+, @} Where z; eV, and a; ¢ V.
Tet » be any valuation in the set 7 and in the Boolean algebra B,.
Presume that - . n

Sy = (B 0(Z1); oy B0 (@), B1/0(A1)y oevy G [V(B)]
and SuR, (t) = 9. By def:mtmn b{w;) = (@, )z, (¢). Since v(z;) is a classical
ferm, ”(%)RD(G) = 9(#;). This implies that the valuations v and ¢ are
indentical on the set V(«). Thus GR.,(’U) (s,,a)Ro(c) m
DEFINITION 3. A realization R of the Ianguage & is a model for the
theory I = (¥, ¥, o) provided R is a model for fthe set & of specific
axioms of 7.
DEFINITION 4. The theory (&, %, is consistent if and only if there
-exists a formula a such that a ¢ ¥ (). 4
TaroBEM 4. The canonical realization B, is o model for any conszstent
theory T =<K%, €, o).
Proof: Let a ¢ #{sf); then by Theorem 2 el # 0. By Lemma [10],
11, 9.2 there exists & Q-filter V such that | 7all,e V. Let B, be the canonical
rea,hzatmn determined by V. If y € #(«#), then, by Theorem 2, |yl = 1.
Since the element 1 belongs to every filter, |yl e V. By Lemma 2, yry(?).
‘ (s,,y) R, (¢) for every valuation ». By rule r2 the formula (s,,'y) is & theorem
and therefore lis,¥]l € V. Since (s,7)g,(t) = 1, then yp (v) =1 for. every
‘ " valuation v and consequently. B, is 2 model for . :
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.= TrRoREM 5. -For evéry formula a in & consistent theory T~ = (£, %, )
. ihe. following conditions are eguivaleni: - ¥ . L
TUTTY w48, @ theoremn in T, .
(i) o is valid in every semantic model for 7.
7 ;Proof: (i) implies (ii) by Lemma 2 in §5. . ;
| YLet us suppose that a ¢ #(«#). By Theorem 2, || lal # 0. Now, by
- Lemma [10], II, 9.2 there exists a @-filter V such that | 7Jal € V. Let
us' congider the canonical realization R, determined by the @-filter V.
- By Lemma 1 we have Tag,(8) =1, where ¢ is the identity valuation
- for all individual variables and i(a) =1 itf |la|| e V for all propositional
- watiables. Thus R, is not a model for o, while by Theorerm 4, R, is a model
- for 7. This contradiets (ii). m
7 :The;fbnowing theorem corresponds to the lower Skolem—Loéwenheim .
thieoremn in the classieal logic.
T-. THEOREM 6. If the theory I~ has am infinite model then it has a denu-
merable model. ‘
- Proof: Liet us suppose that 7 is not consistent. Then there exists
- a formula a such that "e and a are theorems in 7. Let R be a model for 7.
- Then ag(v) =1 and ( Tje)g(®) =1 for every valuation o. Hence, if the
_ theory 7 has a model then it is consistent. Now, by Lemma 1, the canonical
realization is a model for ¥ and it i§ demumerable. m
.- . Let us see that the second theorem of Skolem-Lowenheim is not
true in the class of all ordinary semantic models, i.e. the realization of
the equality sign is the characteristic function of the relation of identity.
One can prove that the theory with the following formulas 28 axioms

18z =0), [#/0]UI/Szl@ =), (82 =8y) = (@ = )
IS categorical, i.e. all its models are isomorphic with the standard model
for arithmetic.
At the end of this section we quote some algorithmic tautologies:
139 () Ka = K’a) for every -natural number i,
. T40 (K’a = U Ka} for every natural nuinber i,
' T4l(m Ka = | Kad, '
' T42(—1U K e = U Kd),
T43 {( Ke = "I K a),
_T44 (NEe = NE(ED),
45 (U Bl = 1N Ka),
T46 (n K e = "1U Ka),
T4 (M -EL = (TN Ka = U K71a),
o T48 (N EL = (T1U EL = () E7Na)).

i
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In the formula.s T49—T56 we\assume that V(K)n V(ﬁ) =0

— _'_T49 EE =P, : SR
156 (K1 = (8 > KB)), - o
{T61 (N K(a = B) = (U Ko = f)), .
152 (N KL = (U Ea = §) = M E(a = p))),

53 (U E(8 = a) = (8 = U Kal}, ’

T54 (M K1 = (8 = U Ea) = U BB = o)),

T55 (M Kanf) < () E(anp)),

186 {(U) Kaup) < U E(aup)),

167 (U EMN Ma = (N ¥ UKo
158 (N KN Ma = ( M) Eo); if V(M)NnV(E)=0.
759 (U EU Mae = ) M|J Ed) '

-3. Herbrand theorem

In this section we present a theorem analogous to the Herbrand
theorem in classical logic. This theorem refers only to 2 narrow class
of formmlag but it is useful in solving certain decidability problems.

Let # be a natural number, let K;, M,,+ = 0,1, ...,n, be programs
in which fhe sign = does not appear and let e belong to the set of open
formulas, TUnder these assumptlons we can formulate the followmg
theorem:

TEEOREM 1. Any formula p of the form M\JK,. MUK« s
a tautology of algorithmic logic if and only if there exists a namml number

m such that the formula (M, 02 .K;‘, - an K a) is a tautology of algorithmic '

logic. .
Proof: Let us assume that there exists a natural number # such that

the formula (M, ZK" « Ml Z’ Kl a) is a tautology in algorithmie logie.

Let B denote any reahzatlon pf the algorithmic language % and v any
“valuation. Then

(MUK, ... MUK a)e(0) = $Up ... sup(Mo K5 ... M, K} a)z(0) -]

>1lub. [( L, (M KL ... M, K a)p(0)}icm -+ Jigm = 1-
Hence the formula M JE,... M| JK,a is a tautology.
mo . m :
Conversely, let us denote by H,, the formula (M, > K} ... M, Y Ka)
i=0 §=0

-and suppose that no formula H,, for m e 4 is a tautology. We shall con-
struct a semantic réalization R, in the set of all classical terms T and
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a va.luatmn v such that (M, UK .M UK a)g, (v) =0. Let us denote
by H,; the classical open formula obtained from H,, by replacing all
" “foritlad of the form Kl ... Kira by the equivalent open formulas (see
Lemndy 3.6). Now, to every formula g(z, ..., 7,;) that ocour in any H,, we

- aspign a new propositional variable ay. .., Such that ay.,... .\¢ V(Hz)
for all m e.#. In that way we obtain a set of propositional formulas

" {Hm}men- For every m e 47, lot us denote by W™ the set of all valuations

““that do not satisfy the formula H,, restricted to the set V(H,,). Notice
that if, for some m, W™ were empty, then H,, would be a tautology and
consequently H,, would be se, too. Hence W™ is a finite nonempty set

" .and if ¢ is in W™ and m’ > m, then there exists a valuation 4 in the seb

N4 such that 8(2) = 0(2) for all z e V(H.).

_ Lét us number the elemengts of the gets W™, m e A&, by sequences
of -the form: (foy »++» %) Where 4y, ..., 4, are natural numbers, in the fol-
Iowmg ‘way: :

" (1) elements of W° are numbered by natural numbers, no matter how;
- (2) if 9y, ..., are in W™ and vy, ..., v, are all valuations that are
identical with v € W™ on the set V(H,,) and if (¢, -.., 4,) i8 the number

- of v, then v, has the namber (%, ..., ¢,, %) for ¢ < k.

The set 2 of all such sequences with the empty sequence adjoined .

_ i8-a tree (see Definition 5.3). By Xoénig’s theorem, see [4], there oxists
an infinite branch in 9. Dencte by v, the valuation such that, for every
i, v, restricted to the set V(H) is identical with the element of the set
W¢ whose number belongs to that infinite branch. For every natural
number 7 we have *

(1) | " (v) =0.

Let R, be the realization in the set of all terms 7' and in the Boolean
" algebra B, such that ¢g (v1,...,7,) = 1if and only if ay,, . . (v.) =1
and let v, bé the valua,hon such that ve(z) = xfor x € V,; and v,(a) = a(v,,)
for ¢ e ¥,. By (1) we have Hp (v} = 0 for i e A", Let mgy...,m, be

any na,hrral numbers and let m; = max({m,, ..., m,). Then
- Hm.,;Ro(vn) . - B
= (M, E ... M I a)g, (05) v (214 2 Ky... M, D K a)R (v)) = 0:
. ) . ‘l#ﬂlu z;ﬁmn
“So (M K70 ... M, K ma)p,(v) =0 and consequently fp (v,) = 0. R

Let us denote by % the class of all formulas of the form M, J K, ...
. M \JK, where K,;,, M,,c (i< n) are as above. From the theorem
just proved it follows immediately that the set of all tautologies in ¢
_is recursively enumerable. Indeed, let 8 be a formula of the elass .
By Theorem 8.1, # is a tautology if and only if there exists a formula in

<
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= which. signs of -quantifiers do not appear and which is a tautology of
+ _algorithmic logic. 80, by Lemma.3.6 we can find out an open. formula
' .Bg such that kg if and.only if k Bo:-Now, in-a finite number of steps we -
can._check whether 8, is' a substitution in a tautology of propositional
caleulus. - - S o -

As a simple generalization of Theorem 8.1 we have

THEOREM 2. Let a be any formula of the form

(N E;... \Ep MUK, ... M, UE,p),

where Ky, ..., K, My, Ry, ..., M, are programs without %, and such that
in § the symbols n, U, % do not ocour. Then a is o tautology of algorithmic
Jogic if amd only if there exist natural numbers Mgy ooy My, SUOK that the

gy n
Jormula ( ' KG ... 3 Kip) is a tautology. m
i=0 =0

9. The normal form of a program ’ : -

In the sequel we assume that in the algorithmic language % there
exists a two-argument predicate — and we restrict our considerations
to ordinary semantic realizations. We shall consider a theory 7' = (&',
%, £’> with a consequence operation defined as in § 5 and we assume
that the get of specific axioms &' includes the axioms of identity, i.e. set
&-of formulas of the form '
el. z =g,

02 (x=y >y =uxg),

‘63_(m=,y=>(y=z=>a‘;=z)),- _ :
ed. (931 = ¥iN («-.nm =9,) ) = @(Zyy eeny ) = P(Yryeeey yn))'.- ned,
b. (-'31 =%0 (... NT, = yﬂ).---) = (Q(mn ey Bp) =0y ey, yn)))!

" Where @, 4,2, %, ..., %, Y1, ..., ¥, are individual ‘variables, ¢ is an «-
argument functor, and ¢ is an w-argument predicate.-

The following theorem can be proved:

The theory 7' with equality is consistent if and only if the theory 7 =
(&L, %, o' — & s consistent. , ,

DerFInrrioN 1. Two programs K, M are equivalent in the sense of the
set of variables Z, in symbols K = M, if and only if for every realization
B and every valuation » the following .conditions hold:

(1) Eg(v) is defined if and only if M,(») is defined ;

(2) if. both valuations KHp(v) and Mp(v) are defined then for any
variable z & Z, 25(Kg(v)) = 2p(Mp(v)). : '

In the case where Z is the set of all variables in ‘the language % we

- shall write K ~ M instead of" X ~ M.
o ' Vou¥y
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it LEmIA. 1 For e'aery pz'ogm'ms K, M the followmg condat-wns are.
. equivalent:. :

'1-""'—(1) KoM
(11) Jor every term © € 8T, for every realization B and every valuation v,
“(Ee)p() = (M2)r(v); . : .

(m) for every formula a € F8F, every realization K and every valuation v,
1—;;_—’__:;__‘_ (Ea)g(v) = (Ma)g(v);

(iv) for every formuta, e e F8F the formula (Ka-#Ma) 18 a theorem
T in the theory (¥, €, &).
: LEMMA 2. For every progmms K, M we can find in a constructive way
@ ormula a! € F8F such that o’ is a tautology of algomthmzc logic if and
(mly sz ~M.
S K, M be in F§ and let us put

et

¢ = (17 1yt 30 ([ = e [ o= 0

i=1

where T - ,w,,, are all individual variables in o [KM] and al, y Gy ATO
" all proposmonal variables in o[K M. If o' is a tautology of a.lgomthm.w
logle, then for every valuation v in a fixed realization B we have
' (TIE1N 1M L)g(r) =1
or
(H(Ka: _-Mm)n H(Ka, < May)|n(v) =
i=1 i=
So o is a tautology if and only if Ep(v) and Mpu(v) are undefined or
Kg(v) and Mgz(v) are defined and for every varla,ble ze Vo [KM]),
2p(Kr(v) = zR(MR(v)), ie, K ~M. m
‘ Levma 3. For every programs K, M, N, L and for every open formulas
a, f, y the following equivalences hold:

1. o[Eo[MN]| ~ oo [EM]N],
. 2. o#[aK]N] ~o[[c/1]* [o v [aKo[N[G/O]] ]]
- ke Jok [BE 1% [y M| ~ o[lefal* [{(en f)u(Tlen ) [ M]])
4. o[ *[aK]*[pH]] ~0[[0I1]*[(wﬁ)x[(aﬁc)ﬂoI[clﬂ] M]]]],
] ] *[ao[E*[ﬂM]]] ~ :
[[cm*[( ona)u( Ten f)) o [ M) x [ﬁ[clﬂl[cllll]]]

=

GII

6. x [ao[KM]o[NL]] ~o[[cla]o[v[oKN]v[cML]]]
T olE%IAN] ~o [[cll]*[(cuﬁ)g[co[ﬁ' [o/0] N]]], |
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" where 048 @ p'rojaoéiﬁonal variable that oceurs in no one of the left-hand sides
_ of equivalenices 3-7. 7 : '
7 . Proof: Let us prove, for example, equivalence 5. Write

N =o[v[eEM]x [lc0][eA]] and y = {(ena)u(TTenp)).

- Further, let B be any realization and v any valuation. o [fe]%[yA Nelv

- = v;if and only if there exists a natural number i such that yR(N}}( [e]g(®)) .-
=0 and Ny([e/1](v)) is defined, and for j =1,...,4—1, we have
(¥y)g(leM)p(v)) =1. Bup ° :

Ne(lo1a(0) = ol... o [o [EM™o (KM ... o [RIM]|g(w),

‘where Byt tat ... +i,,,+f.d =1, and for every k< n we have

‘_IR(O [EM%]R(9) =1, Br (o [EM*]5(5)) = 0, Br{o [HM 15 (5)) = 1
* for j<i, and for 4 — oo [KMIJ...o[KM‘fk—IJ]. S0 N%([e/1]x(v)) =
" ofo[E* [BM])]%(v): By assumption, y,(v’) =1, yg(Ng(v)) =0, where
v = N5 '(l¢/llg(v)). Thus either ((ena)n 1 Ne)n TNBlp(v) =1 or
(((cn a)" Ne)n '_[Na)R('u') =1, or ((( “lenf)n T Ne)n TINB)(v)) =1, or

((("lcn ﬁ)nNe)n TNg)R(v’) = 1. The cases one and three are impossible
for

Na(v') = x [8[e/01[0/LY|g (v [cR M 1y (o')
M[ﬂ [e/0] Ec/]-]]R(KR(”')) it oep(v)) =1
v [Ble/0] [N ]n(Mp(v)) it cg(v') =0
[0/01a(Kp(0)) i en(v) =1 and fir(Ep(v)) —1,
[e/X]p{Kp(v")) « it ¢z(v") =1 and B,(Kz(v")) =0,
[0/0]p{Mp(v') it cp(v') =0 and Ba(Mp(v)) =1,
[0ATe(Mp(0) i op(v) = 0 and fp(M,w)) — o,
and in both these cases we have simultaneously ex(Ngz{v')) = 0~and
Cr(Np(®)) =1. As a consequence we geb an(Np(v')) =0 and 4, —
*[ao [ # [ ]]|x(v). m -

LEMMA 4. If K % M then for any program T and open formula o we
have '

(i) o[KL] ~ o [ML), o[LK] ~ o [LM],
(i) »[aEL] ~ v [aML], ¥ [eLE] ~ v [aLH],
() *[aK] ~ *[aM] if V() ~Z =@, Z < V,U7,.
The proof follows immediately from Lemmas 9.1 and 3.7.” m
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'-'BEJFJ:NITION 97 A program K e FS is in the normal form if and only
- if ib.ig. in the form o [M *[aN ]], where the mgn # does not appear in the
" programs "M, N.

Remark 1: For overy programs i M N a.nd every sets ZI, Z,, if
K Ma,ndMNN then K ~ N.

1023
THEOB.EM 1. To any program K we can effectwely assign a program
.K-n in the normal form (called the mormal form of K) such that V(E')

= V(K)UZ where @ #Z <V, and K~ K.

FuVs—Z

- Proof: To simplify our considerations let 1013 denote by O (with indices
} ‘1f necessary) any program without % and by I (or I,, I, ...) any program
“of the form * [¢C]. The proof of the theorem is by induction on the length

'~ of program.
' .. 1. Notice that 0[0*[0[ ] ~ € and o[ 1I] ~1I, so Theorem 1 holds
~for every programs C and I. Let us assume that the theorem holds for
any programs K M and let K o o[(]jl I,] and M oy o[G2 I,] for some

| Zn Z, < VoWV,
2. Let us consider a program of the form o[KM] and let V(o (KM}
—Z,nZ; = @. By Lemama 4, o[KM] 2 o|o [y I,]0[C; I,]] and by equiva-

- lence 1 of Lemma 3, o[EM] ~ 0[010[110[0 12]]] i 0[01010[1 0,11

Now, by equivalence 2 of the same lérnma, we can fmd a program I;

‘such that o[I;0,] - ~ o[[cfl] I,). 8o we have o [KM], A o[o[t: [c[l]]
-0 [IsI;]]- Leb ¢ ¢ V(o [Z,1,]). Then there exists a pmgmm 14 such that
o[I;1,] e oll¢'/111,). Consequently o[EM] ~, [[c /1]14]

ZyNZg—

3. Let us consider a program of the form » [u_KM ] where c e and
V(v [aEM])—Z,n%, =@. By Lemma 4, v[aEM] ~ v [2[0114]

o[C,1,]]. Suppose that ¢¢ v v [e0[04I,]0[C,1,]]. Then by eqmvalenceﬁ

of Lemma, 3 there is 4 program C, such that v [¢KM ] [03 vlel, L]
‘What more, »[el,I,] ol [[e’/ fall 5] and therefore ~ [aKM ]Zlnzz—{c o

) [030[[0 ja] Ia]] S0, by equalence 1 of Lemma 3, v [eKM ]z i e,
o[ [Csl¢' [a]] Is)- 1

4. Let x[aK] be a program such that V(x[eK])— —Z, =@. By Lernma
4 and the inductive assumption we have =[aK] ~ % [ec[CL1,]]. Let

- 0¢V([ao[C, Il]]) Then by equivalence 5 there ex1sts guch a program
- I, that #[aK] ~ o [[e/1114].
G
Thus Theorem 9.1 holds. for every program. W
Bemark 2: In Theorem 9.1, Z is the seb of auxiliary variables.. The
- "va.lue_ Qi,the program_K does not depend on the values of these variables.

“ ~ 2 — Fundamenta Informaticae 1.2
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Remark 3 By eqmvalence 7 of Lemmsa 3 we can smnphfy the normal

iform—of a-program in such a way that M iy identical with a- substltutlon

- of the form [¢/a] where ¢ e V.-

-~ -

10. Apphcatmns

The aim of this fection is to indicate some sunple a,pphcatmns of the-

above results in the theory of programs.
LEMMA 1. Let K be a program in a normal form, K = O[M* [eN ]],

and let £ K1. Then there exists a natural number ny such that for every

realization 'R and every valuation v if Kg(v) = o [MN;]g(v), then i < g.

Proof By assumption, the formula K1 is a tautology and so.

_ [al\T [ ]] (Tlea)iva tautology of algor1thm1c logic. By Theorem 8.1 there
exists a natural number 7, such that the formula M Z [a¥ [ J](TTe)

S a tautology. Since for every natural number 4§ there emsts j <1 such
that v [aN{ ]|} = &, 11; follows that s

%

 (1) e Pt

Now suppose that for some realization R and some valuation 2, _KR(TJ)

= o [MNp(v) and %> n,. By the definition of a realization we have

ag(o [MN"’]R(’E})) =0 and for every j< i, aR(o [MN¥']g(v)) =1. Conse-
quently, for; every j <'my,

ag{o [ MN'](v)) =

This leads to contradiction with (1). m

Lemma 1 can be formulated in a more universal form as follows.
. Let P be the set of all programs that in every realization and every
valuation have finite caleulatibn.

Levma 2. For every program K e P there exists a natural number n,
such that the length of every caleulation of this program is less thgn 1.

Let us consider the halting problem formulated in the following way:
given a program K, is K an element of the set P or not?

LEMwA 3. The set P is recursively enumerable.
. - Proof: Let K be any program, K e #'S. At first let us construct the
normal form K’ of the program K. By Theorem 9.1, for every realization
and every valuation v, Kn(v) is defined if and only if Ky(v) is defined.
Smce Ky(v) is defmed if and only if K1 is a tautology of algorithmie
logic, by Lemma 3.7 and Theorem 8.1, if K e P, we will know this after
f:mtely ‘many steps. m :
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‘I.IEMA 4 The relation ~ of egmmlence of programs relaiivized to ‘the'
-class P zs recursively emomemble

: Proof Let K, M are any programs. By Lemma 9.2 we can construct
"o formula a-such that K ~ M if and only if F «. However, K and M
are in P, so ((T1K1ln 7] M1)< 0] and, moreover, We can find out a for-
mula & in the class E (see § 8) such that ap(v) = aR('u) for every realizaftion
R and every valuation v. Indeed,

) ((Zﬂ:(ﬂ'w‘; — Mﬁz‘) nf:(Ka@@v Ma,i)) <> S_IKW((% = &) O (@;<> “:)))

% i:ll]

| Now by Theorems 9.1 and 3.7 we have o’ € K. So, by Theorem 8.1, 1f
K M -we can check this in ﬁmtely many steps. m :
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