Concatenation of Program Modules

e An Algebraic Approach to the Semantic

and Implementation Problems

Manfred Xrause, Hans Langmaack
. Institut fiir Infeormatik und Prakxtische MathematiXx

Christian—-Albrechts-Universitdt Kiel, Germany

Antoni Xreczmar, HMarek Warpechowsiki

Instytut Informatyki, Uniwersytet Warszawski, Poland

Abstract

.. The, paper studies the semantic and implementation problems of programming
languages which allow module concatenation. Three known languages o:f that

“class are Simula-67, Smalltalk and Loglan. The structure of program mo-

ﬂzdules.is treated as an algebra. A concise set of algebraic axioms de-
:fining this structure is given. The adlressing problem is formulated in
ﬁfﬁ:algebraic terms. The identifier binding rule is reduced to the evaluation
*. -of terms in the algebra of modules. The normal form theorem solves the
';I,question of this evaluation. The results allow to dévelop two efficient
" updating algdrithms going beyond standard NDijXkstra’s algorithm and rel-
evant for this class of languages. The paper ends with the detailed im-
plementation techniques. The correctness of this implementation is
provéd. All of this allow to construct a new family of running-systems

for. languages with module concatenation.

‘1. Introduction

Module concatenation is a universal construct applicable in many situ-
ations arising in programming, especially because of the important role
which it plays in object oriented languages [Hor 83, Chapter 14]. The
concept was invented by 0.J.Dahl, B.Myhraug and K.Nygaard and for the
fifst time was introduced in Simula-67 [Da 70] under the term Xnown as
prefixing. In prefixing of modules prefixed module is an extension of a
prefixing one, i.e. all the entities declared in the prefixing module
are inherited to the prefixed one while the actions of the prefixing
module enclose the actions of the prefixed module. Such an extension

. mechnism allows to build up hierarchies of modules in a program what

-f[:aids program designing and program maintenance. In fact, packages, data
étfuctufes_and data types can be hierarchically designed, stepwise re-

'finement, top-down and bottom-up programming methods are easily imple-

e ﬁentable, problem-oriented languages may be defined in a language,etc.

PRI e

138

On the other hand in order to make changes one can concentrate on what
needs to be changed instead of what must be left alone.

Up to now prefixing of Simula-67 is still underestimated, as well as
the whole language, perhaps because of the old fashioned syntax and too
much strong depencdence on Algol-60 concepts. Another reincarnation of
rmodule concatenation appeared in Smalltalk [Ing 79]. The concept 1s called
there inheritance and brings more or less the same ideas as prefixing in
Simula-~67. The main difference consists however in the way of defining
the semantics and the accepted philoscphy of implementation. Namely, in
Smalltalk inheritance rule is treated as a pure textual operation and
such is the basic philosophy of its implementation. On the other hand
prefixing in Simula-67 may be implemented in the standard Algol-like
method, i.e. with 8L-links or Display vector, giving the static binding
rule for icdentifier occurrences.This philcosophy of implementation enableq
to define the semantics of the language which dces not posses the well-
known deviations appearing in any kind of textual or dynamic semantics.
But to avoid these deviations the Simula designers had to bear the con-
sequences, namely they had to restrict substantially the use of prefixing.
To understand this restriction observe that when module concatenation is
introduced in a block structured preogramming language, then there are two
module operations: nesting {(decl) and concatenating (pref). All the mod-
ules in a program create a tree with respect to module nesting and a mod-
ule level is the depth of a medule in such a tree. Simula restriction
says that the prefiixing of modules is allowed only if a prefixed and a
prefixing module have the same level. This restriction is unnatural,
diminishes the power of a language, unables the separate compilation
etc. Fven the Simula group has felt just from the starting point that
the restriction should be overpassed and later on they initiated some
works, e.g. [Kr 79], without satisfactory achievments.

In 1977 at the Institute of Informatics of Warsaw University the pro-
gramming language Loglan was Gesigned [Log 83]. This object oriented
language includes the concatenation operation on modules without the
Simula restriction. The solution proposed by A.Kreczmar [Ba 83] brought
a new Display mechanism and a way of addressing giving the implementation
as efficient as in Algol—-60. In 1983 Iil.Langmaack [Kr 84] noticed that
the implenented semantics is not purely static, i.e. that in some cases
the semantics possessey the deviations which appear in textual or dynamic
implementations. Later * on H.Langmaack found a method of permuting Display
adéresses which: preserves the rules of purely static semantics [Kr 84],
however there was still not Xnown how to update Display. In 1984 M.Krause
invented a recursive algorithm updating properly Display and, simulta-

neously M.Warpechowski proposed a better iterative one. Moreover M.Warpe-

chowski proposed a new algebraic model for proving correctness of these

algorithms [War 84], improved later by A.Kreczmar. The exposition pre-
sented in this paper bases on all these results.

The main problem of addressing can be factorized into the following
two guestionks:

(1) give the way of finding at compile time for any applied occurlence
of an identifier the corresponding declarative one (compile-time
binding))

{2) give the way of finding at run time for any access to an entity
its proper activation record and its offset (run-time binding}

The first question is trivial while the latter one, in the case of a ‘
language with module concatenation, becomes a research problem. Why this
.-first one is trivial? Note that the inheritance rule for module concat-
enation says that inherited entities are local in a module. In conse-~

- quence, when an instance of a module is generated, everything it inherits
“Téhould be also generated, because it is local. Thus compile-time binding
‘must give the preference for concatenation before nesting. For an applied
occurkare of an identifier in a program we look first for its declaration
in the most ehclosing module. When not declared, we look for it in the
prefix, if prefix is present. when all the consecutive prefixes are
searched for, only then we look for the next enclosing module, and so on.
Thus question (1) is a simple natural generalization of the well-known
mechanism from Algoi or Pascal.

Question (2) is trivial when we deal with a local entity. In fact, by
the inheritance rule we can allocate at run time inherited instances and
the instance itself as a one memory frame. The activation record for a
local entity is so the part of this big frame and its relative displace-
ment may be computed at compile time. Thus computing offsets we can take
into account those relative displacements of the corresponding activation
records what solves question (2} in the case of a local entity.

(luestion (2) in the-case of a‘non—local entity may be reduced to the
previous one, if we are able to compute the address of a-corresponding
frame. It turns out that the best way is to compute all such needed ad-
dresses before a given instance becomes active, and to keep them in an
.array called Display. This step reminds standard Dijkstra”s approach.
However the actions dexined by prefixed instance involve the actions de-
fined in the prefix. This may require the change of environment becauée
compile-time binding concerns another module. In order to avoid this up-
dgting inside the concatenated module, a special permutation of Display
array is needed. This method was proposed by H.Langmaack [kr 84], as it.

was already mentioned.

137

The definition of this permutation as well as the correctness proof of
the method begot the notion of a complementing module. Quite unexpectedly
this notion turned out to be crucial for the solution of the hardest prob-
lem, i.e. Display updating algorithm, tne problem which has not yet been
solved when H.Langmaack defined his permutation. One attempt was initiated
by M.Xrause who wanted to reconstruct Display level by level, starting
from the activated instance. This approach leads to a recursive algorithm
whose implementation seems to be rather inefficient (we deal with a non-
linear céouble recursion). Finally !.Warpechowski observed.that the re-

construction of Display may he performed for each level independently

what gives an iterative algorithm solving run-time binding problem in so

efficient way as it is done in languages without module concatenation.

The structure of the paper is as follows. In section 2 we introduce
a simple algebraic formalism. In section 3 the definition of an algebra
of program modules is given, with two operations decl and pref. The notion
of compile-time binding is precised and complementing module 1is cdefined.
In section 4 run-time algebras are considered, corresponding to the given
static algebra. Section 5 presents two updating algoritnms, the first one
is that of M.Krause, the latter one is that of M.Warpechowski, both with
the correctness proof. In section € the Pisplay array permutation is ge-
fined and proved to be correct. Section 7 giving the details of the im-

plementation ends the paper,

2. Preliminaries

Let A denote any set and let £, g, ... denote partial functions from A
to A. Next denote by | an undefined element, i.e. f(])=j and £(a)=| iff
f{a} is undefined.

Let B = {fl,...,fn} be a finite set of partial functions defined as
previously and consider any word w written over alphabet B. Such a word
designates the sequence of partial functions from set B that may be ap-~
nlied to an element of A in a given order. 5o, if a belongs to A and w
is such a word, then the term w(a) defines the given superposition of
vartial functions applied to a. Bccording to this notation w{a)=b where
b=] or b belongs to A, means that b is equal to the value designated by
term wia).

Now let E be any regular expression over B, i.e. an expression bullt
from fl""'fn with the use of operators Vv, = , * . Tﬁen by E{ec) we shall

denote the set of terms:
E(a) = { w{a) : weR |} .

For a from A and b=| or b from A we shall write RB(a)=b iff there is a term

x
wla) from F(a) such that w(e)}=b. Thus, for instance, f (a}=b means that

: : “£Yia)r=p means ‘that there is
__Spcn‘lhat ‘l(a)— ..mhe equatlon £7 (a)—l eipress the fact that- there
is an iteration of f such that when applied to a, the resulting value is
ndeflned. With the use of this notatlon we can express Ruch more compli-
'cated depenﬂencles. For example, f g {a) =p denotes that there are i>0 and
j>0 such that £ g (a)=b, while (£fug) {a)=b denotes that b may bhe obtained

Ias a supervosition of £ and g, starting from a.

‘fiﬁite set, decl and pref are partial functions defined on M,p is an

“element of M and the following axioms are satisfied:

T (A1) decl(p)=| and for every a from M decl*{a}=p;

. (A2} Zfor every a from M, pref+(a)=i,

z'th(A3] for every a from M, if pref(a)#]., then decl prefi{a) ¥ | and
) - pref*decl+(a) = decl prefla) .

Axiom (Al) says that an algebra <M, decl, p> is a tree with the root p.

i the dependence between functions decl and pref. This dependence may be

illustrated by the feollowing diagram:

oo 3 i * »

< d

+

‘3‘2‘3

< a

‘where ——> denotes pref and =———> denotes decl. The.existence of d

"such that the diagram commutes follows just from axiom (A3).

hefinition 1. For any a from M by the level of a denoted by level{a) we

i;ﬁl-shall mean min {%: declk(a)=l]

. The existence of kX such that declk(a)=l follows from axiom (A1).

Deflnltlon 2. For a from M by the prefix sequence of a denoted by ps(a)

we shall mean a sequence (a peeer@y) where pref{a)=|, and

G & oref {a), for i = n- 1,...,1,0.

;Defiﬂition 2 is correct because the existence of i>0 such that prefl(q)=l

follows from axiom (A2).

Definition 3. For any two elements a, b from M by an address of b with

resoect to a €enote€ by addrese(a,b} we shall mean a pair (i, J) such
that j = mln{c. pref decl (a)=b}, i = rmin{k: pref’ declj{aJHb]
nref decl (a)=b. Otherw15e address(a,b} is undefined,

Axiom (A2) says that an algebra <M, pref> is a forest. Axiom (A3) expresses

LR

139

Observe that for pref(a)#| address(a, decl pref(a)) always exists by

axiom (A3).

Lemma 1. pref{p)=]

Proo:<
*
If pref(p)#], then by (A3) decl pref(p) # | and pref decl’(p} =
cecl pref{p). But by (Al) cdecl(p)=] what implies that decl+(p}=l. Hence

we obtain decl preif(p) = }. &

*
Lemma 2. For any two a,b from I, if pref {(g)=b, then level(k)<level{qa).

Proof

We shall prove the lemma by induction on level{g).
Start.
For level(gq)=1 we have a=p. So, if pref*[p)=b, then by Lemmal b=p
what gives level(b)=1
Incuction step.
Suppose that the lemma holds for any such that level(g)<n.
Let level(a)=n and prefl(a}=b. Now we shall prove this step by
induction on i.
Start.
For i=0 we have b=a, so level(a)=levell(d).
Incduction step.
Suppose that prefiul(ach. By the inner induction level{c¢)<level(g).
Mow let pref(g)=b. Ry axiom (A3) decl(b)#|, so we can assume that
decl{b)=d. Again by axiom (A3) d = decl prefi{e) = prefi'declj(c]
for i'»0, j>0. Let declJ[C)=e. Since j»>0 we have immediately
level(g)<level(ec). Hence level(e)<level{e)<level(a)=n, By the outer
incduction pref*(e)=d ané level(e)<n implies level(d)glevel(e).
Now level(d)=level(d)+l, level(d)<level(e), level(e)<level(c),

level(c¢)<level(a) gives level(b}<level(a}. -

Definition 4. Let w be any word written cver the alphabet B= {decl, pref}

By |lwl we shall denote the length of w ancd by leldecl we shall denote

the number of decl appearing in w.

Lemma 3. If b=w{a)#|, then level(a}—level(b)ZHdeecl.

Proof

Induction on |wl. If |wil=0, then a=b and level({a}-level(d)=0. Let
w = decl wl. Thaen leveli{a)-leveli{fecl wlta}) = level(a}—level(w (a))+1.
From the inductive assumptiocn 1evel(a)-leve1(w1(a}] > w "eecl So

level{a)—level(blzuw Il +12 Wl gooq- Let w = pref w. - Then

decl
level{a)-level(pref wl{a}} > level(a)—level(w (a)) because by Lemma 2
level(pref w (a)) > level(w,(a)). llence level{a]—levellb)>ﬂw|1decl '
= |{wlt

cecl’ o

Let w,-ﬁ bé two words written over the alphabet

f?géfdécl,pref} and let w=w, decl pref w,. For terms wia) and u(a),
.. where aell, we shall write

PO w(a) +— u(a)

i iff u=wlprefidecljw2 where the pair (i,j) is

address{wzia}, éecl pref(wzta)).

_ Definition 5 gives for any aeM and w the way of transformation w(a) into
%f,Jﬁnother equivalent form. In general | is stronger than functional
:équivalence of terms, i.e. if w{a) I— u{a)} then w(a)=ul(a) as functicn
values. Let F:—+ denote the reflexive ané transitive closure of |— .

aIn this way we cobtain a Xind of Post algorithm. Each step of this algo-

:1thm nushes one decl to the right after its immediately following pref

‘We ‘'want to show now that this process is always finite (what is not true
 -for an arbitrary Post algorithm).

'gpma 4. For aeM and any w the seguence w, (a) such that w,=w and

_Wk(g} — w
" Broof

Suppose the contrary, i.e. that there is aeM and w such that the se-

- i " c - -
k+1(a), X=0,1,... must be finite.

. quence w, (a) is jnfinite. By the form of the rule (*) we have that

x"decl < "wk+1“decl
;'.‘If [jw. ”decl , X=0,1,... has an upper bound, then this sequence has an

element w_{a) such that for X>m we have

"wk"decl "wm"decl ’
- It means that from wm(a) rule (*) transforms decl pref into prefidecl
. (the number of decl does not change). But then from w_{(a) after a finite
-'number of steps we always obtain u(a} of the form nref*decl {a}, and
- rule (*) is not applicable for u(e). So | |l3..; has no upper bound.
Now we can use Lemma 3. We have level{a}- 1evel(w (a)l)> LI and
the difference levelta)—level{wk(a)) has no lower bound. This is imposs-

ible because level(a) is finite. -

= 5 % * *
NDefinition 6. We shall say that w(e) is in the normal form if pref decl =

=W
. ’

Q'l Theorem. (Normal form theorem) :
rl For every acM and w such that wia)#| there is a- unlque u(a} in a normal
* - form such that wla) F— u(a). ' '

'By Lemma 4 there is no infinite sequence of transformations according

to the rule (*). Hence Post algorithm defined by these rules must always

-‘termirate. By Church-Rosser property the firal result is unique indepen-

141

dently of the order of applications of (*). This final result must be in

| &
i
i

a normal form. 0

Definition 7. Let a, b, ceM be such that prefl(a)=b and decl (b)=c. By
a complementing element compl({a, b, c) we shall mean a unique element

deM such that declJ(a) =d and pref (dy=c angd pref declJ(a} is a normal

' form of decl pref (a).

! The correctness of Definition 7 follows from the normal form theorem.

The diagram below illustrates the meaning of a complementing element:

d
ﬂ,,
a

The normal form theorem says that this diagram may be tiled in a unique

*

-
Y

SN
*
*

el
Y

way with the use of elementary tiles provided by axiom (A3).

TSR

Lemma 5. Let pref(a} =p and pref (b)=¢. Then
; compl(a,c,declj{c)) = compl(a,b,compl{f, c,declj(c}))
Proof

Let us consider the word of the form decljpref pref(a) where pref (bY=c.
Applying the normal form theorem we obtain:
o TS UL R .
' decllpref” (pref(a)) = decl-pref” (») |— pref decl (b)
where declk{b} = Compl(b,c,declj{c)). Applying again the .normal form
theorem we obtain:
3 X L SN |
' decl pref (a) |— pref decl™ (a)
where decll(a) = compl(a,b, decl (b)). Hence

decljpreflpref{d} F——+ pref decl'pref(a) I—iﬂ pref*decll(a)

what implies that

: compl (a, ¢, dec1d (e)) = compl(a,b,decl®(B)) =
) compl(a,b,compl(b,c,decl](c])] .

The diagram below illustrates the meaning of Lemma 5. 2

; . N ;
decl? (¢) 4:—*— compl[b,.s-,tfleclj (c)) «— compl(a,b,compl (b, e, decl? (e)))

+
o £ b < a

Let us consider an example of an L-algebra. The diagram below illustrates

its structure:

e p—— g it —

compl({I,D,B})=B since
compl (F,B,A)=A since

B
A
A
compl(J,G,B})=A since &
B
C

compl(J,G,C)=C since

‘Here we have:

decl pref(C} = A = decl(C) decl pref(¥) = A = decl® (F)
 decl pref(I) = B = decl? (I) decl pref(K) = B = pref decl?’ (K)
i . .decl pref(J) = C = decl® (J).

ﬁe can compute now the complementing elements for some triples:

decl? (I}
decl? {F)

decl pref(I)
decl pref(F)

|
|

' compl{I,D,A}=A since = decl®pref (I} = decl decl? (I) = decl®(I)
= decl?’pref(J) = decl decl?®(J) = decl’ (J)
compl (X, E,B)=C since = decl pref (X} = pref decl® (K) = pref (C)

decl? (J)

decl pref (J)

4. Implementations of L-algebra

gr“pgfinition 1. The set of implementations IMP(L) of an L-algebra

;f; . L = <M, decl, pref, p> is the smallest set of L-algebras
: I = <M, decl, pref, p> embeddable into L and satisfying the following

conditions:

SN ¥

(ii)

(iii)

L, = <{p}; decl, pref, p”> where decl(p)=] and pref(p)=]

belongs to IMP(L),

For any L and aeM if decl prefl(a) = ¢ # | then
address{a,c) = address(h{a),h{c))

where h:I—L ,

If T belongs to IMP(L), h:I—U, beM, h(b)=b and decl(a)=b for

some acM, then there exists in IMP(L} an L-algebra

‘= <", decl, pref, p> such that

L
E‘= H uv {Elj-c-rzm} r pS(E)={Elr-..'Em} r Elfuc -'Em { ﬁ I
Tl =1, decl(a)=b

=i

- is embeddable into I by homomorphism h~ which extends h

in such a way that h” (a)=a

Lemma 1. Let a,b be from L and a,b be from L”, and decl(ae)=b as in De-

! finition 1. Let decl(ak)'—--bk for kX=m,...,1 and let

; address(ak+l

rka = (ik,jk) for X =m-l;...,1 - Then

_ 1]
decl(a,) = pref ‘decl *¢

Proof
b

) for k

Ek+1 m-1,...,1 .

pt A

= decl prefia) and pref(ak+1) = ay £ 1

X

So, by (A3) from section 3, we obtain

k+1

b, = decl prefla,..) = pref decl¥(a,_)

k

‘Then, address (a

k+1 X+1

,bk) is well defined. Homomorphism h~ guarantees that

1

k+1

decl pref(a)

il &P

Hence, by point (ii) of Definition 1
address (a

k+1'bk) = address(ak+l,bk) = (ik'jkj

And, from the definition of address (Definition 3, section 3)

o 2 - 1x g
decl(ak) = bk = pref Tdecl (ak+1)

—a‘-’.‘-—-—-o--"-l,—--:e----ﬂt—-‘s-— e e 7 T
o S L]
ST

a
For any implementation L-algebra the elements of M will be called instan-

—t—

S ces. They will be denoted by a, b, ¢, etc. with indices, if necessary.

¢ The elements of M will be called modules. Moreover an instance a will be
called an instance of a module a, if h(a)=a. For the sake of simplicity
7 . for any aeM the image h(a) will be denoted by a, if it does not lead to
1 any misunderstanding. So a denotes usually an instance of module a, if

it is not especially stated.

Lemma 2. Let L be an implementation algebra of L. Then wl(a) |[— ula)
in L implies w(a) {— u(a) in I.

Proof

' The proof follows immediately from Lemma 1, since the structure of rule

{(*) in Definition 5 section 3 remains the same. :
(|

P The sequence of instances (El,...,Em) introduced in the definition of
b T° (Definition 1) will be called an object. Objects will be denoted by

F capital letters X, ¥, 2, with indices, if necessary. An instance Eﬁ will

be called the bottom instance of object x={El,...,Em).

L When a function decl or pref is applied to arn object X, then by defanlt
we assume it is applied to the bottom instance of X. For any instance Ei

1 the object to which it belongs will be denoted by Ia, |.

By Lemma 2 all the definitions concerning the normal form theorem and its
L- applications are preserved in the implementation algebras. Hence the way

of transformation the words of the form w(a) in the implementation algebra

may be repeated in an algebra L giving the proper result.

Definition 2. Let Ob be the set of all objects for any given implementa-

tion algebra L. The partial function SL: Ob— Ob is defined by the va-

lue of decl for the bottom instance of an object, namely:
5 |decl(X}| =Y then SL(X) =Y

— puse *
Lemma 3. For X={p} SL(X)=] and for X#(p} pref (SL{X}) = decl(X)

Proof _

If X={p), then clearly SL(X)=| . Otherwise by Definition 2 we have
*

|d@ecl{X)| = SL(X) what is equivalent to pref (SL(X)) = decl{X)

O
. +
Lemma 4. For any object X, SL (X)=].

Proof
We can prove the lemma by induction with the respect to Definitioni. For

fo we have only one object {p} and, of course, SL({p})=]|. Now consider

an object X=(a1,...,an) introduced in point (iii) of this definition.
By the inductive assumption for ¥=8L({X) we have SL+(Y)=L. Hence there
is kX such that SLkiY)sl. We have immediately SL+(X)=l. -

For the example of an L-algebra given in section 3, below we give an il-

lustration of one of its implementations:

X, | //(A
\\

b=

Sy

Ry

¥ 5
X
I
1

¥ B
T

e
~3
H

where —=——> denotes as usual decl, and ----- 3> denotes SL.

H
|
1
i
1
i

e woe s

e e e

S Y~ i

P

145

S.Updating algorithms

The way of addressing in L-algebras must be copied in its implementations
in order to have the so-called static scoping »nreserved. This was guarante-
ed by Definition 1 sectiond4 and Lemma 1 section 4. So the basic problemn
of addressing in the implementation algebras consists in the way we compute
the address of the form prefldeclj{E) for a givgn instance a. However
there is no problem with the computation of prefl since the number of ite-
rations of pref may be established at compilation time and having given
declj(a) we can easily access an appropriate insFance in the same object
What is left out 1is the method of computation declj[E) at run time. To
solve this problem we shall start first with the simpler one which may be
formulated in the following way. Having given an instance a , la| = X,

we search for an object Y such that pref*(Y) = decl(a). Observe, however,
that a = prefl(x) (we recall that X denotes the bottom instance of an

object X as well). So we search for an object Y of the form:
| decl prefl(xll = Y (1)

The easiest way is to compute at run time the function decl applied to

X in the given order. But then we need to have one pointer for each ins-
tance in an object. We want to save space what may be done with the help of
function SL. Hence we shall try to define the computation formulated by (1)
in terms of function 8L and functions decl and pref applied to algebra

L instead of its implementation L. To do this we shall apply first the

normal form theorem obtaining from (1) the following term:
i - k J = J = 3%
|decl pref (X)| = |pref decl” (X}| = [decl”’{X)]| = |decl decl(X)] (2)
By Lemma 3 section 4 we have:
{decl prefl(x)] = |deciI lpresl(sL(x)) | (3)

Now for the termal form (3) we can apply (j-1) times the transformation
defined by (1)-(3). If (j-1) = 0, then we are done, otherwise we call
recursively the algorithm defined by this transformation. This recursive
algorithm has stop property by Lemma 4 section 4. In fact, if j > 1, then
the algorithm is applicable giving upon the exit the consecutive iteration
of function SL. So finally there must be such a recursive call when upon
the exit we obtain j = 1, since SL+(x) = } . According to Lemma 2 section 4

all the computations of complementing modules may be done in algebra L.

The updating algorithm based on this observation was found by M.Krause.

We shall present his algorithm in the form of a recursive function DLSP.

g@ESP’f"fuﬁcfiqn (X: 6bject: as ﬁodule): object;

{for any @ such that |z| = X, the result is an object Y such that
|decl(a)|= Y }
var e,f,c: module; i: integer;
begin .
~er=h(X); {a = pref (e) in (1)}
fi=compl(e,a,declla)}: {f = declj(e) in (2))
X:=8L(X); c:=decl(e);
for i:=2 to level(e)-level(f) { level(e)-level(f)=3 in (2}})
do
X:=DLSP(X,c); e:=declic) { recursive call of DLSP for each

{(j-1} decl in (3)}
od;
result :=X
. end DLSP;

ZEUnCtion DLSP solves the subproblem of the general updating problem which

can be posed as follows. For a given object xo let us denote by D[1..1p}

. ‘a display array (where 1lp = levelf{(a), laf = X), i.e. an array such that
"for k=1,...,1lp D[k} = |decl

lp"k(xo)l. So we have D[lp-1]= |dec1(x0}l,

I_D[lp—2] = |dec12(x0)[, etc. Finally D[1] = E because decllp(a) = p.

" -Array D shows during the execution of an object X, its syntactic environ-

ment .

The way we can compute the values of array D for any given object xo
does not make now any difficulties. In fact, we can apply {lp-1) times
function DLSP starting from instance X,-.
Algorithm K

a:=h(x0); lp:=level{a}; D[1lp]:= XO: X:=Xq:
for k:=1lp-i downto 1

do

| X:=DLSP(X,a); a:=declia); D[k]:= X;

od;

O

.To illustrate Algorithm K we shall show how it works on algebra L presen-

ted as on the example in section 4. The only one interesting step is done

‘when DLSP is called for X, and B, i.e. when D[2] = DLSP(X.,B) is compu-

ted. We follow now this computation (the recursive calls are indented) .

S ewma o bciogouaeloaaeroe Eown g

=147

DLSP(XG,B): e=1
f=compl(I,D,B}=B, X=X

for i=2 we execute the loop

g+ ¢=E, levelle)-level{f)=4-2=2
DLSP(XS,E]: e=K
F=compl{K,E,B)=C, X=X, s ¢=G, level(e)-level(f)=4-2=2
for i=2 we execute the locp
DLSP{Xq,G): e=J
f=compl(J,G,C)=C, X=x3r
for i=2 we execute the -loop
DLSP(XB,F}: e=F
f=compl(F,F,C)=C, X=X,

we do not execute the loop

e=F, level{e)-level (f)=4-2=2

e=C, level(e)-level(f)=3-2=1

result:=X2
end of DLSP(X3,F)
end of the loop in DLSP(X4,G)
result:=x2
end of DLSPixq,G)
end of the loop in DLSP{XS,E)
result:=x2
end of DLSP(XS,E)
end of the loop in DLSP(XG,B}
result:=x2

end of DLSP(XG,B)-

Hence DLSP(X.,B) = X, ang n[2] = X,. The execution of the complete Algo-
rithm X in this case gives the following values of display array D, if the
computation starts from object Xt

plal=x ol2] = x, p[3} = x, »l4] = x,.

A different approach to this updating problem was proposed by M.WarpechOWM-
ski. He suggested to consider a modified problem. Namely, let a be the botiJ
tom instance of an object X and suppose we want to compute not only object
|[decl(X)|, but an arbitrary iteration of the form Ideclk(x]i. So we search

for an object Y such that
ldec1®(x)| = ¥ (4) .

as before, we can try to transform the above tsrm to an appropriate foim.

By Lemma 3 section 4 we have:

Ideclk{le = Ideclk_ldecl(x})l = Ideclk_lprefl[SL(X)}l .(5)

ﬁlphe normal form theorem from (5) we obtain:
ldec1® lprest(sn(x)) | = Iprefiaeci® (sn(x))| = [dec1¥(sL(x)) | (6)

" "Néw, if k" =0 we are done. Otherwise we can iterate the process defined by
- i 2 . + ;
transformations (4)-(6}. According to Lemma 4 section 4, SL (X) = |, so
~'the algorithm must always terminate. This algorithm we shall present in

the form of a non-recursive funection WLSP.

WLSP : function (X: object; k: integer): object;
{for a given object X the result is an object Y such that ldeclk{X)FYf

var a,b: module;
begin

ai=h(X); bi=decl®(a); (% = dec2®(3) in (4))
o iff %=0)

o
It

while b#a

do
X:=8L(X);)
b:=compl (h(X) ,decl(a) b); (5 is decl (SL(X)) in (6))
a:=h(X)

od;

result:=X

end WLSP;

Now we shall try to apply function WLSP to the solution of the complete
display updating problem. Observe first that (4)-(6) when applied to (k+1)

instead of k give:

;5. : |declk+1(X}| = |decl prefldeclk{SL(X})|
" what after some number of steps reduces to:
}{' |dec1k+1(x)| = |decl prefl(SLr(X}[-

In fact, this is the situation obtained upon the exit from function WLSP.

But now we can apply again the normal form theorem, i.e. we can obtain:

laec1® (%) | = |pref decid (st (X)) = |dec1d(sLE (X)) | (7)

k+1{x11 may be reduced to

“what shows that the problem of computing |decl
the problem of computing Ideclk[X)I. So in the display updating algorithm
we shall not call function WLSP and instead we shall use its main loop

for the computation the successive elements of array D.

Algorithm W

149

a¥=h(X0}: lp:=level(a):; D{lp]:=x0;

X:=X0; ei=a;
for k:= 1p-1 downto 1
do
fr=declie); t f = decl™ Fn(x)
b:=complla,e,f);: [normal form presented in (7))}
while b#a { function WLSP}
do
X:=8L(X);
bri=compl (h(X),decl(a).b};
a:=h(X)
od;
D{k] :=¥;
e :=f
od;

For the example

computations of Algorithm W in the folldwing -diagram:

of algebra L given in |

sectibn 4 we can illustrate the

o

a b f X Ap
H X7 4 D[4]:=X7
D = compl(H,H,D) D
WLSP | I I = compl(I,D,D) Xe DLBJ:=X6
B = compl(I,D,B) B
K ¢ =-compl(K,E,B) Xg
J C = compl(J,G,C) Xy
WLSP F C = compl(F,F,C) X3
C C = compl(C,C,C) X2 D[2]:—x2
A = compl(C,B,A) A
_WLsp | A A = compl(A,A,A) Xl D[l]:=}(1

-«r 1lp, where

:ﬁh'easily compute the instances addressed from module g. Namely, for
e - address{a b}—(l,]) we should compute the instance b = preﬁideclj(a} and
e dec13(@) = gec1? (%) = @ec1PIPHI(x) = X, 5 = Dl1p=j] . But this is not
&%J@«the end of our possibilities. T
- Let us consider now a module ¢ such that prefrta)=c and let address{c¢,b!

be (k,1l). Then we want to find an instance P addressed from ¢ in a si-
''milar way we have done it with an instance addressed from a, Of course, we
could repeat the whole process of searching for a new sequence Yorean,¥, o

.‘;,_q _ . lp
7 deflned by instance ¢, But this is not necessary. In fact, we have:

D = pref decl (5) = prefkdecllprefr(a)
"“,éﬁd by the normal form theorem we obtain:
b = prefl decl? (@)

:-hhat means that we can search for P in the sequence xl,..., xlp as it
was defined for a,.

The above reasoning shows that the searching problem may be prepared
ﬁniformly for the whole prffix iequence ps(a) = {al,...,am}. For each
- gi and b such that pref decl (ai) =b , we can search for b in the
- sequence Kivenes xlp + This searching may be done even more efficiently
© 1f we introduce an appropriate enumeration of display items {the so-called
" display registers). Namely, suppose that for each module a there is de-

fined a permutation of (l,..., 1lp) denoted by

dr{a) = (dr{(a,l), dr(2,2),..-, dr(arlp))-

When an object X, a=X, is executed, display D[1..1p] should be defined in

;E such a way that
D ldr(a,i)] = |decl™ *(x)| for i=1,...,1p (1)

. The way of defining such a permutation of display D is immediate, if we
j?' have prepared the permutation dr(2) at compilation time. In fact, using
s any of ‘the updating algorlthms presented in section 5 we can assign

i D[d {a,i)] gual Ki, i=lp,...,1 , while xi are computed as before,
Suppose now that the permutations dr(a) for aeM are defined so that

the following condition is satisfied: : (53

=3 * 5
if pref (2}=b, then dr(a,level(compl[a,b,declk(b))))=dr(b,1evel(declk(b))

151

Later on we shall show that such a definition of the permutations dr(a)

S e TR

is possible. The following lemma proves that this enumeration allows to
access instances addressable from the prefix sequence of module g in

the uniform way with the help of array D.

Lemma 1. If conditions (1) and {(2) are satisfied, then for any module 5

* —_—
such that pref (a) =b with display D defined as for |a|=X, we have:

laec1¥(F) | = D [dr (b, level(decl®(5)))] .

Proof

Let compl(a,b,declk(b)) = declj{a). By Lemma 2 section 4 we have:
decl? (@) = compl(d,F,dec1®(B)}.

Now by (2)

bldr(b,level (dec1®(b)))] = Dldr(a,level(decid(a)))]

and by (1):

X] _ ;
|dgec1iPrlevel(decl®(a)) =y | - piar(q,level (decl? (a)))].

L]

IdeclJ(E)I

Since decld(z) = compl(E,F,declk(E)) we have:
* g e ko —
pref decl- (a) = decl (b}
what proves that:

laec1® (F) | = Dldr(b,level(decl™(5)))]. .

From Lemmal we immediately see that the enumeration methed satisfying
_(1) and (2) meets our needs. In fact, if display D is prepared as for a.
pref*(a)=b, pref*decl*(b}=e and address(b,e}=(i,k}, then we access the
proper object since |declk(b)| is equal to D[dr{b,level(declk(b))}].

The last but not least thing which is left out is now the gquestion
whether we are able to define effectively the permutations dr(a) so thét
they satisfy condition (2). The idea of the construction is due to
H.Langmaack, he formulated also the conditions (1) and (2). We sﬁall

present his construction in the form of a recursive procedure, however

it can be easily reformulated in the form of the iterative algorithm.
To simplify the presentation we assume that in a programming language;

in which we define the algorithm,the catenation of one-dimensional arrays

is adnmissible and denoted by &.

i

DR : function (a: module): array|[1l..level(a}] of integer;

——

var ,j: integer;

begin

AE &=p

then

result:=[11}; : {one-element array)

return

else

if pref(a) = |
then
b:=decl(a);
result:= DR(p} & [levell{a)]

return

else

b:=prefl{a);
block
.var help: array [1.. level(h)] of integer;

begin

help:= DR{Db):

for k:=1 to level (u)

do
result{k] =0
od; ’
for k:=1 to level(b)
do
rresuit[level(compl(a;b,declk(b))] := help[k]
od;

j:= level(b);
for ki=1 to level{a)

do
if result[kx] #0 then J:=j+1 ; result[k] :=] f£i

' od

S

il o

LA A

L

1583

Lemma 2. Algorithm L. is correct.

Proof

The correctness of function DR will be proved by induction with respect to
level(ag). If level{ag)=1 , then drle)={1) and function DR does the same.
Suppose that for level(a) <n function DR produces correctly the permuta-
tions. Let us consider module g such that level(a)=n. If pref(e}=], then
condition (2) is trivially satisfied and we can simply extend dr(decl{a))
with the last value equal level(a) obtaining the permutation of the se-
quence (1,....level(a)). Now suppose that pref{a)=b . By the definition

of function DR we assign the values of dr{a) in such a way that condition
(2) is satisfied by b, Finally consider module ¢ such that prefl{b)=c.

By Lemma 5 section 3 with declk(b)=compl(b,c,declj(c))=

compl{a,c,declj(c})=compl(a,b,compl{b,c,declj(c})=
compl(a,b,decl® (b)) (3
We prove the correctness of function DR by induction on i, If i=0, then

e=b and condition (2) is satisfied by b. To prove the inductive step we

have from the inductive assumption:

dr (b, level (compl(b,c,decl? (¢)}))=dr(c, level(decl? (¢))) (4
and by the correctness of DR for pref(a)=b we obtain:
ar (e, level (compl (a,b,dec1 (b))) =dr (b, Level (dec1® (b)) (5

From {3) and {(5) we have:

dr(a,level(compl(a,crdeclj(01))}=dr[a,leV31(Compl(arbrd3C1k(b))}}=
= dr(p, level(decl®(b))).

But according to (3) dec1¥(s) = compl(b,c,decl?(c)), so we haves:
dr(a,level(compl(a,c,decld (¢))))=dr (b, level (compl(b,c,decl? (c)))

and by (4} we obtain the thesis.
]

Let us compute the permutations dr{a} for all aeM, where M is defined as

in the example of L-algebra in section 3. We have:
ar(A)=(1) dr(B)=(1,2) dr{c)={1,2) dr(p)=(1,2,3} dr(E)}=(1,2,3)
dr(P)=(1,3,2) dar(G)=(12,3) dr{H)=(1,2,3,4) dr(I)=(1,2,4,3)
dr{J)={1;2:4r3) dr(K)=(1r2f4r3}-

éigorifhms_

Impleméntation of

“.1" We shall show now how to implement efficiently Algorithm W presented in

‘f«;;seption 5. This algorithm is evidently equivalent to the following one:

-Algorithm W2

?%f:; a:=h(X); k:=level(q); di=a ;
do
Dk]:= X;
if k=1 them exit fi;
k:=X-3; bi=compllag,d,decl{d));: d:=declid);
i do
c:=decl(a); X:=S8L(X); at=h{X); b:=complia,c/b);

?ﬁ.. if b=ag then exit fi

T O
.7~ Now instead of computing a module p we can compute its level. Let us intro-

‘“i duce a new function ckl defined as follows:

cklla,e,j)=k iff level(compl(a,e,dec1t®Ve1(e)=T 4y

% y
In fact, function ckl gives for pref (a)=¢ and j=level(decll{c)) the le-
vel kX of the complementing module compl(a,c,decll(c)}. With the help of

function ckl the above algorithm W2 may be transformed into the egquiva-

Yent algorithm W3:

‘Algorithm W3

a:=h(X); k:=levellua); d:i=a ;
do "
D[k] :=X;
if k=1 then exit fi;
kK:i=k-1 ; Jj:=ckl(a,d,k); d:i=decl(d);

do
e:=decl(a): X:=8L(X}; a:=h(X);: Jj:=cklla.e.,j);:
if level(a)=) then exit fi;
od
od;
- a

The main advantage of function ckl over compl is that it can be easily
‘computed with the help of permutation dr(g)} introduced in the previous

section.

P P

155

Lemma 1. ckl(a,b,3) = dr Y(a,dr{b,3)}-

Proof
Suppose that ckl{a,b,j)=level(q)-k, where j=level(p)-i. It means that

compl{a,b,decll(b}}=declk(a). But according to (2} section 6 we have:

ar (a, level (compl (a, b, decl™ (b)) =dr (b, level(decl™ (b))=dr (5,3) .
On the cother hand: _

level (compl (a,5,decl’ (b)) =level(dec1® (a))=level(a) k.
Hence dr(a,level{declk(a))=dr(b,j} what implies that:

level(a}—k=dr_1\a;dr{b,j))-
0

By. Lemma 1 we see how simple is the updating algorithm. At run time we
need only to have precomputed dr and ar™t for each module g. The complete

solution is presented in the following algorithm:

Algorithm Update

prototype : class;
var decl,pref: prototype: level: integer;
dr,érinv: array of integer:
end prototype;
object: class;
var pt: prototype; SL: object;
end object:

var D: array of object;

update: procedure(X: object);
var a,¢,d.e i-prototype; jrk: integer;
begin
a:=X.pt; k:= an.level; d:=a i ei=a ;
@5 z
D [e.dr[k]] :=X;
if k=1 then exit f£i;
ki=k-1 : je= g.drinv [d.dr{k]]; d:= d.decl;
do
. e:= a.8ecl; X:1=X.SL; a:=X.pt:
ji= g.drinv [e. dr [3])] :
if a.level=j then exit fi;
od
od

end update;

i+ - "References

ITﬁaBB] Bartol,W.M., Kreczmar,A., Litwiniuk,A.I., Oktaba,H.,
Semantics and Implementation of Prefixing at Many Levels,
in: Logics of Programs and their Application, LNCS148, 1983,45-80

[pa70] Dahl,0.J., Myrhaue,T., Nygaard,K., Simula 67 Common Base
r,anguage, Norwegian Computer Center, 1970

[Nor83] Horowitz,E., Fundamentals of Programming Languages, Springer
Verlag, 1903 o

[Ing79) Ingalls,D.H., The Smalltalk 76 Programming System Design and
Implementation, Proc.5th ACM Principles of Prog.Lang.,1976,9-16

[Kr84] Krause,M.; Krecezmar,A., Langmaack,H., Salwicki,A., Specification
ané Implementation Problems of Programming languages Proper for
Hierarchical Nata Tvpes, Rehort 8410, Institut fuer Informatik
uné Praktische Mathematik, Universitat ®iel, 1904

[Kr79] ¥rogdahl,S., On the Implementation of Beta, Norwegian Comduting é

Center, 1979

[Log83] Loglan-&? Programming Lanquage,Report, Polish Scientific Publisher,
Warsaw 1983

[War84] Warmechowski,M., An Algebraic Model for Froving MNadress Fronerties
in Languages with Prefixing ané Module Nesting,Manuscripnt,

Tnstitute of Informatics, Universitv of Warsaw, 13084

