ANNALES SOCIETATIS MATHEMATICAE POLONAE
Series IV: FUNDAMENTA INFORMATICAE I. 1 (1877), I-17

Algorithmic logic and its applications
in the theory of programs I

GRAZYNA MIRKOWSKA

University of Warsaw
Received November 5, 1975

AMS Cotegories: G3A05. 02C03

Abstract. The paper presents tools for formalizing and proving properties of
programs. The language of algorithmic logic constitutes an extension of a program-

"ming language by formulas that describe algorithmie properties. The paper contains

two axiomatizations of algorithmie logic, which are eomplete. It can be proved that
every valid algorithmic property possesses # formal proof. Ax analogue of Herbrand
theorem and 2 thecrem on the normal form of a program are proved. Results of meta-
mathematical character are applied to theory of programs, e.g. Paterson’s theorem
is an immediate corecllary to Herbrand's theorem.

Introduction

The aim of this paper is to discover general laws connected with pro-
grams, their properties and calculations.

A program is an expression of a formal language constructed with -
use of variables, signs of functions and relations, by means of logical
and program connectives. The variables may be interpreted as names
of cells in a computer’s memory. The definition of an algorithmie
language given here allows one (by an alteration of the set of fundamen-
tal signs) to obtain different fixed programming languages. Thus it is
in fact a definition of a class of languages. The interpretation of the
language consists in the definition of the sense of all functional and re-
litional signs. This is in accordance with the programers intuition that
they are connecting with the word “implementation” of the language &
in the machine M. For any fixed language we can consider its different
interpretations in different (but similar) relational systems. The notion
of valuation as a funetion that assigns values to variables iy a formal
equivalent to the notion of “memory state”. Expressions of the
language are interpreted as funetions (possibly partial) of the set of valu-
ations into an appropriate set of values that depends on the tyhe H%f the

[1]

2 . G. Mirkowska - "

expression. A program is interpreted as a partial funection from the set
of valuations W into W. The properties of a program are expressed by
formulas of the form Ka. The value of such a formula is false if the com-
putation of K does not end or if the valuation we have obtained doecs
not satisfy the condition «. The formulas of that form allow us to ex-
press at most all elementary properties of the program: halting problem
K1, correctness (e¢=Kf), equivalence (Ka<Ma).

In this work two axiomatizations of algorithmic logic are given:
standard and Gentzen-style axiomatization. Completeness theorem for
the respective deductive system is proved. A theorem analogous to the
Herbrand theorem in elassical logic is'obtained. This theorem is useful
in investigations connected with classification of problems in the pro-
gram theory.

Problems presented in this paper have been explicated by many
anthors in different direetions. There have been discussed guestions of
effectivity [3], many-valued algorithmic logic [8], [9], modular strue-
ture of programs and correctmess [1], [2], applications of algonthmlc
logic to procedures [12] and others.

1. Algorithmie languages

The language of algorithmic logic is a formalized langnage; see [10].
To construct it, we have to distinguish a set of signs called the alphabet
and to pive rules of creating admissible expressions in that language.
The alphabet fixes a language of algorithmic legic (algorithmic language)
a8 well as a programming language. Int this section we shall define a class
of languages; each of them is uniquely determined by the alphabet.
A language of that class is an extension of the language #° introduced
in [11].

DrrFiniTION 1. By an alphabet of algorithmic language we shall mean
a set A which is the union of disjoint and at most enumerable sets

Vi’ Vﬂ? nL;gJ\F@mJ U?\,TPm’ LD! Ll? L21 Q! H? U?

where .

(1) V,; denotes the infinite set of individual variables;

{2) V, the infinite set of propositional variables; we assume that
the set V,uV, is linearly ordered by a certain ordering relation;

{3) 4 the set of non-negative integers;

(4) @,, the set of m-argument functors;

(b) P, the set of m-argument predieates;

(6) L, the two-element set of logical constants denoted by 1 and 0

(1) L, the one-element set of one-element logical functor ~, called
negation ;

Algovithmic logic and 'its opplications 3

(8) L, the set of two-argument logical functors n, v, = called con-
junction, disjunction and implication; :

(9) @ the set of signs M, U called the existential ileration quan-
tifier and the universal ileration quantifier; . .

(10) IT the seb of program connectives ©, ¥, * called composition,
branching and iteration sign, respectively;

(11) U the set of auxiliary signs /,[,1,(,)-

We now recall definitions of terms and formulas that are used in
clagsical logic of the first order, see {10}

DermNirIoN 2. By the set of all cdlassical terms we shall nnderstand
the least of expressions T, closed under the following two rules:

(1) if = belongs to the set of individual variables V,, then z belongs
to T';

(2) if ¢ is an m-argument functor of the alphabet A and if 71, -0y Tn
are terms in T, then the expression @(Tyy -««; Tu) belongs to T

DEFINITION 3. By the set of all open classical formulas we shall under-
stand the least set of expressions F closed under the rules:

(1) if aeV,, then aek, and 1eF, 0cF;

(2) if o is an m-argument predicate and if 74, ..., T, are terms, then
9(717 £ S Tm.)EF;

{(3) if a« and B are formulas, ie. «, feF, then the expressions ~ a,
(auB), (anp), (a=F) belong to F.

These two notions are used to the construction of othel expressions
of algorithmic language.

DEFINITION 4. The set of substitufions S is the least set containing
all sequences of signs from A of the form: [@4/7, veey BTy G1f01y o1y
a,,/a,], where &, ..., ¥, denote different individual variables, @y, ..., %
denote different propositional variables and ¥; for ¢ =1,..., %, ¢ for
j=1,..., m denote elements of the set T or F, respectively.

Flements of the set 8 will be called substitutions. Numbers %, m Call
be equal to zero, i.e. the substitution ean have propositional variables
{n = 0,m #0) or individual variables only (m = 0,n + 0), or the sub-
_stitution can be empty (n =0,m = 0).

DEFINITION 5. By the language of algorithmic logic we shall mean
the system

(A, T, F,8, FS, FST, FSF>,

where A is the alphabet of the language, T is the set of classical terms,
F is the set of classical. formulas, 8 is the set of substitutions; F8,
PST, FSF are sets of programs, terms, formulas in the algorithmic
language defined as follows:

4 . " 6. Mirkowska

The set of programs FS is the least set containing all elements of §
and closed under the rule

P. f ceF and K, MeFS,. then the expressions o[KM], v [a K M],
*[aK] belong to the set FS. ; :

The set of terms FST is the least set eontaining all classical terms 7T
and closed under the rules:

ty. if 7;,...,7, are in ST and i ¢ is an n-argument functor, then
(1, ..., 7,) is in FPST;

t,. if K is in F'§ and if v belongs to FRT, then (Kv) is in FST.

The set of formulas FAF is the least set containing the set ¥ of all
open classical formulas and closed under the rules:

f,. if =, ..., 7, are any terms, 7,e F87,¢ =1, ..., n, and if ¢ is an »-argu-
ment predicate, ¢ e P,, then the expression e{z1, ..., ,) belongs to FRF;

f,. if « and g are in FS¥, then ~ a, (anf), (aup), (a=4) are in PS8,

f3. if K is a program, i.e. KeF8, and if a is a formula (acFSF), then
the expressions (Ka), {) Ka, (| Ka are in FSF.

To conclude this section we introduce other notation frequently used
in the sequel.
Let s denote an element of the set S such that

8 = [@y/7y, ..., mn/'rma'llali ooy O fag,]

and let o be any proper expression of the algorithmic langnage 2, i.e.
let we(FPSUFSF WFS8T). By sw we shall denote the expression obtained
from w by the simultaneous replacement of all occurences of variables
%y,...,x, by terms T1y..y 7, and variables @,,...,a, by formulas:
y;ene, . ’

We shall frequently make use of the following two simple remarks:

(1) If a is an open classical formula and if 7 is a classical term, then
for every se§, sa is an open classical formula and st is a classical tern.

(2) If s is of the form (1515 coes @y fUs @ fby,y ..., a,./b,], where
Tayeeoy @py Yas 0.y Y are individual variables and a,, ..., @y byy ooy by,
are propositional variables, then for every program K, 5K is in the set
F8S.

The set of all variables occuring in the expression o will be denoted
by V{(w).

- DEFINITION 6. By an elementary formula in the algorithmic language
< we shall understand any formula of the form e{ryy ..., 7,), where
" g€P, and v,,..., 7, are in FST.

Algorithmic logic and ils applications b}

2. Realization of algorithmic langnages

Let J be a non-empty set and let B, be a complete Boolean algebra
with operations A, v, -, —. The unit element of B, will be denoted
by 1 and the zero element by 0.

Dermurion 1. By a valuation v in the set J and the algebra B, we
shall understand any pair of mappings (%, 2%) such that

o Vi—dJ, 9% Vy—>B,.

The set of all valuations will be denoted by W, so that W = J % B, °.

DEFINILION 2. By a realization of the language % in a non-empty
set J and in a Boolean algebra B, we shall understand any mapping
R assigning to every m-argument functor ¢e®, an n-argument oper-
ation ¢y in J and to every m-argiment predicate ¢eP,, an m-argument
relation ¢ in J. Any realization R of the langnage J “induces partial
mappings: a, from the set W into J, Ky from the set W into W, and a
mapping ap, ag: W—B,.

We now give precise inducitive definitions of these ﬁmctlons Let »
be an element of the set W; then

rp0. For every substitution s = [@,/71, ..., &, [Ty, G1/C1s ..., 6y lan],
splv) =9
where 2 = {0 (&) }zep,or, 304 7 (z) = »(2) for 2E{@y, Ny By Bry onny Qo)
v{z;) = 150) for i =1,...,n, v{a;) = 7xlv) for ¢ =1,...,m;
rpl. Assume that mappings K5, My, ap are defined; then

Mp(Kg(v)) it the mapping Ky is defined at the
valuation » and My is defined at the valu-

o LK M Jg{v) =l ation Kg(v),
undefined otherwise;
K g(v) if ap(v) =1 and Kg(v) is defined,
v [aE M) = (M (v} if ap(®) = 1and My(v) is defined,
undefined in the opposite case;

Hiw)(h where ¢ is the least natural number such
that (K'e)g(v) = 0, Ei{v) is defined and
(Kla)plv)y =1 for j <1,

undefined otherwise;

* [aK]5(v) =

rt0. For every zeV,;, zx(v) = v'(%);
rtl. Given mappings 7,p,..., T,z, then for every functor ¢e®,, the

(!) K! denotes the program o[Eo[K ... o[KK]...].

1 times

6 © G. Mirkowska

realization of the term ¢(zy, ..., 7,} defines the following mapping:
[or(tiR(®), ...y T.5(0) if all mappings 7y, ...
(-) (v) = vy T 8re defined at
P71y -oor TupRAY) the valuation », '
undefined otherwise;

rt2. Let us assume that mappings K, 7y are defined; then
Ty () if Kg(v) is defined,
undefined otherwise;

(Kz)g(v) = [

The mapping a will be defined in an analogous Way
rf0. If a is in ¥,, then ag(v) = v%a).

"Given v, ..., Tyg, ax, fr and Kp, we can define:
rfl. , '
‘ : IQR(rIR('u), cees Tur(v)) whenall values r;5(v), i < n,
0{Tyy -1y ,,)R(v) . are defined,
S ~ 0 _ in the opposite case;
rf2. : ;

{auB)g(v) = ag(v)v Br(v), B
(anf)n(v) = ag(v)n Bg(v),
(a=B)alt) = aglv)> xl),
(~a)g(v) = —ag(v);
13,
| if Kg (v) is defined,

e (K (’U))
(Kea)gp(v) = {0R - otherwise,

(U Kajg(v) = Lub. {(K'a)p®)ien »
(ﬂ Kﬂ)R(’”} = g.Lb. {(-K,ia)R{ﬂ)}id' :
DeriniTioN 2. We shall say that the valuation v satisfies the formula
a in the realization R if and only if ag(v) = 1.
The formula a is valid in the realization R if ag(v) = 1 for every valu-

ation @.
By a tautology we shall understand any formula « that is valid in

every realization of the algorithmic language.

Dermarion 3. We shall say that o is a closed formula if in every
realization R the value of « does not depend on the choice of the valu-
ation.

3. Properties of realizations .

In the sequel, equalities of the form Ky(v) = Mgz(n), 7z(v) = Tr(?),
where K, M cFS and v’ e FST, are to be understood as follows: the left-

Algorithmic logic and its applications 7

_hand side of the equality is defined if and only if the right-hand side
is defined; if both are defined, then they are identical.

Let us observe that ‘

(1) the value of formula, term or program depends only on values
of variables that occur in it;

(2} if a program is written without the symbol *, then its value is
defined in every realization and for every valuation.

Consequently, we have

TiEMMA 1. For cvery program KeFS, formula aeFS8F, term e F'8T
and for every vealization R of the language & and every valuation v, of
V(E)nV{a) =@ and V(E)nV(z) =0, then

(i) if Kx(v) és defined then

ag(v) = (Ha)g(v) = (ﬂKa)R(”)'f
r(v) = (K7)g(v),

(i) (\UKd)r®) = aglv)-

LEMMA 2. For every realization R and for every veluation v

(i) (s7)n(v) = stR(0),

(ii) (sa)p(v) = Sag(v),

where teT, sef and acF.

Proof: The proof is by induction on the length of the term and of the
formula. et § = [£/Tay «rny By fThs Bafayy -+ vy U fam]e I reV, and ae¥,,
i.e. 7 — zand a — a, then of course (sz)p(v) = SZx(v) and (sa)r(v) = sag{v)
for cvery R and v. Suppose that the lemma holds for terms z,,.:.,7Tp
and let us consider a term 7 =g@(zy, ...,7,) and a formula a = o(7y; ...

s i)y where pe®, and geP,. By definition of mappings o and vg,
we have

(W('ﬁ; sasy Tn))R(’f’) =¢r ((37-'1)}1(’”), veey (STyz)R(”)) =@r (S_Tm(?’)r seey Enn(’”))

= @ {87y, -, 87,)g(V) = 8TR(V)

and

(89(71’ RS Tﬂ))R(v) = E’R((STI)R('UL e (STu)R(”)) = OR (s_r!R(Q’)s 1eay .g'?"R('u))
= Q(E'n tey é'_fﬂ)n,("}) = ‘;'ER('U)-

Now suppose that (sa)g(v) = sag(v) and (sf)r(?) = $Bg(v). Let y be
of the form o®f where ® denotes any of the two-argument
funectors v, n or =. Consider the formula sy: we have (sy)g(v} = yR(sR('v))
= Qg (SR(”)) ® Brisa(v) = sap(v) ® 8fg(v) = Syg(v). m

Liet us observe that in the above lemma the fact that we have con-
sidered only classical terms and classical open formulas 'is esgential. The
replacement of variables by terms and formulas does not always lead
from proper expression to proper expression in algorithmie logic. However,

B o G. Mirkowska

if we consider substitutions of a special form, then Lemma 2 can be for-
mulated more generally. ;
LEMMA 3. Let s be a substitution of the form [wfy,, ..., B [Yys @by, ...
cooy O by], where xy, ..., @, Y, ..., Ym€Viy @y iy, by, ..., b, eV, and
Yi # Y;,b; £ b for i £ 35 For every realization R of algorithmic language
¥ and for every valuation v, the following properties hold:
(1) for every zeFST, if {y,, vy Wy By b3 0 Vi) =@, then

(s2)p(v} = sTp(9);

(2) for every formula a, U Y1y ooy Yoy by o, by Via) = &, then

(sa)p(v) = sag(v); ;

(3) for every program K e F8, U {Yrsveey Yy byy -ns, b} V(K) =0, then

(o[sK 2)n(v) = (sKy)p(v) for i =1,...,n, and

(o[sK]a;)p(v) = (sKb)p(v) for j = 1,...,m and -

Jor ze{yn,y coos Yoy byy o0 bty 2 (31_31 (KR(”))) == zR(sKR{SEI(?J))).

Lemma 3 implies the important fact that every term can be rep-
resented in the form Kz, where 7 is a classical term. Consequently, every
elementary formula o(ry, ..., r,) can be written in the form Koz, ...y 70),

where 7,...,7, are classical terms. To prove this we must introduce
some auxiliary notions.

DeriNTIIoN 1. By a sublerm of term » we shall understand every

term 7’ such that either
- (1) =’ is identical with =, or

(2). it = is of the form KHz", then +’ is 2 subterm of '’y or

(3) if v is of the form ¢(z,,..., 7,), then 7’ is a subterm of one of the
terms 7,,..., 7,.

DEriNITION 2. For every term and for every elementary formula we
define by induction on the length of the term the operation 7 in the fol-
lowing way:

(1) x(z) = = for every term = from the set T.

Let us assume that y is defined for all terms shorter than +.

(2) If 5 is of the formn Kz, then 2(Hz) = Ky(r);

(3) If n is of the form ¢(z,, ..., 7}, p€®P,, ¢ is an n-argument predi-
cate and ¢ i§ the smallest number such that i =n, 1;¢T and K~ i3 the
first on the left subterm of 7;, then we put

Z(‘P(Tn rers Ty eeny Tn)) = O[S_ISK]X(‘P(TM ey Ty T Tig1s eeny Tu))’
Z(Q(Tu ceen Tiyeeny Tn)) =o [sqlsK]Z(Q(TU vy Ty, T Tig1s onvy Tn)):
where s is the substitution which to every variable of the set V(K7z)

assigns -a variable of the set V;uVe— LUV (r;) according to the ordering'
' g . i=1

Algorithmic logic and ils applications 9

relation in the set V,uV,.s"! is the inverse substitution to s and =’
arises from the term 7; by exchanging sz into Kz.

LevMMA 4. For every realization R and valuation v we have: for every
term ©eFST, 15(v) = z(v)hnd for every elementary formula a, ag(v)
— 1(a)g(0). K

Proof: We shall prove the first equality by induction on the length
of the term. 1If z¢ V,, then by Definition 2, zi(?) = y(2)z(v) for every
realization B and every valuation v. Let us assume that the lemma holds
for all realizations, all valuations and all terms that have less signs than z*.

‘We consider three cases:
— if »* is a classical term, then obviously

2{t")z(®) = 1R(v),

— if 7* is of the form (K<), then by inductive assumption we obtain

2 (E2)g(v) = (Hx(z))p(v)
3 1r(Kgp(v)) « if Kg(v) is defined
" | undefined otherwise

= (Kz)p(v};

— if v* is of the form ¢(z,, ..., t,), Where z; is the first term in the
gequence 7,, ..., r, such that ;¢ and Kv is the first subterm of 7; in
that form, then

z(z*) =0 [3_13E]I(‘P(Tn 2eey Ty Tapgg cony Tn))r

where s and ¢’ are as in Definition 2. Now, observe that the term
@(T1y ooy Ty Typyy -, Tp) Das less signs than ¢(zy, ..., 7y..., 7,), and so by
induetive assumption

PTry eres Ty Tiggy ooy TIp{W) = Z(‘P(Tl: sy & 3 6oty Tn))n('f’)-

Let us consider a certain realization B and a valuation ». If K, (v)
is defined, then o[s 'sK]p(v) is defined, and conversely. So, if Hp(v)
is undefined, then vy (v) is undefined and z(r*)p(v) is undefined. If Kz (v)
i3 defined, then we have

X (51"(‘!'1, ne Ly Tﬂ))R(Q’)
= ?’R(TJR(O [S_IEJR(”))s ey 7;2(0 [S_IER](”)L reuy TuR(O [S_ISK]R(’U)))-
But V(s_l?)nV(rj) =@, s0 by Lemma 1

(K57) = e lom @) = mate) for § i,

- 10 . ¢ G, Mirkowska

and by Lemma 3
(o [s“sK]sr)R(v) = srR(sItR(sR 'v))) (st R(sR‘ (Kn(fv)))
= (87 (s0))p (KR (@)} = (o [s7's]7)a (K ()]
| - 1z{0 [s_ls]R(KR’('v))) = (Kv)p(v).
Hence
2(7%)nlv) = TR(v).

The proot‘ for elementary formulas is sumla.r

Lemta 5. For every term veFST and for every elementary fo’rmula,
a there exist a program K, a term t* and an elementary formula o* such
that for every realization R and for every valuation v,

7r(?) = (Kv*)p(v), @eg(v) = (Ka)p(v). ®

. LEMMA 6. Let R be any realization of the algorithmic language, v any
valuation, K, L, M — programs, a, 8, y, 6 — formulas, a, pcF, 6,ycFSF,
and T, Ty, ..., 7, — terms. Then the following equalities hold:

1p. o[Ko[ML][p(v) = oo [KM]L|g(»),

 2p. o|xv[aKM]L|p(v) = v [ac[KL]o [ML]|g(v),
3p. x[LEM]p(v) = Kp(v) = v[aKK]g(v),

4p. v[TTaKM]p(v) = v[aMEK]g(v),

5p. x[(anf)EMp(v) = v |ax[BEMIM]R(v),
6p. ~[(aUB)KM1p(v) = v [aKv[BEM |[p(v),

7p. *[aK])p(v) = v |ao[K+[eK1}[I]r(v),
1t. {Kp(ry, ..., 7)) = 9(E7y, ..., K7,)p(v). w0here ¢c @,

2t. (o[EM]7)g(v) = (K (M7))p(v},

if. (Ko(ry, ...y T))r(®) = o(Brq, ..., K1,)5(v) where o¢P,,
2t (K (ynd)p(v) = (KyaK8)g(v),

3f. (E(yué))r(v) = (KyuK 8)x(v),

df. (o[KMy)p(v) =|(K(My))g),

5f. (x[aKM]y)p(v) = ((anKy)u(TlanMy))g(v),

6f. (+[aKIy)p(v) = (U x[eK[]](ynT1a)r(v),

i (U Ey)e(®) = (yo U E(Ey))x),

8f. (ﬂ E‘J’)R(’U) = (‘V” ﬂK(Ky))R('v)

The proofs of the above equalifies are, in general, verj ‘simplé. We
shall prove only two..of them. :

Algorithmic logic' and ils applications : 11

7p. Let us illustrate the equality by the following diagrams:

Let B-and v be any realization and any valuation. By the definition of

realization we have

K (v where 4 is the least natural number such

[aK Jp(v) = that (K'a)p(v) =0 and Ki(v) is defined,
undefined if such 7 does not exist; '

v if ap(®) =0,

Ki'(Eg(v)) if there exists a natural number ¢ such that
(Kia)p(v) = 0 = (K" a)g (Kx(v)) and for all
i<i, (Kja)R(”) =1,

undefined otherwise;

_qw | if ap(v) =0
~ |o[E#[eK]|g{v) in the opposite case

= v [ao[K+[aK | 1]a(v).
’ 1t': (K‘P (T_l:' " '_'7 rn.))R(’U))
_ {(p(rl, coy T)p{Ep(v)) if Kp(v) is defined,

~ | undefined otherwise;

ve(te(Er(®), ..., T Ep(®)) if Kg(v) is defined and for
' i=1,..,n terms 75(Kp(v))
_‘ are defined, ' '
undefined o .otherwise;

= ¢ ((E7), .-y (E7,)|r(0).

12 ‘ G. Mirkowska

6f. { J v [eK [J|(Tleny)r(») =1 if and only if there exists a natural -
number ¢ such that (v [aK[JJ/(TJany))z(v) = 1. So there exists the
smallest ¢ with this property; let ¢, be this number. Then

(v [aK[*(Tanp)alr) =1,
(v [eE[I (Tamp)rl®) =0, j<i,

Hence v [aK]]]j%(fv) = K%(v), where p is a natural number not greater

then 1,. Suppose that p < ¢,. Then there exists a natural number j, < 7:,,

such that ag(v [aE[]|j v)) =0. But we have v [eK[]]’"Jrl

v |aK []]R(v [l [JR(0)) = x [aK{] “(v) and then for every §>j,
v oK]]R('u = v [aK []|}(v). This implies that for j = 4,,

(Tany)a(x [eE [JR(0) = (Tany)p(x [«K[J2@),

which contradicts (1). So p =4, and ap{v oK]]R () =1 for j <i,.
As a.eonsequence we have.v [aK [i) = Ef(v) for j.< iy, and ag (I(J 1;))
=1 for j <iy. By (1), yg{Ej(v)) =1 and ap(K5(») = 0 for § = i,.
Henece (*[aK]y)p(v) =1, m

"As a simple consequence of Lemmas 3-6 we have

LEMMA 7. For every formula a without symbols *, () , \) we can find
in an effective way an open formule agel® such that for every realization
E and every valuation v,

(1)

ap(0) = agp(v) . m

4, The semantic consequence operation

Let B be a realization of the algorithmie language % as in §2, and
let Z be any subset of the set of formulas in the language 2.

DrrINTIION 1. A realization R is said to be a model for the set Z if for
every valuation v and for every formula a in Z, ag(v) = 1.

DEFINITION 2. A formula « is said to be a semantic consequence of the
sel Z (in symbols Z F a) if and only if for every realization B of the
language .# the following condition holds: if R is a model for the set Z,
then for every valuation v, ap(v) = 1. The set of all formulas « such that
Z F a will be denoted by Cn(Z) and will be called the set of semantic
eonsequences of Z. ‘

DrriniT1oN 3. The operation which to every set of formulas Z assigns
the 'set Cn(Z) of all semantic consequences of Z is called the consequence
operation. If the set Z is empty, then instead of @ F a we will write F «
and the formula @ will be called a tautology.

LEMMA 1. For every set Z « FSF and every formula aeFSF if ZFa,
then the set Zu{Ja} has no model. m

Mgorithmio logic and iis applicalions ' 13

In the case when the formula o is closed, the above lemma can be
strengthened :
' Z k a if and only if the set Z u{ 1a} has no model.
Now we formulate the following theorem of deduection:
LevMA 2, For every sel Z < FSF and any formulas a, fcP8F, if
ZE(a=p), then (Zu{a})Fp. B
"The proof is omitted.
Let us note that the inverse theorem is, in general, not true. Consider

the following example: Z =@ and f§ = (sa). Certainly {a} F (sa) but..

there exist a realization R and a valuation » such that agp(v) = 0 and
¢g($z(®)) = 0 for certain formula « and certain substitution s.

The semantic eonsequence operation in algorithmic logic has some
gimple properties, just as the consequence operation in classical logic.
These are: '

LEMMA 3. For every sels of formulas X, Y

(i) X = Cn(X); ‘

(ii) if X < ¥, then Cn(X) < Cn(X);

(iif) Cn{Cn(X)) = Cn(X).

The simple proof of this lemma is omitted. &

Contrary to classical logic, the consequence operation in algorithmic
logic does not satisfy the condition asserting the finiteness of the process
of deduction.

TuroREM 1. The consequence operation Cn has not the following prop-
erty: if Z F a, then there exists a finite subset Z, of Z such that Z, F a.

Proof: We shall give an example of the set Z and formula « such that

¢ Zy E a, but for every finite set Z, c Z, there exists a model for Z, which
is not a model for the formula a. Let
, 4 = {([58/0]([93/%]",0 <2Wiew, @ = ([2/0]N[#/sx] 0 < x},
1 where 0 is a constant {0cd,), ¢ is a one-argument operation and 0 < is
a one-argument relation. Let B be a model for the set Z. Then we have
{([z/01M[z/s2] 0 <)z (v) = 1 for every valuation ». So R is a model for
the formula o, and Z k o. Consider any finite subset Z, of the set Z. Z, is
of the form {{[z/0]([x/sz]'0 < #))},.Z, where I is a finite sequence of
natural nmnbers. Now we define a realizafion R in the set of natural
numbers A4 as follows: the constant 0 is zero in the set .47, the operation
s is that of taking the consequent in .47, the relation 0 < is the charaec-
teristic function of the set I, i.e.

1 i =nel,
0 if n¢l.

The realization R defined in suech a way is a model for the set Z, because
for every icI and for every » we have:

0-<__n={

:

14 : . G. Mirkowska

- (/0] ([4/52)°(0 < 2)))5(0) = (0 < @) ([e/sz {21015 ()
=0<s(s... (s0)...)=1L.

i thmes

Nevertheless, if ‘iqéI, then the formula ([w/O]([a:/sw]"Ogm)) has value
0 for every valuation » in the realization R. So “1—3(") =0.m

LEMMA 4. For every formulas o, and every programs K, M the fol-
lowing conditions hold: '
() If F e and F K1, then F Ka;
(ii) If F {a=8), then F ((Ka)::—(Kﬁ));
(ili) If k (a =B), then E (Uﬂ’[a=>UJM‘B) and k(M Ma=\Mp); .
{(iv) If for every natural number ied’, F (a:(M (K"ﬁ))), then
E (a::- (MﬂKﬂ)),
(v) If for every maiural number ied’, F ((M (K'a)) :>ﬁ), then
E((MUEa)=f). :
Proof: (i) By assumption, for every realization R of the language
% and for every valuation v, ap(v) =1 and (Kl)g(v) = L. So, for cvery §
realization B and every valuation o, Kp(v) is defined and (He)g(v) 3
== ap|Kp(v)) = 1. Consequently F (Ka). - '
(ii) Let R be a realization of the language ¥ and v a valuation.
Let us consider two cases:
1. Ky(v) is defined; then ((Ka)=(Ef)z(v) = (a =B)p(Hp(v))= 1.
2. Kp(v) is undefined; then (Ka)gp(v) = (Bf)plv) =0 and ((Ka)=>
(EB)rlw) = 1.
In both cases ((Ka)=(Kp))p(v) =1, and so F ((Ka}=(HB))- ‘{
(iii} If (U Ma)r(v) = 1, then there exists a natural number iet such f
that (Ma)p(v) = 1; but then (MiB)p(v) =1L So (LMB)p(v) =1 If§
(M Ma)g(v) = 1, then for every natural number ‘e, (Mia)g(v) = 1. §
By (ii), for every ied” we have (M'B)y(v) = 1. So (M MB)p(v) = L. '
{(iv) By assumption, for every ie# and for every realization R
and valuation » we have the inequality (M (EK’a)jp(v}< fp(v) so that §
Lu.b. ({M(K"a))ﬂ(v)),-ef\{ fr(v) and consequently (M{JEa)p(v)< Ba(?)- §
Therefore k (M| JEa)=5). m

The above lemma can be formulated more generally in the following §
Way: :

=

LeMyma 5. Let Z be any sel of formulas, Z — F8F; then for every for-§
mulas a, i and every programs K, M :
(i) if Zk « and Z F (K1), then Z F (Ka);

(i) if Z F (a=B), then Z ¥ (Ka=Kp); | :
(i) if Z F (a=p), then Z F (UKa=\UKB) and Zk (NEa=Ep);}
(iv) 4f for every ied", Z k ({EII(K"a)) —_-—ﬂ)_, then Z & ((M_HKae)=-f); ‘
(v) if for every iedy, Z F (a (M (E'B))), then Z F (a=(MNEP). =

‘l:llgom'thmic logic: and ils. applicalions , 15

5. A formalized consequence operation

Let % be a formalized algorithmic language as in §1. By a, 8, v we
shall denote any formulas in ¥FSF, 6 — an open classical formula, 8§ —
a substitution, K, M — any programs and 7, — any term. The formula
a<>§ will be used as an abbreviation for ((a=§)n(p =a)).

By an aziom of algorithmic logic we shall understand any formula of
one of the following forms:

T1. ((@=8)=((8=7) >(a=7))),
TZ. {a=> auf))

T3. (B=(cup),

Ta. ((a=y)={(B=7) :»(<auﬁ)w)))
T5. ((anf) =),

T6. ((anf) =a),

7. (7 =a) ={(y =) =(r =(anB)))),
T8. ((a =(8 =) =((anp) ::wy)),

9. (lanp)=r)=(a=(8=7)),
T10. ((ar‘_]a) :>ﬁ),

T11. ((a =(an —la)) = —}a),

Ti2. (au "a},

T13. (1=0),

T14. ((sa)<>$a), for every open formula q,

T13. ((Kg(rl,. o T <=e (K7, ..., (Kru))),}for every #n-argument
T16. (0(71s .0y Tn)<=y, (gl 5 <o ,,))), predicate geP,,

T17. ((K(auﬁ))-¢>{(Ka)u(Kﬁ))),

T18. (K (anp))<((Ka)n(KB))),

T19. ((E Ta) =("1Ka)),

T20. (K1) =((T1Ka) =X Ta))),

T21. (K (a=B)}=((Ka) =>(Km))

T22. ((Kl =(((Ka)=(Kp)) =(K(a=p))))
T23. (M\ JKa)<((Ma)yu(M K Ka)))),
T24. (MO Ka)={(Ma)n (MK (Ka))),
T25. ((o[KM]a)?(K(Ma))),

126, ((x[8K M]a)<((d0(Ka)) o T (Ma)))),
T27. ((*[6K Ja)<|) »[6K[]I—ll'({\rina)).

16 G Mirkowska

We shall admit four rules of inference:
a, (=)
g7
a, (K1)
" (Ha)]
{(?’ *(M(Kia)))}iex.
(y =(MNKa)) ’
(31 (K a)) =i
(M JKa)=v)

rl.

The formmulas over line in rules rl, 2, r3, r4 are called premises and the {

formulas underneath — conclusions.

DEFINITION 1. The consequence operation O is the mapping which to
every set X of formulas in %, X < FSF, assigns the least set U(X) of

formulas satisfying (a), (b) and closed under the rules ri-r4 (i.e., if premises

of a fixed rule of inference belong to C(X), then the conclusion belongs
to C(X)):

(8) X = C(X),

(b) all axioms are in C(X).

DEFINITION 2. A deductive system (&, ¢ will be called an algorithmic
logic, and a system (&, C, o>, where o = F8F, an algorithmic theory.
As one could expect, the process of deducing is more complicated than
in classical logic, on account of the rules r3, r4. For that reason the
notion of formal proof in algorithmie logic has been changed as follows.

DEFINITION 3. By 2 tree we shall mean a set 9 of finite sequences of
natural numbers such that if any sequence ¢ = (iy, ..., %,) is an element
of 2, then every initial segment ¢, of ¢, ¢, = (iy, ...,), 18 also an element
of 9. The empty sequence denoted by @ belongs to every tree. _

For any ¢ = (iy, ..., %,), the number = is called the level of the element
¢ in the tree 9. By a level of the tree @ we shall mean the set of all elements
that have the same level.

+ A subset of & such that its elements are linearly ordered with respect
. to the relation “to be an initial segment” is called a branch of the iree 2.

The tree is finite if all its branches are finite sets.

DERINITION 4. By a proof of a formula a from the set X we shall under-
stand the ordered pair (2, d), where 2 is a finite tree and d is a mapping,
d: 9 —>FSF which to every ¢ eZ assigns a formula d{c) defined in the
following way: ‘ .

1. d(c) is an axiom or d(c)eX for every maximal element ¢ In %;

2. for any other element ¢ = (2, ..., 4,), d(¢} is a conclusion in 2 rule
of inference from all formulas d(%,, ..., %,,j) such that (4, ...,%,,j)eZ.

%

-

Algorithmic logic and its applicalions : 1%

By a theorem in the theory 7 = (¥, C, o) we shall understand any
formula that has a proof t‘rom_ the set of specific axioms 7.

Lemma 1. For every formula a, a is a theorem in (&, C,=Z> if and
only if acC(). W

LEMMA 2. If a is @ theorem in algorithmic logic, then a is a taulology,
ie. 0(@) c Cn(V). m ‘

Thé proofs immediately follow from lemmas 3.4, 3.7, 4.4.

The second part of this paper will be found in the next issue of this
journal.

References

[1] Ban achowm Data structures, Reports of IMMUW 46.

[2] —, Investigati f properties of programs by means of the exlended algorithmic
tagw, doctoral dlssertatmn Warsaw University 1975.

[3] Kreczmar, A., The set of all tautologies of algorithmic logic is hyperartthmelical,
Bull. Acad. Polon. Sei., Sér. Math. 21 (1971), 781-783.

[4] Kuratowski, K., and Mostowski, A., Sel theory, PWN, Warsaw 1966.

[5] Mirkowska, G., On formalized systems of algorithmic logic, Bull. Acad. Polon.
Sei. Sér. Math. 19 (1971), 421-428.

(61 —, Algoritkmic logic and its applications in the theory of programs, doetoral disser-
tation, Warsaw University 1972 (in Polish).

[7] —, Herbrand theorem in the algorithmic logic, Bull. Acad. Polon. Sci., Sér. Math. 22
(1974), 539-543. '

(8] Rasiowa, H., On logical structure of progmms, ibid. 20 (1972), 319-324,

[9]1 —, Exlended wt-valued algorithmic logic, ibid. 22 (1974}, 605-619.

{103 Rasiowa, H., and Sikorski, R., Mathemalics of melamathematics, PWN,
Warsaw 1963,

[11] Salwicki, A., Formalized algorithmic languages, Bull. Acad. Pol. Sci., Sér. Math.
18 (1970), 227-232.

[12] —, Programmability and recursiveness, to appear.

