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Abstract. Collatz conjecture has a proof.
We present a couple of observations. 1. The problem is of algorithmic nature, The conjec-
ture states that Collatz algorithm Cl enjoys the halting property. 2. There is an evidence of
infinite execution of the program in a non-standard model of Peano arithmetic. 3. For every
natural number n there exists numbers x, y, z such that the equation n · 3x + y = 2z holds.
4. Another algorithm IC computes on triples x, y, z. The consecutivve states of memory
of any computation form monotone, descending sequences. 5. Hence, if a computation on
triples is finite and successful then the corresponding computation of Collatz algorithm is fi-
nite too. 6. We construct an infinite set Z of elementary sentences that express the negation
of halting proprty of Collatz algorithm. 7. The set Ax′ of formulas that contains all axioms
of elementary theory of addition of natural numbers and the set Z is consistent and has a
model. Let M denote any structure which is a model of axioms Ax′. 8. We show that the
structure M is not isomorphic to the standard structure of natural numbers with addition.
From this we infer that execution of Collatz algorithm in standard model of arithmetic is
finite.
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1. Introduction

The conjecture formulated by Lothar Collatz in 1937 is an algorithmic problem 1. It should be
shown that the following Cl program, executed in the standard structure N of natural numbers
with addition2 has a finite computation for each n 6= 0 .
We will be investigating the stop property of the following Cl program.

Cl :


while n 6= 1 do

if even(n) then n := n
2

else n := 3n+ 1 fi

od


In 2004, we noticed that there is a counterexample, see Appendix C (page 26). The two conclu-
sions that can be made out of it, are:

• The formulation of the Collatz hypothesis requires clarification that the calculations are
carried out in the standard model of natural numbers with addition . Note that, the opera-
tions of multiplication by 3 and division by 2 can be defined in Presburger arithmetic by
means of addition.

• The Peano axioms, much less the Presburger axioms, are not sufficient to prove the con-
jecture.

And we found that if the conjecture is true, then it is a theorem of the algorithmic theory of
natural numbers AT N , (see the page 3).

2. Halting formula

Halting formula of a program K is any formula χ that expresses the finiteness of a computation
of the program K.
Note, for many programs, their halting formulas are beyond the language of first-order logic.
However, for every program its halting property can be expressed by an algorithmic formula of
program calculus (i.e. algorithmic logic).

1It may be surprising that some people place this problem in the theory of dynamical systems.
2programmers may prefer another formulation: execution of CL algorithm in unsigned integers of unlimited preci-
sion
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The following formula (halt) expresses the halting property of Collatz program Cl. It is to
be shown that the formula is valid in the structure N of natural numbers with addition.


while n 6= 1 do

K : if even(n) then n := n
2

else n := 3n+ 1 fi

od

 (n = 1) (halt)

Formula (LC) that asserts, there exists an iteration of the program K, such that the condition
(n = 1) holds after execution of program Ki is a halting formula of program Cl too.

⋃


if n 6= 1 then
if nmod 2 = 1

then n← 3n+ 1

else n← n div 2

fi


fi


(
n = 1

)
(LC)

Our goal is to show that the halting formula is valid in the standard structure N of natural
numbers or to prove the formula in algorithmic theory of natural numbers AT N . For any
model of the theory is isomorphic to the structure N . See [MS87], page 139.

——————————————- Axioms of AT N ——————–


∀x x+ 1 6= 0

∀x,y x+ 1 = y + 1 =⇒ x = y

∀x {y := 0; while y 6= x do y := y + 1 od} (y = x)

 (ATN)

The last axiom says:every element x is reachable3.
————————————————–

Making use of axioms of calculus of programs AL and axioms of algorithmic theory of natural
numbers AT N we can write a couple of formulas that are equivalent to the halting formula
halt.

3Note, operations of addition, multiplication and any recursive function are definable in this theory.
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Below we display one of these formulas

(o(n) ∧ n = 1)∨
(e(n) ∧ o(n

2
) ∧ n = 2)∨

(e(n) ∧ e(n
2
) ∧ o(n

4
) ∧ n = 4)∨

(e(n) ∧ e(n
2
) ∧ e(n

4
) ∧ o(n

8
) ∧ n = 8)∨

(e(n) ∧ e(n
2
) ∧ e(n

4
) ∧ e(n

8
) ∧ o( n

16
) ∧ n = 16)∨(

e(n) ∧ e(n
2
) ∧ e(n

4
) ∧ e(n

8
) ∧ e( n

16
) ∧ o( n

32
) ∧ n = 32)∨

o(n) ∧ e(3n+ 1) ∧ e(3n+1
2

) ∧ e(3n+1
4

) ∧ e(3n+1
8

) ∧ o(3n+1
16

) ∧ n = 5

)
∨(

(e(n) ∧ e(n
2
) ∧ e(n

4
) ∧ e(n

8
) ∧ e( n

16
) ∧ e( n

32
) ∧ o( n

64
) ∧ n = 64)∨

e(n) ∧ o(n
2
) ∧ e(3n+1

2
) · · · ∧ n = 10

)
∨

e(n) ∧ e(n
2
) ∧ e(n

4
) ∧ e(n

8
) ∧ e( n

16
) ∧ e( n

32
) ∧ e( n

64
) ∧ o( n

128
) ∧ n = 128)∨

o(n) ∧ e(3n+ 1) ∧ e(3n+1
2

) · · · ∧ n = 21)

e(n) ∧ o(n
2
) ∧ e(3n+1

2
) · · · ∧ n = 20∨

o(n) ∧ e(3n+ 1) ∧ o(3n+1
2

) · · · ∧ n = 3

∨


if n 6= 1 then
if nmod 2 = 1

then n← 3n+ 1

else n← n div 2

fi


fi



8

⋃


if n 6= 1 then
if nmod 2 = 1

then n← 3n+ 1

else n← n div 2

fi


fi


(
n = 1

)


Based on these experiments, we can make some observations:

• There are many equivalent formulas that express the halting property of Collatz algorithm.
In particular (by axiom Ax16

4, each formula δi from the sequence {δi}, i = 0.1.2. . . .

i∨
j=0

{Kj}(n = 1) ∨ {Ki+1}
⋃
{K}(n = 1) where i = 0.1.2. (δi)

is a halting formula of Collatz algorithm.
Evidently, the property can be expressed by other formulas.

• There is an easy way to create the i + 1-th formula of this sequence
i∨

j=0

{Kj}(n =

1) ∨ {Ki+1}(n = 1) ∨ {Ki+2}
⋃
{K}(n = 1)

4Ax16.
(⋃
{M}α ≡ (α ∨ {M}

⋃
{M}α)

)
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• Let an algebraic structure A has the signature consistent with the signature of elementary
theory of natural numbers with addition, let v be a valuation of variable n. From the
definition of semantics we have

(δi)A(v) = l.u.b.
i∈N

( i∨
j=0

{Kj}(n = 1)

)
A

(v)

• the correspondence between the levels of the Collatz tree and the components of the
halting formula is clearly visible,

• at higher levels of the Collatz tree more and more odd numbers appear - and the subse-
quent components of the halting formula are alternatives of longer and longer conjunc-
tions of factors o(�) or e(�),

• Note, the alternative (n = 128 ∨ n = 21 ∨ n = 20 ∨ n = 3) may be written as follows
(n · 30 + 0 = 27 ∨ n · 31 + 1 = 26 ∨ n · 31 + 4 = 26 ∨ n · 32 + 5 = 25).

In the section 4 we shall use this observation.

3. Collatz tree
It is easy to notice that the set of those natural numbers for which the computation of the Collatz
algorithm is finite, forms a tree.

Definition 3.1. Collatz tree DC is a subset D ⊂ N of the set N of natural numbers and the
function f defined on the set D \ {0, 1}.

DC = 〈D, f〉

where D ⊂ N, 1 ∈ D, f : D \ {0, 1} → D.
Function f is determined as follows

f(n) =

{
n÷ 2 when n mod 2 = 0

3n+ 1 when n mod 2 = 1

, the set D is the least set containing the number 1 and closed with respect to the function f ,

D = {n ∈ N : ∃i∈N f i(n) = 1 } .

As it is easy to see, this definition is highly entangled and the decision whether the set D
contains every natural number is equivalent to the Collatz problem.
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Remark 3.1. Set D has the following properties :

x ∈ D =⇒ (x+ x) ∈ D (1)
x ∈ D ∧ ∃yx = y + y =⇒ y ∈ D (2)

x ∈ D ∧ ∃yx = y + y + 1 =⇒ (x+ x+ x+ 1) ∈ D (3)
x ∈ D ∧ (∃e∃ze = z + z + 1 ∧ x = e+ e+ e+ 1) =⇒ e ∈ D (4)

Implications (1) and (4) show left and right son of element x.

Similar, interesting properties has the complement of set D, if it is a non-empty set. Let cD df
=

N \D denote the complement of set D.

Remark 3.2. If the complement N \D is a non-empty set, then it has similar properties:

x ∈ cD =⇒ (x+ x) ∈ cD (5)
x ∈ cD ∧ ∃yx = y + y =⇒ y ∈ cD (6)

x ∈ cD ∧ ∃yx = y + y + 1 =⇒ (x+ x+ x+ 1) ∈ cD (7)
x ∈ cD ∧ (∃e∃ze = z + z + 1 ∧ x = e+ e+ e+ 1) =⇒ e ∈ cD (8)

Note, both sets D and cD may be considered as graphs. Their structures are similar. However,
the graph cD is not a tree .

Remark 3.3. If Collatz conjecture is not true, then both sets D and N \D are infinite.

From properties (6) and (7) follows the

Fact 3.1. If an x element does not belong to the Collatz tree then the computation of the Collatz
algorithm starting with the state v(n) = x is not finite.

Let us terminate this section with the following observation

Remark 3.4. In a non-standard model of elementary theory of natural numbers with addition,
the complement of Collatz tree is an infinite set.

For in this model there are unreachable elements, c.f. section 9.

4. Triples
The observations made when analyzing the halting formula of Collatz algorithm inspired us to
introduce the notion of triple representing a given natural number n. Weshall also discuss the
computations "on triples". Let us begin with the following remark
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Fact 4.1. For every natural number n 6= 0 there exist many triples x, y, z of natural numbers
such that the following equality holds

n · 3x + y = 2z

We say that triple x, y, z represents the number n and denote it by 〈x, y, z〉 � n.

Proof:
The proof of this intuitive fact uses the law of Archimedes 5.

Let n be an arbitrary natural number. We choose a number x, it may be an arbitray natural
number. Let the number k = n · 3x. Put z = (µz)(2z ≥ k). and y = 2z − n · 3x. Obviously the
equality n · 3x + y = 2z. holds. ut

Example 4.1. Triple 〈1, 7, 6〉 represents number 19 for 19 · 3 + 7 = 26.
Number 19 is represented by many moretriples.

〈1, 7, 6〉 19 · 31 + 7 = 26

〈2, 85, 8〉 19 · 32 + 85 = 28

〈3, 511, 10〉 19 · 33 + 511 = 210

〈4, 509, 11〉 19 · 34 + 509 = 211

〈5, 3575, 13〉 19 · 35 + 3575 = 213

〈6, 2533, 14〉 19 · 36 + 2533 = 214

〈7, 23983, 16〉 19 · 37 + 23983 = 216

· · ·

Note, not every triple represents a number, consider 〈2, 4, 11〉, 〈2, 4044, 11〉 .

Fact 4.1 is a theorem of elementary theory of natural numbers with addition T , c.f. section ??.

Theorem 4.1. The sentence ∀n∃,x,y.z n · 3x + y = 2z is a theorem of theory T ,

The proof is in section ??. Hence the theorem is valid in any model of theory T ,

4.1. Properties of triples
Definition 4.1. Triples 〈x, y, z〉 and 〈u, v, t〉 are equivalent if they represent the same natural
number .

〈x, y, z〉 ≡ 〈u, v, t〉 df=
2z − y

3x
∈ N ∧ 2z − y

3x
=

2t − v
3u

Moreover, one can define a (lexicographical) order in the set of triples �.

5We recall that the law is not an elementary property, it can be formulated by an algorithmic formula ∀0<a<b{z :=
a; while z ≤ b do z := z + a od}(z > b) }.
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Definition 4.2.

〈u, v, t〉 � 〈x, y, z〉 df⇔ x < u or x = u and z < t or x = u and z = t and y < v

It follows from the fact 4.1 that , for every natural number n there is a triple representing n such,
that the number y is bigger than an arbitrarily chosen number k.

Definition 4.3. The relation of parity of a triple is determined by the parity of number y.

odd(〈x, y, z〉) df⇔ y is odd

Another fact

Fact 4.2. Number n is odd iff the triple 〈x, y, z〉 that represents n is odd .

Definition 4.4. One
equal1(〈x, y, z〉) df⇔ (2z − y = 3x)

the number 1 is represented by many triples e.g. 〈0, 0, 0〉, 〈0, 1, 1〉, 〈1, 1, 2〉, 〈1, 5, 3〉, 〈2, 7, 4〉, ...

We define two operations on triples

Definition 4.5. Operation div2 is defined on even triples 〈x, y, z〉 and results with triple 〈x, y÷
2, z − 1〉 .

〈x, y, z〉 {div2}−−−→ 〈x, y ÷ 2, z − 1〉

Definition 4.6. Operation mult3 is defined on triples 〈x, y, z〉 such, that the argument is an odd
triple 〈x, y, z〉 and condition x > 0 ∧ y > 3x−1 holds.

〈x, y, z〉 {mult3}−−−−→ 〈x− 1, y − 3x−1, z〉

Note

Fact 4.3. triple 〈x, y, z〉 represents an even number n if and only if the triple 〈x, y ÷ 2, z − 1〉
represents the number n÷ 2.
Moreover, 〈x, y ÷ 2, z − 1〉 ≺ 〈x, y, z〉.
If the number y is odd and the condition x > 0 ∧ y > 3x−1 is satisfied, then the triple 〈x, y, z〉
represents the number n if and only if the triple 〈x − 1, y − 3x−1, z〉 represents the number
3n+ 1.
Moreover, 〈x− 1, y − 3x−1, z〉 ≺ 〈x, y, z〉.

Note
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Lemma 4.1. If the program K: {if odd then mult3 else div2 fi} maps triple 〈x, y, z〉 into
triple 〈u, v, t〉, then the starting triple 〈x, y, z〉 is bigger � than triple 〈u, v, t〉.

〈x, y, z〉 {if odd then mult3 else div2 fi}−−−−−−−−−−−−−−−−−−→ 〈u, v, t〉 implies 〈x, y, z〉 � 〈u, v, t〉

Proof:
If the number y is even, then we decrement the value of z and we divide y by 2. In the opposite
case we decrement the value of x and we subtract 3x from y. ut

In each step of execution of Collatz algorithm , the expression x + z is decremented by 1 , the
value of y is also decremented accordingly.

4.2. Program IC
Consider the following program. We assume that the initial values of variables x, y, z satisfy
the condition n · 3x + y = 2z ∧ ¬Err.
It is the precondition of computations.

IC :



while 3x + y 6= 2z (∗ tj. n 6= 1 ∗) do

if
(
odd(y) ∧ ((x = 0) or (y < 3x−1))

)
then Err := true; exit fi;

if odd(y) then x := x− 1; y := y − 3x; (∗n := 3 ∗ n+ 1 ∗)
else z := z − 1; y := y div 2; (∗n := n

2
∗) fi

od


Any computation in the structure of triples is finite. It is a consequence of the following theorem
of algorithmic theory of natural numbers AT N .

AT N ` ∀x{while x 6= 0 do x := x− 1 od}(x = 0)

However, it may happen that the execution of algorithm IC terminate with an errorErr = true.

4.3. Properties of program IC
Fact 4.4. Each execution of the program IC is finite and either it is successful (reaches the
number one) or it encounters an error Err.

N |= ∀n (n · 3x + y = 2z) =⇒ {IC}
(
(3x + y = 2z)︸ ︷︷ ︸
〈x,y,z〉�1

∨ (odd(y) ∧ (x = 0 ∨ y < 3x−1)︸ ︷︷ ︸
Error

)
Remark 4.1. If the execution of the algorithm IC starts with triple 〈x, y, z〉 and ends after k
iterations with error Err = true, then another execution of algorithm IC that starts with the
triple 〈x+ 1, 3y + 2z, z + 2〉 is longer by at least two iterations.
Both triples represent he same number n.
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4.4. Program IIC

The remarks made earlier inspire us to write the following program that for a given number n
searches a useful triple.

IIC:

read(n);
Let z = (µr)(2r ≥ n).
x, xs := 0; zs := z; y, ys := 2z − n;
Err := false;
while 3xs + ys 6= 2zs do

IC:

while 3x + y 6= 2z do
if odd(y) ∧ (x = 0 ∨ y < 3x−1)

then Err:=true; exit fi;
if odd(y) then y := y − 3x−1;x := x− 1

else y := y/2; z := z − 1 fi;
od;

if Err then
x, xs := xs + 1; z, zs := zs + 2; y, ys := 2zs + 3 · ys;
Err := false;

else exit fi;
od

One can easily remark that the program IIC omits triples that lead to an error Err.

Remark 4.2. For a given number n the program IIC has an infinite execution if and only if
the execution of program Cl is infinite.

If the execution of program Cl for a number n is finite, then the program IIC finds a triple
〈x, y, z〉 such that the execution of program IC for this triple is free of error Err.

4.5. Two lemmas

Lemma 4.2. Let K denote the instruction {if odd(n) then n := 3 ∗ n+ 1 else n := n div 2 fi}.
If a given triple 〈x, y, z〉 satisfies the condition ζ :

(
(y mod 2 = 1) ⇒ (x > 0 ∧ y > 3x−1)

)
,

and reprents the number n , then the execution of program K̄ results in a triple that represents
the number m such that m is the result of one iteration stepof Collatz algorithm.

ζ ⇒

∣∣∣∣∣∣∣∣∣
n

K: {if odd(n) then m:=3n+1 else m:=n/2 fi}N−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ myn·3x+y=2z m·3u+v=2t

x
〈x, y, z〉 K̄: {if odd(y) then u,v,t:=x−1,y−3x−1,z else u,v,t:=x,y/2,z−1 fi}T−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 〈u, v, t〉

∣∣∣∣∣∣∣∣∣
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The above diagram is commutative if the operations of decrementing x and subtracting 3x from
y are defined, i.e. if the value of y is odd and (x > 0 ∧ y > 3x).
he semantical property described by the diagram can be expressed by the following formula.(

(n · 3x + y = 2z ∧ odd(y))⇒ (x > 0 ∧ y > 3x−1))
)
⇒ {K; K̄}(n · 3x + y = 2z)

The programs K and K̄ are independent, hence they commute.(
(n · 3x + y = 2z ∧ odd(y))⇒ (x > 0 ∧ y > 3x−1))

)
⇒ {K̄;K}(n · 3x + y = 2z)

This remark applies as well to any iteration of program K.

Lemma 4.3. If the following condition θ is satisfied

θ : (n · 3x + y = 2z) ∧
⋂ 

if 3x + y 6= 2z

then

if odd(y)

then x, y := x− 1, y − 3x−1

else z, y := z − 1, y ÷ 2

fi

fi

 (odd(y) =⇒ (x > 0 ∧ y > 3x−1))

Then the following diagram commutes

n
Cl: {while n6=1 do if odd(n) then n:=3n+1 else n:=n/2 fi od}N−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1xn·3x+y=2z 3x+y=2z

x
〈x, y, z〉 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

IC:


while 3x + y 6= 2z do

if odd(y) then x, y, z := x− 1, y − 3x−1, z

else x, y, z := x, y/2, z − 1 fi

od


T

〈x, y, z〉 (CCI)

This property is expresed by the formula

θ ⇒
(
{Cl}(n = 1)⇔ {IC}(3x + y = 2z)

)
. (RCI)

Proof:
We have to consider four cases.
Case a) If for a given number n there exist three numbers x, y, z such that 1◦ the equality
n · 3x + y = 2z holds and 2◦ the execution of algorithm IC is finite, then the execution of
Collatz algorithm Cl is finite.
Case b) If for a given number n there exist three numbers x, y, z such that 1◦ the equality
n · 3x + y = 2z holds and 2◦ the execution of algorithm IC is infinite (and free of error), then
the execution of Collatz algorithm Cl is infinite.
Case c) If for a given number n the execution of Collatz algorithm Cl is finite, then there exist
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three numbers x, y, z such that 1◦ the equality n · 3x + y = 2z holds and 2◦ the execution of
algorithm ICis finite.
Case d) If for a given number n the execution of Collatz algorithm Cl is infinite, then there exist
three numbers x, y, z such that 1◦ the equality n · 3x + y = 2z holds and 2◦ , the execution of
algorithm ICis infinite.

The proof of case c) goes by induction with respect to the number of iterations.
Base of induction reduces to the commutativity of the following diagram

ζ ⇒


n

{K}N−−−−−→ m

n·3x+y=2z

x xm·3u+v=2t

〈x, y, z〉 K̄T−−−−−→ 〈u, v, t〉

 .

If the execution of algorithm is longer, say of length 2, then the following diagram applies

(ζ ∧ {K̄}ζ)⇒


n

{K}N−−−−−→ n1
{K}N−−−−−→ n2

n·3x+y=2z

x n1·3x1+y1=2z1

x n2·3x2+y2=2z2

x
〈x, y, z〉 K̄T−−−−−→ 〈x1, y1, z1〉

K̄T−−−−−→ 〈x2, y2, z2〉

 .

By induction, we prove that for every natural number i the following diagram commutes

i∧
j=0
{K̄}jζ ⇒

∣∣∣∣∣∣∣∣∣∣
n

{K}N−−−−−→ n1
{K}N−−−−−→ n2

...−−−−−→ ni−1
{K}N−−−−−→ ni

n·3x

x+y=2z n1·3x1+y1

x=2z1 n2·3x2+y2

x=2z2 ...

x ni·3xi+yi=2zi

x
〈x, y, z〉 K̄T−−−−−→ 〈x1, y1, z1〉

K̄T−−−−−→ 〈x2, y2, z2〉
...−−−−−→ 〈xi−1, yi−1, zi−1〉

K̄T−−−−−→ 〈xi, yi, zi〉

∣∣∣∣∣∣∣∣∣∣
Now, if for some i ∈ N the number ni = 1, then ∀kni+k = 1.
Thus, in the case c) the formula RCI has a proof.
The proof of the cases a) and b) are easy. We leave them as an exercise.

It remains to prove the case d).
As in case c) we prove that for every natural number i the diagram commutes

i∧
j=0
{K̄}jζ ⇒

∣∣∣∣∣∣∣∣∣∣
n

{K}N−−−−−→ n1
{K}N−−−−−→ n2

...−−−−−→ ni−1
{K}N−−−−−→ ni

n·3x

x+y=2z n1·3x1+y1

x=2z1 n2·3x2+y2

x=2z2 ...

x ni·3xi+yi=2zi

x
〈x, y, z〉 K̄T−−−−−→ 〈x1, y1, z1〉

K̄T−−−−−→ 〈x2, y2, z2〉
...−−−−−→ 〈xi−1, yi−1, zi−1〉

K̄T−−−−−→ 〈xi, yi, zi〉

∣∣∣∣∣∣∣∣∣∣
and for every natural number i, the inequality ni 6= 1 holds.
From this fact, we deduce that, for every natural number i the formula of the following form, is
a theorem of algorithmic theory of natural numbers AT N .

cn · 3cx + cy = 2cz︸ ︷︷ ︸
Υ

∧


x := cx;

y := cy ;

z := cz


i∧

j=0

{K̄j}ζ ∧ {n := cn}
i∧

j=0

{Kj}(n 6= 1) =⇒


x := cx;

y := cy ;

z := cz


i∧

j=0

{K̄j}(3x + y 6= 2z)

(9)
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Now, we apply the axiom Ax17 of program calculus, see [MS87] , page 57 6 and obtain that for
every natural number i the formula of the following form is a theorem of AT N theory.

Υ ∧


x := cx;

y := cy ;

z := cz


⋂
{K̄}ζ ∧ {n := cn}

i∧
j=0

{Kj}(n 6= 1) =⇒


x := cx;

y := cy ;

z := cz


i∧

j=0

{K̄j}(3x + y 6= 2z) (10)

By another application of axiom Ax17 we obtain that for every natural number i the formula of
the following form is a theorem of AT N theory.

Υ ∧


x := cx;

y := cy ;

z := cz


⋂
{K̄}ζ ∧ {n := cn}

⋂
{K}(n 6= 1) =⇒


x := cx;

y := cy ;

z := cz


i∧

j=0

{K̄j}(3x + y 6= 2z) (11)

The latter formulas (i = 0, 1, . . . ) are equivalent to

Υ ∧


x := cx;

y := cy ;

z := cz


⋂
{K̄}ζ ∧ ¬{n := cn}{Cl}(n = 1) =⇒


x := cx;

y := cy ;

z := cz


i∧

j=0

{K̄j}(3x + y 6= 2z) (12)

We are able now to apply the inference rule r5 7 and obtain

Υ ∧


x := cx;

y := cy ;

z := cz


⋂
{K̄}ζ

︸ ︷︷ ︸
θ

∧¬{n := cn}{Cl}(n = 1) =⇒


x := cx;

y := cy ;

z := cz


⋂
{K̄}(3x + y 6= 2z) (13)

One more step, we introduce the program IC in the consequent of the implication

θ ∧ ¬{n := cn}{Cl}(n = 1) =⇒ ¬


x := cx;

y := cy ;

z := cz

 {IC}3x + y = 2z) (14)

which completes the proof of the formula RCI. ut

4.6. Tn sets of triples

For every number n we define the set Tn of triples x, y, z such, that he equality n3x + y = 2z.
The set Tn is a non-empty set.
Sets Tn are pairwise disjoint, i.e. n 6= m =⇒ Tn ∩ Tm = ∅.

6Ax17. (
⋂
{M}α ≡ (α ∧ {M}

⋂
{M}α))

7 rule r5 :
{β =⇒ KM iα}i∈N
β =⇒ K

⋂
Mα
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Each set Tn Tn is closed with respect to the following operations o1, o2, o3, o4, o5, o6

o1(〈x, y, z〉) = 〈x+ 1, 3y + 2z, z + 2〉 (15)
o2(〈x, y, z〉) = 〈x+ 1, 3y − 2z, z + 1〉 when 3y > 2z (16)
o3(〈x, y, z〉) = 〈x, y + 2z, z + 1〉 (17)
o4(〈x, y, z〉) = 〈x, y − 2z−1, z − 1〉 when y > 2z−1 (18)

o5(〈x, y, z〉) = 〈x− 1,
y − 2z−2

3
, z − 2〉 when (y − 2z−2)mod3 = 0 (19)

o6(〈x, y, z〉) = 〈x− 1,
y + 2z−1

3
, z − 1〉 (20)

As a consequence the set Tn is infinite set.

Note the following dependencies
o5(o1(〈x, y, z〉) = 〈x, y, z〉
o4(o3(〈x, y, z〉) = 〈x, y, z〉
o6(o2(〈x, y, z〉) = 〈x, y, z〉
o4(o1(〈x, y, z〉) = 〈x, y, z〉

5. Proof of Collatz theorem
Our plan may be summarized in four points:

(i) We proved that the sentence ∀n∃x,y,z n · 3x + y = 2z is a theorem of the elementary
theory T + of natural numbers with addition (Presburger theory). See Appendix B, page
??. Hence, this sentence holds true in any model of the theory.

(ii) In Appendix C, page 26, we show infinite computations of Collatz’s algorithm in a non-
standard (non-Archimedean) model of Presburger arithmetic Ar. The model is com-
putable and programmable. This example is not a complete counter-example against Col-
latz conjecture. It only shows that the Collatz conjecture is not a theorem of elementary
theory of natural numbers with addition or any other elementary theory.

(iii) We proved that there is a model M of the T + theory such, that it contains an element ε
,for which the Collatz algorithm has an infinite computation, c.f. lemma 5.1. We do not
assume that this model contains unreachable elements.

(iv) We show that in any model of T + theory , if for a certain n element, the computation of
the Collatz algorithm is infinite, then the model is not isomorphic to the standard model
of natural numbers (for it contains unreachable elements).

From this we conclude, that if a model has no unreachable elements, then there are no infinite
computations.
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5.1. Structure in which some element has an infinite Collatz computation.

We have known that in the non-standard model of Presburger arithmetic M unreachable ele-
ments have infinite Collatz computations. The model is described in the literature, see [Grz71].
We provide examples of infinite Collatz computations and a definition of this structure in a
programming language in section 9, Appendix C. Now, we are going to to show that there are
non-Collatz elements without assuming that they are unreachable elements.
We construct an elementary theory T + which is an extension of the theory of T (i.e. Presburger
arithmetic) in a way that permits to show an element different from any number that occurs in
Collatz tree.
The extension of theory T is made in three steps

1. (language) we add a new constant ε to the alphabet and correspondingly we extend the
sets of term and of formulas of the language of theory T .

2. (logic) the operation of consequence remains the same, remember the sets of terms and
of formulas are bigger,

3. (axioms of data structure) to the set Ax of Presburger’s axioms we add an infinite set of
sentences Z.

Our intention is to prove the following fact. An assumption that for some element ε the Collatz
computation is infinite, does not lead to a contradiction with axioms of elementary theory of
addition of natural nymbers (i.e. the Presburger’s theory).

As a natural reflex, we would like to add the negation of the instance of halting formula for
n = ε to the axioms of of T theory. However the formula

¬{n← ε}



while n 6= 1 do

if even(n)

then n← ndiv 2

else n← 3n+ 1

fi

od


(n = 1)

does not belong to the language of elementary theory of T . Moreover, the following formula 21
that expresses the same looping property of computation of Collatz algorithm does not belong
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to the language of first-order theory Ar.

{n← ε}
⋂


if n 6= 1 then

if nmod 2 = 0

then n← n div 2

else n← 3n+ 1

fi

fi


(n 6= 1) (21)

However, for every algebraic structure A the above formula (21) is valid in M if and only if
every formula of the following scheme is valid in A

{n← ε}(n 6= 1),

{n← ε}


if n 6= 1 then

if even(n) then n← n div 2

else n← 3n+ 1 fi

fi

 (n 6= 1),

. . .

{n← ε}


if n 6= 1 then

if even(n) then n← n div 2

else n← 3n+ 1 fi

fi


i

(n 6= 1),

. . .

Each of these formulas is equivalent to certain first-order formula ϑ, such that the formula does
not contain any algorithm. One can verify this claim making use of axioms of assignment
instruction e.g. {n ← ε}(n > 1) ≡ (ε > 1)}, conditional instruction and composition of
programs. We illustrate our claim by the following equivalence.

{n← ε}{if P (n) then n← n div 2 else n← 3n+ 1 fi}(n 6= 1) ≡((
P (ε) ∧ ε 6= 2

)
∨
(
¬P (ε) ∧ 3ε+ 1 6= 1

)︸ ︷︷ ︸
false

)
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Continuing, we obtain the following formulas

Formuła
(o(ε) ∧ ε 6= 1)

(e(ε) ∧ o( ε
2
) ∧ ε 6= 2)

(e(ε) ∧ e( ε
2
) ∧ o( ε

4
) ∧ ε 6= 4)

(e(ε) ∧ e( ε
2
) ∧ e( ε

4
) ∧ o( ε

8
) ∧ ε 6= 8)

(e(ε) ∧ e( ε
2
) ∧ e( ε

4
) ∧ e( ε

8
) ∧ o( ε

16
) ∧ ε 6= 16)(

e(ε) ∧ e( ε
2
) ∧ e( ε

4
) ∧ e( ε

8
) ∧ e( ε

16
) ∧ o( ε

32
) ∧ ε 6= 32)∨

o(ε) ∧ e(3ε+ 1) ∧ e(3ε+1
2

) ∧ e(3ε+1
4

) ∧ e(3ε+1
8

) ∧ o(3ε+1
16

) ∧ ε 6= 5

)
(

(e(ε) ∧ e( ε
2
) ∧ e( ε

4
) ∧ e( ε

8
) ∧ e( ε

16
) ∧ e( ε

32
) ∧ o( ε

64
) ∧ ε 6= 64∨

e(ε) ∧ o( ε
2
) ∧ e(3ε+1

2
) · · · ∧ ε 6= 10

)


e(ε) ∧ e( ε
2
) ∧ e( ε

4
) ∧ e( ε

8
) ∧ e( ε

16
) ∧ e( ε

32
) ∧ e( ε

64
) ∧ o( ε

128
) ∧ ε 6= 128∨

o(ε) ∧ e(3ε+ 1) ∧ e(3ε+1
2

) · · · ∧ ε 6= 21∨
e(ε) ∧ o( ε

2
) ∧ e(3ε+1

2
) · · · ∧ ε 6= 20∨

o(ε) ∧ e(3ε+ 1) ∧ o(3ε+1
2

) · · · ∧ ε 6= 3


. . .

Horizontal lines separate formulas corresponding to different levels of Collatz tree.

We add four constants ε, cx, cy, cz to the alphabet of the language. We modify the definitions of
sets of terms and formulas in a corresponding way.
The set Ax′ of axioms of the new theory is a union of set Ax of axioms of Presburger theory
(cf. section 7, page 23), an infinite set of sentences Z, an infinite set of sentences Y , the set Df
of auxiliary definitions, the sentence U : ε · 3cx + cy = 2cz .

Ax′ = Ax ∪ Z ∪ Y ∪Df ∪ U

We define the set Z as containing all formulas ε 6= k such„that the expression n = k occurs
in halting formula of Collatz algorithm, k is number. Hence, the set Z contains the sentences
{ε 6= 1, ε 6= 2, ε 6= 4, ε 6= 8, ε 6= 16, ε 6= 32, ε 6= 5, ε 6= 64, ε 6= 10, ε 6= 128, ε 6= 20, ε 6= 21, ε 6= 3, . . . }

The set Y contains all sentences of first-order language that are equivalent to thealgorithmic
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sentences


x := cx;

y := cy ;

z := cz ;

Err := false





if 3x + y 6= 2z then

if (odd(y) ∧ (x = 0 ∨ y < 3x−1)) then Err := true

else

if odd(y) then

x := x− 1; y := y − 3x

else

y := y ÷ 2; z := z − 1

fi

fi

fi



i

(¬Err)

where i = 0, 1, 2, . . . .
The sentences of the set Y can be arranged into the sequence Y = {y0, y1, y2, . . . }.
The sentence yi expresses the following property: if in a computation on triples performed
i steps and the current state of memory is 〈x, y, z〉, and if 3x + y 6= 2z then the following
condition holds odd(y) =⇒ x > 0 ∧ y > 3x. In other words the sentence yi excludes the risk
of error in the i+ 1-th iteration of execution of program IC.
Let us see two examples

y0 : ¬odd(cy) ∨ (cx > 0 ∧ cy > 3cx−1)

y1 :


x := cx;

y := cy ;

z := cz





if 3x + y 6= 2z then

if odd(y) then

x := x− 1; y := y − 3x

else

y := y ÷ 2; z := z − 1

fi

fi


(odd(y) =⇒ (x > 0 ∧ y > 3x−1))

The set Df contains definitions of auxiliary fuctions P2 , P3, and paririty predicate ,
The set U = {P3(ε, cx) + cy = P2(cz)} contains just one entence.

We shall show that that the set Ax′ is consistent. We begin by showing that every finite
subset Ax0 ⊂ Ax′ is consistent. Namely, we shall demonstrate that the set Ax0 has a model
in standard structure N of natural numbers with addition. Our task reduces to finding proper
values of of four constants ε, cx, cy, cz.
The set Ax ∪Df ∪ U is consistent, cf. section 4 and section 7, page 22 and section ?? , page
??, for the standard structure of natural numbers with addition is a model for it.
Let Z0 be an arbitrary finite subset of the set Z, similarly, let Y0 Y .
The set Ax ∪ Df ∪ U ∪ Z0 ∪ Y0 is consistent. Let l be a number greater than any number
k that occurs in the set Z0. This choice assures the validity of every sentence of the set Z0.
From the infinite set Tl of triples that represent the element l, we should choose a triple such
that every sentence of the set Y0 is true. Look at the properties of the algorithm IIC. Let j
be the biggest index of the sentence yi that belongs to the set Y0. The sentence yj says: if
after execution of j iterations of algorithm IC the current state of memory is not represnting
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the number 1, then the current values of variables x and y will b ssatisfying the condition
odd(y) =⇒ (x > 0 ∧ y > 3x). It suffices that the initial value of variable x = cx be greater
than the number j, we can put cx = j + 1&cz = j + 2&cy = 2j+2 − l · 3j+1 . In this way
we assure the validity ofthe sentence U for l · 3cx + cy = 2cz as well as the validitity of every
sentence from the set Y0.
We proved that every finite subset of the set Ax′ is consistent.
By the compactness theorem on first-order logic8, we obtain

Lemma 5.1. The set Ax′ is a consistent set of formulas.

Now, we apply the model existence theorem9, which reads: for every consistent set S of first-
order formulas there exists an algebraic structure A such that it is a model of the set S, i.e. for
every formula σ ∈ S the formula is valid in the structure A.
In this way we proved the following lemma.

Lemma 5.2. There is an algebraic structure M, such that every sentence of the set Ax′ is valid
in it.

Corollary 5.1. The execution of Collatz algorithm in structure M that starts with value of vari-
able n equal ε, v(n) = ε is infinite.

For the structure M is a model of the set Z.

Corollary 5.2. Element ε of structure M does not belong to the Collatz tree DC.

The facts gathered till now, allow to apply the lemma RCI.
Hence,

Fact 5.1. The execution of the algorithm IC that begins with the values cx, cy, cz is infinite.

5.2. Infinite Collatz computation require unreachable elements
In our proof we shall imitate the proof of lemma 5.1 . Let ε be an arbitrary element such, that the
execution of Collatz algorithm isinfinite. (i.e. element ε is non-Collatz one). It is evident that
the execution of algorithm IIC (c.f. 4.4) for element ε is infinite, too. For any triple 〈x, y, z〉 of
standard, natural numbers the execution of program IC terminates with the error Err.
Yet, the execution of Collatz algorithm for the element ε is infinte. Our nearest goal is to prove
that there exist three elements cx, cy, cz such that 1◦ the equality ε · 3cx + cy = 2cz holds and 2◦

the computation of algorithm IC is infinite.

We extend the language of the elementary theory T + adding to it four constants: cn, cx, cy, cz.

8Compactness theorem If every finite subset of a set S of formulas is consistent, then the set S is consistent too.
9of first-order logic
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We fix the value of constant cn assuming that the equality cn = ε is an axiom of new theory.
We aregoing to show that the following set of first-order sentences Ax′ = Ax ∪Df ∪ U ∪ Y is
consistent. SetsAx and Z were described earlier. Set U contains one formula cn ·3cx+cy = 2cz .
Set Df contains definitions of useful operations and relations P2, P3, 3x, div2, even, odd, c.f.
section 7.
Set Y contains all first-order sentences quivalent to the algorithmic sentences of the form


x := cx;

y := cy ;

z := cz ;

Err := false





if 3x + y 6= 2z then

if (odd(y) ∧ (x = 0 ∨ y < 3x−1)) then Err := true

else

if odd(y) then

x := x− 1; y := y − 3x

else

y := y ÷ 2; z := z − 1

fi

fi

fi



i

(¬Err)

where i = 0, 1, 2, . . . .
In other words Y is a sequence Y = {y0, y1, y2, . . . }.
Sentence yi expresses the following semantical property: Let s be an execution of algorithm
IC that starts with triple 〈cx, cy, cz〉. If during this execution, after i steps and reached the state
x, y, z then if the current state does not represents the number 1, then in the next step no errror
Err will be raised.
In other words the sentence yi excludes the risk of error Err in i+ 1-th step of execution.

As we did it earlier, we show that every finite subset Ax0 ⊂ Ax′ is consistent. We shall use
observations made in section 4.4, that concern the algorithm IIC. Let Y0 be any finite subset of
the set Y of sentences. Let i be the largest number of iterations mentioned in the set . From the
properties of algorithm IICwe know that there exists triple 〈x, y, z〉 of natural numbers such,
that during exection of i iterations of program K̄ no error Err will occur.
Hence, we can apply the compactness theorem and assert that the whole set Ax′ is consistent.
By completeness theorem we infer that there is a triple 〈x, y, z〉 such ,that for every natural
number i after execution of i iterations of the while intruction in algorithm IC the next iteration
can be executed without risk of Err error. I.e. the condition θ mentioned in the lemma 4.3 is
satisfied. Let us cite it here

θ :


(ε · 3cx + cy = 2cz )∧


x := cx;

y := cy ;

z := cz

⋂


if 3x + y 6= 2z

then

if odd(y)

then x, y := x− 1, y − 3x−1

else z, y := z − 1, y ÷ 2

fi

fi



(
odd(y) =⇒
(x > 0 ∧ y > 3x−1)

)


Hence, two formulas hold: the formula θ and ¬{n := ε;Cl}(n = 1). From this conjunction

we deduce
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Corollary 5.3. If the condition θ holds and the execution of program Cl for n = ε is infinite,
then the computation of program IC starting with the triple 〈cx, cy, cz〉 is infinite too .

Proof:
This is an immediate consequence of the lemma 4.3. ut

5.3. Collatz theorem

Let’s summarize what we know:

• If the Collatz computation for an element n is finite, then there is a triple 〈x, y, z〉 such
that n · 3x + y = 2z and the computation of algorithm IC for this triple is finite.

• If for some triple 〈x, y, z〉, the following equality holds n·3x+y = 2z and the computation
of algorithmIC is finite, then the computation of the Collatz algorithm for n is finite.

• if in a model M of the elementary theory of natural numbers with addition (i.e. Presburger
theory) an element n is unreachable, then the computation of the Collatz algorithm for n
is infinite.

• There is a structure M, model of Presburger arithmetic and an element ε such that, the
computation of the Cl algorithm is infinite.

• Let an algebraic structure A be a model of Presburger arithmetic. Let n be any element
for which the computation of the Collatz algorithm is infinite. There are three elements:
〈x, y, z〉 such, that the equality n · 3x + y = 2z holds and the computation of the IC
algorithm for this triple is infinite.

From these facts we derive the following proposition.

Theorem 5.1. (Collatz 1937 )
For every natural number n, the execution of Collatz algorithm is finite.

Proof:
It follows from the facts listed above that if for some element n of the A structure, which is
a model of the elementary theory of the addition of natural numbers, the calculation of the
Collatz algorithm is infinite, then the structure A is a non-standard model of the theory. Hence,
by transposition, we obtain Collatz theorem. ut
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6. Final remarks
It is not difficult to notice that the presented proof uses metamathematical methods. We are not
able, for now, to present a proof derived directly in the algorithmic theory of AT N from the
axioms of this theory or, for example, from Archimedes’ law, which is a theorem of AT N .
The next task is to estimate the cost of the Collatz algorithm, we know that the computations
are finished, but we cannot estimate their length.
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7. Appendix A – Some facts on elementary theory of natural
numbers with addition

In section 4 we observed a few of useful facts on triples of natural numbers that represent
another number.
We shall consider the following theory T +, cf. [Grz71] p. 239 and following ones.

Definition 7.1. Theory T + = 〈L, C, Ax〉 is the system of three elements:

L is a language of first-order. The alphabet of this language consist of: the set V of variables,
symbols of operations: 0, S,+, symbol of equality relation =, symbols of logical functors
and quantifiers, auxiliary symbols as brackets ...
The set of well formed expressions is the union of te set T of terms and the set of formulas
F .
The set T is the least set of expressions that contains the set V and constants 0 and 1 and
closed with respect to the rules: if two expressions τ1 and τ2 are terms, then the expression
(τ1 + τ2).
The set F of formulas is the least set of expressions that contains the equalities (i.e. the
expressions of the form (τ1 = τ2)) and closed with respect tothe following formation
rules: if expressions α and β are formulas, then the aexpression of the form

(α ∨ β), (α ∧ β), (α =⇒ β), ¬α

are alsoformulas, moreover, the expressions of the form

∀x α, ∃x α
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where x is a variable and α is a formula, are formulas too.

C is the operation of consquence determined by axioms of first-order logic and the inference
rules of the logic,

Ax is the set of formulas listed below.

∀x x+ 1 6= 0 (a)
∀x ∀y x+ 1 = y + 1 =⇒ x = y (b)
∀x x+ 0 = x (c)
∀x,y (y + 1) + x = (y + x) + 1 (d)
{Φ(0) ∧ ∀x [Φ(x) =⇒ Φ(x+ 1)] =⇒ ∀xΦ(x) (I)

The expression Φ(x) should be replaced by any formula. This is the induction scheme.
We augment the set of axioms adding the axioms that define a coiple of useful notions.

even(x)
df
≡ ∃y x = y + y (e)

odd(x)
df
≡ ∃y x = y + y + 1 (o)

x div 2 = y ≡ (x = y + y ∨ x = y + y + 1) (D2)

3x
df
= x+ x+ x (3x)

Proofs of some facts known from section 4 will be done in the framework of the theory T +. In
this way we make sure that these facts are true in any model of the theory.
In the section 5 we shall use Presburger theory Ar.

Definition 7.2. Theory Ar = 〈L, C, Ax〉 is a system of three elements :

L is a language of first-order. The alphabet of this language contains the set V of variables,
symbols of functors : 0,+, symbol of equality predicate =.
The set of well formed-expressions is the union of set of terms T i zbioru formuł F . Zbiór
termów T jest to najmniejszy zbiór napisów zawierający zbiórzmiennych V i napis 0 i
zamknięty ze względu na reguły: jeśli dwa napisy τ1 oraz τ2 są termami to termem jest
też napis postaci (τ1 + τ2), jeśli napis τ jesttermem to napis S(τ) jest także termem.

C jest operacją konsekwencji zdeterminowaną przez przyjęcie aksjomatów rachunku predykatów
i reguł wnioskowania logiki pierwszego rzędu
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Ax jest zbiorem formuł wyliczonych poniżej.

∀x x+ 1 6= 0 (A)
∀x x 6= 0 =⇒ ∃yx = y + 1 (B)
∀x,y x+ y = y + x (C)
∀x,y,z x+ (y + z) = (x+ y) + z (D)
∀x,y,z x+ z = y + z =⇒ x = y (E)
∀x x+ 0 = x (F)
∀x,z ∃y (x = y + z ∨ z = y + x) (G)
∀x ∃y (x = y + y ∨ x = y + y + 1) (H2)
∀x ∃y (x = y + y + y ∨ x = y + y + y + 1 ∨ x = y + y + y + 1 + 1) (H3)

. . . . . . . . .

∀x ∃y



x = y + y + · · ·+ y︸ ︷︷ ︸
k

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1︸ ︷︷ ︸
2

∨

. . .

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−2

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−1



(Hk)

. . .

Let us recall some facts
F1. Theory T + is elementarily equivalent to the theory Ar.[Pre29, Sta84]
F2. Theory Ar is decidable. [Pre29].
F3. The computational complexity of theory Ar, is double exponential O(22n) this result be-
longs to Fisher and Rabin, see [FR79].
F4. Theories T + and Ar have non-standard model, see section 9, p. 26.
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8. Appendix B– proofs of useful facts
In this section we shall show that the sentence ∀n∃x,y,z n ·3x+y = 2z is a theorem of the theory
T + of addition. The elementary theory T + of natural numbers with addition was recalled in the
preceding section.
Operations of multiplication and power are inaccessible in the theory T +. However, we do not
need them.
We enrich the theory T + adding two functions P2(·) and P3(·.·). defined in this way
P2(0) = 1 P3(y, 0) = y

P2(x+ 1) = P2(x) + P2(x) P3(y, x+ 1) = P3(y, x) + P3(y, x) + P3(y, x)

Lemma 8.1. The definitions given above are correct, i.e. the the following sentences aretheo-
rems of the theory with two definitions

T + ` ∀x∃y P2(x) = y and

T + ` ∀x,y,zP2(x) = y ∧ P2(x) = z =⇒ y = z.

Similarly, the sentences
∀y,x∃z P3(y, x) = z and
∀y,x,z,uP3(y, x) = z ∧ P3(y, x) = u =⇒ z = u
are theorems of theory T + .

Proof goes by induction with respect to the value of variable x.

We shall use the following definition of the order relation a < b
df
= ∃c a+ S(c) = b.

Making use of the definition of function P2 and P3 we shall write the formula P3(n, x) + y =
P2(z) as it exppresses the same content as expression n · 3x + y = 2z.

Lemma 8.2. The following sentence is a theorem of of the theory T + enriched by the defini-
tions.

∀n∃x,y,zP3(n, x) + y = P2(z)

We begin proving by induction that T + ` ∀n n < 2n. Namely, T + ` ∀n n < P2(n). It is easy
to see that T + ` 0 < P2(0). Assume that T + ` ∀n{n < P2(n)}. Inequality n+1 < P2(n+1)
follows from the two given below T + ` n < P2(n) and T ` 1 < P2(n).

In the similar manner, we obtain T + ` P3(n, x) < P2(z) ∧ (z = n+ x+ x)
As a consequence we have T + ` ∀n∃x,y,z P3(n, x) + y = P2(z).
Note, we have proved a somewhat stronger sentence ∀n,x∃y,zP3(n, x) + y = P2(z).

Lemma 8.3. Niech M będzie jakimkolwiek modelem arytmetyki Presburgera. Element n jest
osiągalny wtedy i tylko wtedy gdy istnieje taka trójka reprezentująca element n, tj. taka, że
zachodzi równość P3(n, x) + y = P2(z) czyli n · 3x + y = 2z i liczby x, y, z są osiągalne.
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Proof:
Jeśli spełnione są formuły
{q := 0; while q 6= x do q := q + 1 od}(x = q),
{q := 0; while q 6= y do q := q + 1 od}(y = q),
{q := 0; while q 6= z do q := q + 1 od}(z = q)
i ponadto zachodzi równość
P3(n, x) + y = P2(z) to łatwo sprawdzic,że spełniona jest formuła {t := 0; while n 6=
t do t := t+ 1 od}(t = n) ut

9. Appendix C - an example of an infinite computation
At this point, we’ll remind you of a few facts that are less known to the IT community. In
Appendix A we described the Ar theory of addition of natural numbers. The only functor in the
language of this theory is +, we also have two constants 0 and 1 and the predicate of equality =.
Now, we will program the algebraic structure M, which is a model of this theory, i.e. all axioms
of theory Ar are true in the structure M. First we will describe this structure as mathematicians
do, then we will write a class (ie a program module) implementing this structure. medskip

9.1. Mathematical description of the structure
M is an algebraic structure

M = 〈M ; 0, 1,⊕; =〉 (NonStandard)

such that M is a set of pairs 〈k, w〉 where element k ∈ Z is an integer, element w is a rational,
non-negative number and the following requirements are lsatisfied:

(i) for each element 〈k, w〉 if w = 0 then k ≥ 0,

(ii) the meaning of the constant 0 is 〈0.0〉,

(iii) the meaning of constant 1 is 〈1.0〉,

(iv) the operation ⊕ of addition is determined as follows

〈k, w〉 ⊕ 〈k′, w′〉 df= 〈k + k′, w + w′〉.

Lemma 9.1. The algebraic structure M is a model of Ar theory.
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The reader will check that each axiom of the Ar theory is a sentence true in the structure M.
The structure M is not a model of the AT N , algorithmic theory of natural numbers. Elements
of the structure 〈k, w〉. such as w 6= 0 are unreachable. i.e. for each element x0 = 〈k, w〉 such
that w 6= 0 the following condition holds

¬{y := 0; while y 6= x0 do y := y + 1 od}(y = x0)

The subset N ⊂M composed of only those elements for which w = 0 is a model of the theory
AT N . The elements of the structure N are called reachable. A very important theorem of the
foundations of mathematics is

Fact 9.1. The structures N and M are not isomorphic. See [Grz71], p. 256.

As we will see in a moment, this fact is also important for IT specialists.

9.2. Definition in programming language
Perhaps you have already noticed that the M is computable. The following is a class that
implements the structure M. The implementation uses the integer type, we do not introduce
rationalNumbers explicitly.

unit StrukturaM: class;
unit Elm: class(k,li,mia: integer);
begin

if mia=0 then raise Error fi;
if li * mia <0 then raise Error fi;
if li=0 and k<0 then raise Error fi;

end Elm;
add: function(x,y:Elm): Elm;
begin

result := new Elm(x.k+y.k, x.li*y.mia+x.mia*y.li, x.mia*y.mia )
end add;
unit one : function:Elm; begin result:= new Elm(1,0,2) end one;
unit zero : function:Elm; begin result:= new Elm(0,0,2) end zero;
unit eq: function(x,y:Elm): Boolean;
begin

result := (x.k=y.k) and (x.li*y.mia=x.mia*y.li )
end eq;

end StrukturaM

The following lemma expresses the correctness of the implementation

Lemma 9.2. The set of Elm objects with the add operation is a model of the Ar theory
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9.3. Infinite Collatz algorithm computation
How to execute the Collatz algorithm in StructuraM? It’s easy.

pref StrukturaM block
var n: Elm;
unit odd: function(x:Elm): Boolean; ... result:=(x.k mod 2)=1 ... end odd;
unit div2: function(x:elm): Elm; ...

begin
n:= new Elm(8,1,2);

while not eq(n,one) do
if odd(n) then

n:=add(n,add(n,add(n,one))) else n:= div2(n)
fi

od
end block;

Below we present the computation of Collatz algorithm for n = 〈8, 1
2
〉.

〈8, 1

2
〉, 〈4, 1

4
〉, 〈2, 1

8
〉, 〈1, 1

16
〉, 〈4, 3

16
〉, 〈2, 3

32
〉, 〈1, 3

64
〉, 〈4, 9

64
〉, 〈2, 9

128
〉, · · ·

None of the elements of the above sequence is a standard natural number. Each of them is
unreachable. It is worth looking at an example of another calculation. Will something change
when we assign n a different object? e.g. n: = new Elm (19,2,10)?

〈19, 10
2
〉, 〈58, 30

2
〉, 〈29, 30

4
〉, 〈88, 90

4
〉, 〈44, 90

8
〉, 〈22, 90

16
〉, 〈11, 90

32
〉, 〈34, 270

32
〉, 〈17, 270

64
〉,

〈52, 810
64
〉, 〈26, 405

64
〉, 〈13, 405

128
〉, 〈40, 1215

128
〉, 〈20, 1215

256
〉, 〈10, 1215

256
〉, 〈5, 1215

512
〉, 〈16, 3645

512
〉, 〈8, 3645

1024
〉,

〈4, 3645
2048
〉, 〈2, 3645

4096
〉, 〈1, 3645

8192
〉, 〈4, 3∗3645

8192
〉, 〈2, 3645∗3

2∗8192
〉, 〈1, 3∗3645

4∗8192
〉, 〈4, 9∗3645

4∗8192
〉, · · ·

And one more computation.

〈19, 0〉, 〈58, 0〉, 〈29, 0〉, 〈88, 0〉, 〈44, 0〉, 〈22, 0〉, 〈11, 0〉, 〈34, 0〉, 〈17, 0〉, 〈52, 0〉, 〈26, 0〉,
〈13, 0〉, 〈40, 0〉, 〈20, 0〉, 〈10, 0〉, 〈5, 0〉, 〈16, 0〉, 〈8, 0〉, 〈4, 0〉, 〈2, 0〉, 〈1, 0〉

Corollary 9.1. The structure M, which we have described in two different ways, is the model
of the T+ theory (you can also say that this structure implements the specification given by the
axioms of the Ar theory), with the non-obvious presence of unreachable elements in it.

Another observation

Corollary 9.2. The halting property of the Collatz algorithm cannot be proved from the axioms
of the T+ theory, nor from the Ar theory.

The reader may wish to construct the computation that starts with 〈8, 1
7
〉.
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