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Abatract: The computational power of Petri nets iz extended up to
the: power of counter machines by realizing certsin priorities of
parailelism. Hence certain cancurremt computations cen not exactly

be reflected by the sets of all sequentialized computationa in related
syatema. Maoreover, the reachability, boundedness and liveness problems
are undecidable under the modified firing rule.

Q. Introduction

The atates and the processed sequences in concurrent systems
may be heavily sffected by the ageumptions about the gccurences of
paralleliem, To show this we comnsider concurrent computations using
the Petri net model where we claim that maximal sete of simultanecusly
firable trangitfions have to fire in parallel ("Maximum Firing Strategy"®
2.1). Petril nets under this firing rule are of mare cumputational..
power tham the mets under the common firing rule (3.2).

While the common firing rule (1.2) for Petri nets corresponds tc
all possible aequentielized computationa (executable by one processar)
€1.3), the Meximum Firing Strategy alleows only those cancurrent compu-
tatiane which make use of the maximelly possible parsllelism {with a
related number of processors). This concept is related Yo the otrategy
MAX faor concurreni cemputations, which was introduced by Salwicki and
Mifkdner /SM/ -. The extended camputational pewer under the Maximum
Piring Strategy implies that there are concurrent computations which
cen not be falthfully represented by the set of sequentiallized runs.

Farthermore, tha Petiri neta working under the Maximum Firing
Strategy are able to aimzlate counter machines (3.2). As a cobsequence
the boundedness, reschability and liveness preoblems mre undecidable
(4.1). Thie result may be unpleasant with respect to practical uase.

But, as it can be seen by the uvsed comatructions, these results
already hold for parasllelism of twa processora: If at least two
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transitions have to fire eimultaneously whenever this is possible,
then the computational power is agasin exterded up to the power of
counter machines (4.4). In this sense it can be stated that the use
of parallelism must be paid by undecidability results.

1. Preliminaries. The common firing rule.
1,1 I¥ is the set of all non-negetive integers. For a finite

alphahbet A, A¥ ig the free momoid with the empty word e ., Qperations
and relations em vectors are understood componentwise.

A (gemeralized initisl) Petri net is given by JN= (P, T, F, ma),
where P end T are the finite sets of places and transitions, respecti-~
vely. F: (PxT )y (TxP) — W is the flow function,
m,€ ]\TP i@ the initial marking. For a transition t€T we define the
vectors t, t¥e w? by t (p):=Ffp,t), t¥(p) :=F(t,p) (pe P) .

1.2 The trangltion teT is firable under the common firing rule
at a marking me ]NP iff t7 <€ m , After its firing the new marking
8 m + At , where At:= tT - t7,

A sequence u= t1...tneT* is a firing sequence under the common
firing rule iff each transition ty (£=1,4+.,n) is firable at the
marking m, + At.l ¥ oaes 4.-nti_1 under the common firing rule, it leads
tc the new merking o, *Aau, where Au:mo_ -h-At.] # een + A‘tn « If anly
one processor is warking, then the firing sequences may be considered
as the computational sequences which can be processed by this processor.

1.3 The et of all firing sequences under the common firing rule of
a Petri net & 1p denoted by Ly » The following pumping lemma /B2/
bolds:

There are numbers k, 1 for each language L, such that the

fellowing holds:

If the length of a sequence uc¢ L.-Lf is greater than k ,
then there is o decomposition u = u uy ug such that

1 ¢ length of u, € I and u, uam'uBEIw for all neg W .

By the modified firing rule, which we shall define later on (2,1), we
get mets of firing sequences which are subsetas of L” +« In general,
guch & pumping lemme is not valid for these sets.

1.4 The pet of a1l reachable markings under the common firing rule
ie defined by R, := { m_+au / uel }-. For a given subeet X € P
& a W =
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of places the {pon~terminal) Petri net predicate MJG x is defined
ag the projection of R, m the places of X =
MM,X = {x émx AméR, . mp) = x{p} for ell peX} ”
There ig again a pumping lemma /B2/
'I‘h.erﬁe are vectors y*, y" € ]Nx for each get MW’. x such that
the following holds:
If IEM—JV',X covers y' {i.e. 2> ¥' )y
then there exists a vector zg ( N ~{0} )X euch that
z <x¥" and X # Az € MJG x far all ne N .

In general, the Petri net predicates computable by the modified firing
rule do not satisfy such a pumping lemma.

2a Piring under the Maximum Strategy.
2.1 The atrategy "MAX® for cancurrent computations was intraduced

by Salwicki and Milldmer /SM/ t As many processes as possible (limita-
tione may arise by eonflicts) have to work concurrently. Thus we want
to make use of meximal parallelism. This can be represented in Petri

nets by the following firing ruie called the Maximum Firing Strategy:

In & marking m we choose & maximel set T' of slmultaneously

firable tramsitions, l.e. > & g m aad 2 __t7 ¢ m
' W ' tE T te®"

for alk T" > T*' .,

Then the trangitions of T" are fired simultaneously. After thiﬁ

firing the new marking is m + z At . For thet marking a

mew set T' ig chosen ... teT'

2.2 The number of simultaneously firebtle transitions is hounded by
the number of transitions in the net. Additiomally it can be bounded
by the atructure of the nmet. By adding a "run place" it is poesible

te change the net (thereby preserving the internal structure) such thaf
not mowre then a given number n of trensitions may fire simul taneously:

f——————— T T T T T l Jf’

run place

|| —— 8 LI '——_|

all transitions of T l marked by n tokens
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2.3 The set Rﬁ.ﬂ of all reachaple markings under the Maximum Firing
Strategy contains all those markinge which can be reached from o by
firing the maximal sets T' of simul taneously firable tranﬂtmne, il.e.,
only those markings are valid which are reached when all transi tione

of a set T' have fired. Haowever, the results presented in this paper

remaing true if we consider the sets additionslly containing the inter—
medimte markings {where some transitions of T' have fired — this would
be related to the lamguages as in 3.4).

The Petri net predicate thlvux under the Maximum Firing Strategy
is the projection of Rﬂ_"‘x o the plgces of the met X € P . For each

- MAX MaX
net 4 we have: Rdf < R and MJV‘.X— MJ{.' X
2.4 Ag an example we conglder the following net (a modified wversion

of Hack's example for the weak computation of 2! ):

We have My x = {€i,jY /7 1elN A 1 <3 < 2t } under the common
firing rule for X = {X x5 1

The computations under the Maximum Firing Strategy lead to the following
reachability graph, whereby

m = (m(x-,),m(xal.m(m).m(pz),m(ar1).---.m(y4) )z
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Here we have Hudﬁxx = -[-(i,.l) / L1e W A 211 < i < 2i} . Since
thig met contains no infinite linear subset, it does not satinfy the
conditiona of the pumping lemme in 1.4 . Hence it can not be computed
in any Petri met under the common firing rule.

2,5 . Im the example a while-loop im realized: If the places ¥, and ¥y
aq'e each merked by ome token, then the trenaitions 1'.2 and t3 have to
fire simulteneously as long @s there are tokens in place Pqs Thus we
hasve under the Maximum PFiring Strategy:
while w(p,} > 0 do begin m(p,) := m(py) -1
m(py) == nipp} + 2 &
m(xz) = m(xz) + 1 end .
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Another while~loop ie realized by the transitions t5' and ts » Under
the common firing rule it can not be passible to realize while-lcops
in Petri nets. Otherwise the set MPZI,;"XX of our example would also be
computable under the cammon firing rule.

2.6 The reachgbility graphs under the Maximum Firing Strategy (as
well aa under the common firing rule) mey be infinite as in our example.
In general they may also have branchings (if there are two or more
maximal sets of simultaneously firable transitions}. The reachablility
greph is finite iff the net ie bounded (iff all reachable markings are
bounded ).

2.7 Certain properties of Petri nets — especially boundedness —
under the cammon firing rulie can be examined with help of the well-
knmown construction of the coverability tree [K¥S, KA1/, /H1/. An
fmportant fact used for this construction is the following one (which
iz also related to the pumping lemma 1.4 J:
If e merking m ie reachshle from m' by firing of a sequence u ,
ther m # & is reachesble from n' + a by firing of u under the
common firing rule for esch a¢ N F 5

Thig ie mot true far the Meximum Firing Strategy as it cen be geen by
the example. Hence a coverability tree with respect to the Maximum
Firing Strategy can not be constructed. Furthermore, boundedness ig
not decidable in Petri nets working under this firing rule (4.1) .

3, The camputetiaonal power af Petri mete under the

Maximum Piring Strategy.

3.1 The Maximum Firing Strategy fm more "selective” than the caumon
firing rule, thus we have u‘jﬁ’xx § M, y . By this selecting, the
Meximum Firing Strategy im more powerful with regpect to computations:
Let 9 and DP™F e the classes of all Petri net predicates .
and MMWA;XX » respeciively. Then we have !
1. AN
For the proof we refer to 2.2 and 2.4 ¢+ If n = 1 y then we are able
to fire in the net N'* conetructed inm 2.2 exactly all sequences of
L, even under the Meximum Firing Strategy, and hence MIJJ,[XX = M# x*
. MAX s '
For the exemple 2.4 we have H.M;.;xx & TNy .
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i 22 Petri nets under the Maximum Firing Stretegy are able to aimu-
!h’ late deterministic counter machineg. Other possgibilities ta simulate
counter machines hy medified Petrli nets were given by several authors
2 (cf. 3.5) . The crucial point is the simulation of zero-testing, whiel
ts pot possible in Petri nets working under the common firing rule /K:
The consequence of the ability to simulate counter machines are the

i undecidability results given in 4.1 ., The instructions of a defermini-
4 stic covnter machine can be simuleted by Petri nete working under the
! Keaximum PFiring Strategy in the following way (for mere detaila the
reader is referred to the literature):

pl @ simulates “start in state L
pl O pL' simulates “L: Xi — )(.' +1; goto lj ; i

{ counters are simulated by the places x; )

i T simulates zero-testing :

"L i X = 0 then goto L,else X; = X ~1; goto L, ;"

plO l O”HALT

simutates “L: hdt”
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Non-deterministic counter machines may also be simulated 1if we make
use of the additlional chofce-construction:

P (OLY

i O\éo simulates "l: goto ljor |, ; "
Pl1

3.3 As it was shown in /B1/, the set § (1,21) / ieWY is not
in the class ﬂ%MAX, end hence it is not possible to compute all
recuregively enumerable predicates in the sense of EﬂMkX. To do thig,
termination ie needed: Only those computations (markings) are valid
for which s given submarking y e NP\\X is reached on the places of
the set P\ X (where X <2enctes the places on which the predicate is
computed as before). By such predicates

MyX,y = {xémx /ﬁméﬁiﬂ ¥rex ¥ptepax : mlp)=x(p) A m(p'r=y(p*)}

all recursively enumerabie predicates can be represented /B1/.

Remark: It is an open problem which predicates can be represented
uging termination in Petri nets under the common firing rule. But it is
canjectured that not all recursively enumerable predicates can be
generated in this way,

3.4 The order of transitions in a firing sequence of L, may be
artificial in the case of comcurrently firable transitions. For reasons
of comparing resul'ts we can also introduce such an artificial order for
the firings under the Maximum Firing Strategy: For each maximal set T°
of simultaneously firable transitiona the traneitions of T' may fire

in en arblfrery order (each transition exactly once before the next

set T* 1s chosen}. Then we obtain that the Maximum Firing Strategy 1s
more powerful also: with respect to the representation of languages by
Petrl nets, Using termination and a traneition labkelling function
(homomorphism) h: T —=F'ule} we can generate all recurglvely
enumerable languages over the alphabet > /Bi/.

3.5 The power of counter machines ie alao met by the modified Petrt
net versians given by several authors. In /H2/ inhibitor arcs and ]
priorities for fransitions, respectively, are used. I'n the nets defined

in /JLL/ aud /MATTK/ the transitions have to fire during fixed
(individual) time intervals after thelr ermabling. Concepts of firing
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in the order of enabling (reallzed by certain gqueue regimes) hawe thos
effects, tooe /B1/. In /V/ the numbers of transported tokehs are modifie:
by the markings on certein places. The concept in /MPS/ is the closest
ane to our Maximum Firing Strategy: There the firings of transitions
are synchronized by external events auch that all enabled transitions
ecmmected to the actual event have to fire. The consfruction for the
simulation of inhibitor arce given in /MPS/ would also work under the
Maximum Firing Strategy. But, on the other hand, the construction glve:
there is quite oppasite to parallelism since all cancurrent firings of
the essential transeitiona are suppressed by a run loop (similar to the
constructian in 2.2)}.

4. "The price of parasllelism'

4.1 It ig well esteblished in the literature that the ability of
Petri nete to simulate deterministic counter machines (whereby the
Petri nets are modified in some sense) results in the undecidability
of the boundedness (are &ll reachable markings bounded with respect
to certain places), the reachability (is a given marking/submarking
reachahle) and the liveness (can certain transitions always become
firable sometime later) problema. Since the halting problem is not
decidable for determlnistic counter machines, it is not decidable if
a token can arrive at the place py, .. {cf.3.2} and hence the reacha- g
bility problem for submesrkingse is undecidable. By conmecting certain
simple subnets to the place PyaLT the undecidability of the reachabi-
1lity, boundedness and liveness problems can be proved (cf. for
instance /H1/, /fJLL/, /B1/}.

4.2 In the conatructiona for the simulation of the counter machines
all places excluding the counter-place x; may only be marked by O or 1.
It is known from the theory that the halting problem is undecidable
even for counter machines with twa counters. Hence the undecidability
results hold for Petri nets under the Maximum Firing Strategy where
the nets have only two unbounded plaeces. By a constructicon glven in
/Bt/ the number of baunded places can alea be limited by two. Hence
the total number of places need not he greater than four. On the other
hand, the reachabllity sets &,- of Petrl nete with 4 places under the
coammon Tiring rule gre always semilinesr /HP/. This illustrates the
difference hetween the firing rules ance more.
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under the cammon firlng rule mugt also be %ounded under the Maximum
Piring Strategy. Hence it is poesible that s place which was faormerly
unbeunded becomes bounded under the Maximum Piring Strategy. But it

ig not decidable in general if this happens. Still more important
could be the fact that e transition which was live under the common
firing rule mey become not live with respect to the Maximum Firing
Stretegy end vice versa /B1/. Here the undecidability results are very
strongly affecting the practical use.

4.3  Since we always have mrfv"xx £ M, y . & place which is bounded

4.4 In the Maximum Firing Strategy we make use of maximal paralle—
lism. But for simulating the counter machines the parallelism which

is used may aleo be restricted: Only the parallelism of two transitions
1s needed for the zero-tesgting device (3.2): If the transition t1 is
firable (if there are tokens on the place xi), then the transition té
must not become firable {(the places Py and p& must not be marked at
the same fime). That can be ensured if the transition t1 must start
working (with taking the token from pT) before the tramsition t,, has
ended its actions (has given the token to‘pé). This condition can be
satiefied if we claim that in a net simulating a deterministic counter
machine (3.2) at least two transitions have to fire gimultaneously

whenever this is poesible, Moreover, both transitions to,and t., become

firable at the same time. Hence it should be reasonably acGEpt;d that
under the asaumptions of a parallel system both transitions are simul-
taneously acting in reality. Thus deterministic counter machines can
he simulated. In thie sense we can stete that the use of perallelism
(the priority of parallelism) must be paid by the undecidability of

the reachability, boundedness end livenees problems.

4.5 Of course, the constraints of firings by paralleliem of at least
two transitions (as far as it is poseible} lead also to more computa-
tional power (in comparison to the common firing rule asg in 3.1). The
congequence of those extensions ie the impoesibility of faithful simu-—
letions by all one—processor-computations: There are concurrent compu-
tations. by nets working under constraints by parallelism such that no
net working under the common firing rule can exactly simulate them.

4.6 As 1t wae pointed out in 3.5, all known related extensions of
Petri nets (together with termination, ef. 3.3, 3.4} give the nets the
power of Turing machines., Whet we can say now is that already the use
af parallelism cen give the nete this computationel power. The restric-
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tions of this power under the common firing rule result from this point
of view from lrresolution with respect o parallelism. Cn the other
hand, firing by falr scheduling {sequentializing instead of parallelism
results in the power of Turing machines, too /B1/ (consider the zero-
testing device in 3.2 under the assumption that a firable transition
has to fire which was enabled the longest time}.

Thus the restricted computational power {and the decidability
of the boundednessa problem, for instance} of Petri nets under the
common firing rule can be understood as 3the consequence of allowing
"ioo much®: If there is made a decieion concerning parallelism {or fair
scheduliing or one of the modificetions mentioned in 3.5}, therm these

restrictions may he overcome.

5, Conclusionsg.

The restrictions of firability by the use of parsllelism extends
the computational power of Petri nets. It is not poselible to simulate
all these computations by nets working under the common firing rule:
The nets under the comman firing rule are in general computing "too
much"™. Hence there are concurrent computations executed by peveral
processors ueing the possibilities of parallel working which cannot
be exactly reflected by a&ll computationa which one processor could
executie in the same sjatem or even in eny other ayestem of the seme [ ]
kind.

Under the aspects of practical use the power of Turing machines
(or st least of deterministic counter machines) may not be welcome.

Phe decidability of livenees, for instance, is desirable. On the other
hand, the use of parmsllelism as far as it is possible is desirable with
regpect to. efficlency, too. Now the questlion erises for which classes
of nets the mentioned problems (or at least some of them) are decidable
with respect to the modified firing rules. A positive answer camn
trivislly be given for the cless of bhounded nets.
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