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I THE STRONGEST CONSEQUENT AND PROPERTIES
OF PROGRAMS :

1. The strongest consequent

Lot K be a program, let a be o formula in F and R a realization in
a non-empty set J. Let us congider the following property of results v:

(%) there exists om initial data v’ such that ag(v’) =V, Kx(v') is defined,
1 and Kg(v') =9. ‘

Thus a result » bas property () iff v can be obtained by the execution

_of K from an initial data o' satisfying . Like the first order predicate

connectives,” this construection has also an interpretation in the field of
" all subsets of the set of all valuations. N

Namely, » has property (+) iff » belongs to the set Ky({v: ag(v) = V).
Observe that the comstruction Ke has the following interpretation:
Ez'({o: agv) =V} )

Property (+) is expressible in the extended algorithmic logic. Namely,
lob & = (@, ---» By Tpyiy covr Tn) be the sequence of all different variables
oceurring in the formula Ka and such that @,,...,%, are individual
variables and 2,,,, ..., %, are propos’tional variables.

Liet ¥ = (15 -+ Yps -~ Yo) DO & cODY OF # constructed in the follow-

" ing-way: for each i =1,...,P,¥; is the first variable in the sequence
V., not equal to any variable in' the sequenee (1, ...; Tps Y1y «-+s Yiza)
and for each i =p-+1,...,m,¥y; is the first variable in the -sequence

'_*,This paper is & continuation of [6]. ‘ .
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- Vo, not equal to any variable inl the 8equence (@p,1y .., Ty, Ypyiy ---) Yr_y)-
- By aK we shall denote the formula :
_ ' 3G {e@) A K(G) @ = 9)).
The formula oK will be called the sfrongest conseguent of the formuls
o ‘With respect to the program X.
1.1. A valuation v has property (%) iff (aK)z(v) = V. _
Proof: Let us observe that (aK)z(v) = V is equivalent to the follow-
" ing fact: ‘
(1) there emist elements j,, ...,J, in J and Jpa1s eeesdn 0 By such that
the valuation - , 3

X 44 if 2=y, for some g=1,...,mn,
v(E) = : -
v(z)  otherwise

satisfies the following conditions:
(11) a(@)alv) =V,
(12) E()n(v") is defined,
(18) for each i =1,...,n, v(5) = E(Y)p(v') () = EF)p(v')(@).
Now suppose that assertion (1) holds. Consider the valuation »"
defined as follows: -

"e) s i 2z =ua, for some g=1,...,n;
¥ (2) =
#(z) otherwise,. '
From (1) it follows that:
(21) ap(v”) =V,
(22) Kg(v") is defined,
(23) for each ¢ =1,...,n, v(x;) = Kp(v") ().
Thus, condition (x) holds. '
Conversely, if () holds then there exists a valuation v” satisfying
conditions (21), (22) and (23). Now let v be the following wvaluation:
v"(z) # 2=y, for some ¢ =1, e
o' (2) = | T
v(7) otherwise.

From cond'itio.ns (21), (22),' and (23) it follows that conditions (11), (12),
and (13) also hold for this »’. This means that (1) is satisfied, m
- “For example, let us consider the following formulag:

(4) (z/1]{z > 1[z/1]),
" (B) ([2/1] > 1)[2/1],

and the. realization in the field of real numbers.
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(A) is eqmva,lent to 1 and (B) is equivalent to © = 1. Therefore the
reahzatlon of formulas (A) and (B) depends essentially on the distribution
,-of the. pa.rent.heses
‘The strongest consequent plays an important role in further consider-
ations. Tt cannot be defined in the algorithmic logic without classical
-quantifiers. This follows from [6], 7.2 and the following simple lemma.
1.2. For every formula a and every distinct variables z, y

‘ e = [2lyl(alz/y]).

~ Proof: Let R be a realization and » a valuation. Applying 1.1 we
obtain: [xfyl(e[z/y])z({v) = V iff there exists a valuation v’ such that
ap(?’) = V and o, = [2/y]g(v’) = 0%, The last statement is equiv-
-alent to the following: there exists a valuation o' such that ag(v’) =V
and v’ = +f for some j in the universe of R. Finally, the above statement
is eqmva.lent to that (Jza)p(v) = V. m
1.3. The construction of the -strongest comsequent has the following
properties:
(n1) (avp)K =aKvpK,
(n2) (enB)H < oKAfK,
(m3) eo[KM] = (aK)M, :
(nd) oav[yKM] = (ery)Evian "1y) M,
(DB) if a<g B then aK <4 BK,
(06) EKlaa<g KB iff aK <q4 8,
where a and 8 are formulas, y is an open formula, K, M are programs and
& is a class of realizations.
Proof: We ghall use 1.1 and the deﬁmtlon of a realization. Let K be
a realization and » a valuation.
, (nl) ((avp)E)g(v) =V iff there exists a valuation ¢’ such that
(avB)z(v’) = V and KEp(v') = v iff there exists a valuation v’ such that
ap(v’) =V and. K(»') =v or there exists a valuation 2" such that
ag(v”) = V and Egz(v”) = v iff (aKvpE)g(v) = V.
The proof of (n2) is similar. Let us observe that the implication (n2)
cannot be replaced by the equivalence.
For example, we can take as a: ¢ =1, f: 2 = 2, K: [#/2], 8 rea.hzamon
R’ guch. that 1, # 2z and a valuation v, such that 2,(2} = 25
(03) (ao[KM])g(v) =V iff there exists a valuation ¢’ such that
ar(v’) = V and Mp(Eg(v')) = v iff there exists a valuation v" such that
Mp(v'") = » and there exists a valuation o' such that aR('v) =V and
Kg(v') =" iff ((aK) M]R () = V.
The proof of (n4) is similar.
In order to prove (n5) and (n6), let us assume that R is a realization
belonging. to the class of realizations 2. :
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(n8) Liet a<pf and let » be a valuation such thai (aR)g(w) = V.
- That is, there. exists a valuation »' such that ap(v’) = Vand Kih(v') = ».
By assumption, §,(v') = V and hence (BE)p(v) = V. ‘

(n6) First suppose that Kl e <pHp and let v be a valuation such
that{aK)z(v) = V. That is, there exists a valuation o' such that ag(v’) = V
and K(v')=v. Hence (K1 Aa)p(v') = Vand by assumption, (K8)p(v') = V.
Since v = Kp(v'), then f5(v) = 85 (Eg(v)) = V.

Now suppose that oK <,8 and let v be a valuation such that
(B 1 Aa)g(v) = V. That is, denoting o' — Kr(v) we have (aK)h(v') =V
and according to our assumption we get Br(v’) =V. Bo (EBf)p(v)
= Br(Eg(v)) = B(v") = V. w

2. The iteration of the strongest consequent

Let K be a program, ¢ a formula and R a realization. As it will be
seen, the following property of an’ output v is also expressible in the
extended algorithmic logie:

- {#%) there exists an input v’ such that ap(v’) = Vand KL(v') = v for some
natural <. )

Let # be the Sequence of all variables oceurring in the expressions

K and a and let ;r_; be the copy of # defined in §1.
By | aK we shall denote the folowing formula:

(e@)a U E@) @ = 7).

This formula will be called the éteration of the strongest consequent of the

formula « with respect to the program K, )
2.1. The following facts are equivalent:

(1) @ valuation v has the property (xx),

(2) (U GK)R(’”) =V,

{3)  Lub. (aBY,(») = V.

' €N,

Proof: T M s a program and ¢ is a natural number then by MW we
shall denote the composition of 3 copies of the program M. That is:
M®: [, MO: M and MO o[ MW M] for ¢ 1. On account of the
“scheme (A7) of the logical axioms and of the equivalence (n3) in 1.3,
it follows by induetion on ¢ that: . '
: A9 F
(4} MYp = m'g,
- (5) . pMY =M, _
where 8 is a formula and ¢ is 2 natural number,
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Let us denote by W, the set of aﬂ valuations v’ such that v (s) = v(2)
” lf 2 ¢y Applying (4) we obtain

(UaK)a(0) = Lub. (a(d)a(v)n Lub. (KFHOE = §))a()

‘= lub. Lub. (a(y)plv')A (K@@ = ¥))r(v )

ieN  vel,

_Hence, using the definition of oK and the fact (5), we get
(U aK)p(v) = I.u.b. (aK),(9) = l.u.b. (aK)z(0).

So conditions (2) and (3) are eqmvalent By wrl;ue of 1.1 and (4) and (5),
conditions (3) and (1) are equivalent. In fact, lLu.b. (aK*)p(v) =
ieN

lub (aBE®)p(v) = V iff there exists a natural number ¢ and a valuation

v’ such that ap(v’) =V and KR (v') = v iff condition (++) holds for v. m.

2.2. The construction of the ztemmo% of the strongest consequent has the
follomng properties:

@7) (U ak)x(0) = Lub. (aE")p (o),

(m8) a*[yK] = TlyaUeaex[yE[]],
(n9y Uax.[y.K[ ]] = av('yAUax [yK[ ]])K,
(nl0) if for all natural n aK" <y B then | oK <g §,

where a and g are formulas, K is a program, y s an open formula,
R 18 a realization and % is a class of realizations.
Proof: The assertions (n7) and (n10) follow from 2.1.

(n8) Let R’ be a realization and v a valuation. Let us consider the
_relationship between the following facts:
(@) (e*[yEDz (@) =V,
(i) there exists a valuation o’ such that ap (v') = Vand #[yE ] (v') =v,
(iii) there exists a valuation v’ such that az (v') = vyE[ @) =2
for some natural % and yg () = |
(iv) (Tiya Uax [yE[ J)(2) = V
The consecutive equivalence of the above assertions follows from
1.1, from the definition of a realization and from 2.1, respectively.
(n9) Let R’ be 2 realization and » a valuation. Let us consider the
relationship between the following facts:
() (Uas [pET Jpto) = V,
(j]) there exist a valua,tlon v’ and a natural number n such that
ap(v) =V and v [yE[ JJ% (v)) = »,
(jji) there exist a valmation ' and a natural number s such that
ap: () =V, v __[yK[ % (v} =» and for each natural number m < n,
ve (¥ [yK[ @) =, |



" - D. Banachowski
(jv) either agp(v) = V (i.e. n = 0) or there exist valuations v’, "’ and
a npatural number % >1 such that yg(v') = V,v[yE[ J|% I(fu) = g,
for each m<<nm—1, yp{v ['yK[ 5(@)) =V and K, (v") =,
() (av (ya Uex [pE[ J)) B}z (v) = V.
The consecutive equivalence of the above assertions follows, as prevmusly,
solely from 1.1, 2.1 and from the definition of a realization. m

In Ohapter IT we shall need. the following lemma:
2.3. The following facts hold:

(1) *[yEIB = (A TIy)V (Ex[yE1BAy),
®2) NxPEL@vH =yad)v paEN 2 EL (v ),
®3) NxpELLvA) =K1y NEy,

(p4) if fov' all natural i, o < '8 then o <z KB,

whe're 74 zs a class of realizations, K is a program, y is an open formula
‘and «, f are arbitrary formulas.

Proof: The fact (pl) follows from the equivalence of the followmg
two programs: x[yK| and ~ [yo [E=[yE])[ ]]

' Now, let E be a realization and » a valuation. In order to prove (p2)
it is sufficient to observe that if ygr(») = A then (M x[yE[ J(rvB))r(v)
= frp(®) and if yx(v) = V then :

if #=0,

K[ 1™y v
(vl ”] v vBla(® e PEL I v A)al) i n>o0.

The equivalence (p3) follows from the following remarks. If for every
natural i, Ky (o) is defined and y, (K% (v)) V,then (M x [yE[ J|(yV B))r(»)
=V a,nd (NEy)gle) =V. If ¢ is in N and for each j<i,
EL(v) is defined, yp(E%L(»)) =V and -Ei(v) is undefined, then
(N> KL Yoy Bel® =Ar (N EF)n(o) A and («[YE1B)n(v) = A

It remains to consider the case when for every j < 7, K§(») is defined,
Yr(ER(W) =A and for each j<4,yp(B%(®) =V, In that case
(N pE[ (v B) )R(v) Br(Eq(v), (M Ep)a() =4 and (+[yE1B)z(v)
= fr (KR(’U)) ) _

Finally, if the inequality a <zpHK'g holds for every ¢ in N and every
realization B in £, then for every valuation v, eh(v) < glb. (K*B)z(v)
and hence a < z(Ef. m ,

3. Correciness and partial correctness of programs

We say that a program K is correct with respect to an input formula
. a and an output formula f in a class of frealzzatzo'ns % provided the formula
. (e = KpB) i8 valid in &. : ;
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' We say that a program X is Dartially correct with respect to an input
Jormula o and an output formula B in a class of realizations # provided
- .-the formula (Klaa = KB) is valid in 2.
For example, let us consider the following program:

M: o[[t/O glalx 2> ylzfe—y t/t—l—l]”

and its. algolic realization in the system of integers,

The program M is correet with respect to formulas (= 0Ay>0)
end (= 0nty<ono< (¢41)-y). On account of the case y — 0, M is
not correct with respect to formulas (x> OA y > 0) and t=0nty<aa
An<<(t +1)-y), but it is partially correet with respect to these formulas,

- Let 77 = {&, %, «} be an algorithmic theory.

A program K is said to be correct with respect to formulas a and £ in
thg theory & provided the formula (¢ = Kf) is a theorem of the theory 7.

A program K is said to be partially correct with respect to formulas
o and B in the theory I provided the formula (K1A ¢ = Kp) is a theorem
of that theory.

From (n6) in 1.3 it follows that
- 8.1 (1) A program K -is partially correct with respect to formulas o and
8 in a class of realizations & (in the theory T ) iff the formula (oK = )
5 valid in R (is a theorem of T).

(2) A program K is correct with respect lo formulas a and B in a class
of realizations & (in the theory I) iff K is partially correct with ?'espeat.%’

loa,fin R (inT) and kg(a = K1) ((a = K1) is a theorem of 7). ' -

IIL. MODULAR STRUCTURE OF PROGRAMS

. In Chapter IT we shall deal with properties of the modular structure
of programs. We shall investigate the possibility of deriving properties
of programs from appropriate properties of thejr modular structures.
The modular structure is regarded as a tree with modules in vertices.
Sueh. a definition has proved useful in the machine implementation of
proving- correctness of programs [7].

1. Descriptions of programs

By a module of an FS-program K we shall understand any subexpres-
sion of K which is also a program. The set of all modules. of 5 program
K will be denoted by Mod (K).

© - Apair H = (I, K) is said to be a tree of the program K if I < {1, 2),
K: I Mod (K) and the following conditions are fulfilled:

- onfio

" (1) the empty s'e(iuence e belongs to I and K,: K,
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(2) lfzISmIa.ndK o[LM] orK ! v [yLM] then 41, 42 are in

. I and Eyu: L, Ky M,

(3) if 4 is in I and K,: «[yM] then i1 is in I and K,: M,
(4) every element in I can be obtained from the vertex ¢ by means
of the rules (2) and (3).
The funetion K is said to be the modular structure of the program K and
is denoted by K = {K};a-
: By a description of the program K we shall understand any mapping
A: I ->FxF. We shall denote it by A = {(a;, b;)};;, Where (a;,b;)
= A4.() for ¢ in I. For every ¢ in I, the pair A (2) = (a;, b;) defines & sub-
task of the module ﬁi. The formulas a; and b, are called the input formule
and the output formula of the module 1%” respectively. In particular, the
integral task is defined by the pair A(e) = (a,, b.).

In order to illustrate the notions just introduced, we give below two
examples of program trees with associated descriptions. We assume that
., —, €, U are 2-argument functors, f, g are 1- argument functors and
¢ i3 a 0-argument functor.

ExsavpPLE 1. 7
K: v [s =se[lo[ly/lxly #elyly-2]]].

(/21U 2K (u=y) 22 [w/2lUfe/wal(u=y)
[y/y-2}

EXA.‘MZPLE 2.

M: of[zfz ylelx [m + elwjo—g(f(@)) y/yuf(m)]]]

Remark: According to the definition, the modular structure of a pro-
gram is determined uniquely by the program alone. However, in practice,
‘the choice of a parbition of a program into modules depends also on the
programmer The results of this chapter will not change if we allow any
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Vi(tey<>Ah(thezatet,)

1 Y=EAX=2 Vt(tEy#»EIt,(ﬁez:\tah))

Vu Vuy (ueuy ez (uey<> u ¢ x)) @ VuVu (ueuaue 2= (ue y+> i€ x))

Lx/x—g(f(x)) y/yufx)]

Joop-free programs to stand at the terminal vertices of the program tree.
Such an approach has been applied in [7].

By a verification condition of a vertem 4 in I with respect to a deseription
A = {(a;, b,)}s.; we shall understand the formula VC; defined as follows:

(1) i E;:s is a substitution then VC;: {a; = (sb,)),
(2) if K;: o[LM] then VO;: ((&; = a;) A (by = ax) A(by = B)), ie.

i b iz biz
I

| (3) i Kyr v [yLM]then VO;: ((agay = )A{a;A Ty = ap)A (b v by =
= by}, ie.

-I L l
an b1 by
a; O

ﬂzzr_—"M 1 b2
I

(4) -ﬁ’:ﬁ *[yM] then VC,: (((%V bp)ay = '1;1) Allay bada Ty = bi))’
ie. , .

b;
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By a verification condition of the program K wzth respect to the descrzptwn
A we shall understand the formula VC: A VC,. The desarlptlon 4 is

iel
called compatible with the ‘modular structure K in o class of realizations
# (in a realization R) if k, VO (k5 VO). '

2. A theorem on compa.ﬁble descriptions

In this section we assume that H — (f, 1%) is the tree of a program
K, A = {(a;, b;)}s; is a description of K and # is a class of realizations.

The modular structure K is said to be correct with respect to A in & 7
provided A is compatible with the- modular structure of the program
K in & and for each i in I, kg(a, = K;b,).

The modular structure X is said to be partially correct with respect
to A in # provided A is compatlble with the modular structure of X
mgéandforeachzmI l=_,,,(uI( = b,).

2.1. If A is compatible with the modular structure of the program K in
R then the modular structure K is partially correct with respect to A im A.
. Proof: Let VO; be the verification condition of a vertex ¢ in I with
respect to the description A.- We have o prove that Fyp A VC; implies
#g(aiﬁi = b;) for each % in TI. ) =

The proof proceeds by induction on the length of modules of K.
Ii l% : ¢ is a substitution then by a,ssum'ption Fa (a = (sb;}'). Since s is
a substitution, then ksl and therefore kg (a = (sb; )) is equivalent to
Fa (a; A8l = 8b;) and in virtue of I, 3.1 (1), the latter 18 equivalent fo

J"‘_g? (aris = b ) £
Now let K;: o[LM] and
O, L <gb;
(01) POTET (induetion hypothesis),
Gl <g by,

According to the assumption F, VC; we have
a; Sg Gy
(02) . by <gap,
biy < by
Applying (o1), (02) and I, 1.3, (n3) and (n5) we get consecutively .
a;0[LM] = a, LM <gqby M <ga, M<zpb,<ab,
Now let K ~»[yLM] and
@y L <g by,

(1), (induction hypothesis).
an M <pby,
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" According to the assumption k, VC; we have

T Ay Sgvty,

C(x2) ATy <qa,

' o byvibp<g by

Applying (v1), (x2) and I, 1.3, (v4) and (nB), we get consecutively

&y [yLM] = (an p)Iv (an Tly) M <g anDv ayy M <y {’n v by g ;-
Now we shall earry out the induction step in the case K;: « [y M]. Let

(#1)  ayM <ab,  (induction hypothesis)

~ and '

(fz-) @V bp)Ay Sq oy, (a;v by)A Tly <gb;, (assumption).

" First we shall show by induction that for every natural number ¢

(43) . @ [y [ 1|7 <q & by |

For ¢ = 0 this is evident. Suppose that (*3) holds for some q. Usmg
(#3) and I, 1.3, (n4) and (n5), we get

ap fy M = o [y M oy [ ] : -
' <a((@;v by)a ) M v ((a;v by)a T1y).
' Hence, by (*1), (*2) and I, 1.3 (nb), we infer that
(L FAYA [‘J’M[ ]]q-H e a’u-MV {a;v b)) <ga;v by.
Next, applying the rule I, 2.2 (nlO) tq the implication (+3) we obtlain
~|yM[ | <gla;v by) and hence, by I, 2.2 (n8) and by (#2), it
fo]lows that . :
“K = "lyalUa; [VM[ 1] <wla; =by)a Ty <gb; _
As a corollary to 2.1 and to the theorem on completeness we obtain
the following fact.
2.2. Let VC be the verification condition of the program I with ?'espeé’(,
to the deseription A. Then, if VO is a theorem of an algorithmic theory
= {&, €, o}, then the program K is partially correct with respect to
the formulas a, and b, in the theory 7. _
Below we give an example of an application of 2.2 to the examination
whether a given program is partially correct with respect to a given task.

ExAsvere. Let Boolf be the formal algorithmic theory of Boolean
. algebras with the following additional axiom:

(Af) 2Uf() =,
where f is an addifional 1-argnment funector.
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Let us consider the program
M: o[[zfz y/@1+|e £ BlylyLf@) zlz—f@)]]]

and the fask defined by the formulas 1 and © = y. Let us assume that
we want to prove the partial correctness of M with respect to the above
tagk in the theory Boolf. In order to apply Theorem 2.2 we must construct
a description and prove the appropriate verlﬁcatlon condition. Let us
consider the following description:

ey uf) 2/a—(x)]

Then _
VC: (L =Ma(e =2y #D 22 =ary #D)A(z =9y =z =1y)),
VC: (1 > =2A80 =9),
VO,: (({(z =2y =0)vyuzr =zaz =0 =2 = y)(((z =zAY = B)v
VyUz = a)Az =0 =>yuz=a;), -
VCy,: (yuz =z = (yuf(z)u(z—f(z))) . m)
Evidently, VC,, VC, and VC, are tautologies and it remains to prove
- that VO,; is a theorem of the theory Boolf. Firstly, (yuj(z))v (2—f(2))
=gyUzUf(2} is a theorem of the theory of Boolean algebras. Moreover,
by the axiom (Af), the formula 2Uf(2) = # is a theorem of Boolf. Hence
V(C,, is also a theorem.

3. Extremal descriptions

In the extended algorithmic logic we can express the greatest relation
of an input data » such that a program K halts for » and the output data
satisfies a formula p. Namely, this relation is defined by the formula K§.
Analogously (see I, 1), the formula <K defines the least relation of
results » which are obtainable from input data satisfying a formula a.

~In this section we shall prove that the extended algorithmic logic is large
enough to enable defining analogous relations for modular structures of
“programs.
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‘TLet us agsume that K is a fixed program, H = (I, K) is the tree of
K and £ is a class of realizations. Let A = {(ay, b))}y and B = {{6;y @;)}s
be deseriptions of K. By <4 and =, we shall mean the following relations:

A<gB iff a;<p0 and b;<qd; for all i in I,
A =,B it A<zBand B<gA4.

By the natural deseription oK = {la;, b)}ir of the program K with
respect to am Jupud formula o we shall mean the following description:

1) a;: a, b,: ok,
) (2)if el and K o[LM], then ay: a;, b;: a;L, ap: a;L and

byt e, LM,

3) if 47 and K;: v [yLM], then ay: aAy, a5t aA 1y, byt 6L
and b,: o M, ; '
" (4) ifi eI and K;: x[yM] then ay: ya Uy [yM[ ]} and by: ay M.

By the natural description ﬁﬂ = {(a;, b)) }ier Of the program K with
'respeat to an outg ui formule p we shall mean the following description:

(1) a,: Kﬂ) ﬁ:

(2) it iel and Ki ol[LM], then @, : LMb;, by: Mb;, a,: b, and
b; bﬂ

(8) if iel and K;: v[yLM], then a,: Ib;, a,: Mb;, by: b; and
bin: b, . . .

(4) ifi e Tand K;: =[yM], then by:x [y M [ (yv by} and a;: Mb,.
. Liet us consider an algorithmic language containing 2-argument
" funetors | and -+, l-argument functor abs, 0-argument functors 1, 2 and
2-argument predicate >. Let # be the l-element class containing the
usual algolic realizations of the above constants in the set of integers.

Exsavpie 1. Let us consider the program

M: o[[zjz}2]x o> 0fz/zt2](=/zt2]]],

its tree -

3 — Fundamenta Informaticae 12

e

1.
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':_;\.nd the following four descriptions:

, Gg, Gy I by | @z l 21 | bay | ap I bao ‘ by, be
Ejabs(z) =1 =1 z=1 |abs(@)=1le=1 =x=1 (z=1x=1
By labs(z) = 1| z =1 z=1 |abs(m)=1|z=1 0 6 |2=1

B |abs(z) = 1labs(w) = 1] abs(z) = 1 abs(w) =1z =1labs(z) =1 |z =1 =1

E4abs(m2=1 z=1 |abslz) =1 abs(g) =1|z =1 1] 0 |z=1

As can be easily verified, the modular structure I is correct with
‘respeet to every one from the above descriptions, and moreover, B, =,

(abs(z) = 1) M and B, =, M(z = 1).
Now let us consider the program

*[55 #* ylofe +1}]1
its tree

ae e

[x/x+1]

and the following four descriptions:

| @ l % | b e
Q 1 1 1 1
. @ 1 - T FHY Jo(z =y A z =y
’ Az =z41)
Q| y>0Ay>avy =2) | y>0vat+l>y y>0vae>y y>0
@ y>6/\(y>mvy='m) y>0Ay>z+1v Y>O0A(y>3v [y>0Az =y
vy =z+1) VY = )

As can be easily verified, the modular structure P is correct with
respect: to the descriptions @, and Q,. P is not correct with respect to
©, and ¢,. It is only partially correct in those cages. Moreover, @, Eg,lf’
and @, =4P(y>0).
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s 4. Tﬁéorems on extremal descriptions
g The na.tura.l _descriptions have the following propermes .
: 4.1, Tet a and B be arbitrary formulas. Let A = {(a;, b))};; be a descrip-
tum compamble with the modular structure K in a class of realizations A.
(1) The modular structure K is partially correct with respect to the
‘\ natural description oK in &

(2) The modular structure K is pa?'twlly correct with respect to A in
2 iff a, K <gd.

(3) The modular structure K 18 correct with respect to the natural descrip-
, tz'on‘“ﬁﬁ in A&.
ks (4) The modular structure K is correct with respectio A in R iff 4 <gq4 ﬁ'be .
Proof of (1): Let oK = {{e;y 4;)};; be the natural description of the

program K with respect to the formula . The definition of «X (see § 3)
implies that for all < in I

— i -

(41.1) d;: o, I,.

T

So it remains to prove that for each ¢ in I, k5 VC;, where VG, is the
verification condition of the vertex ¢ in I with respect to the descnptlon aK
The proof proceeds by induction on the length of modules I{” for ¢ in I.

If K,:s is a substitution then VO, = (c = (s(c;8) )) (c: = s(e;8))
= (e;n s1 = s(¢;s)). Further, on account of I, 3.1(1), kg (c Al = s{c;s))
is equivalent to |=g, (e;8 = ¢;8). Hence the formula ¥C; is valid in .

In the cases K o[LM], i- v [yLM], and K % [vM ] we immedi-
ately apply the definitions of the verification condition and of the

natural description aK and the facts I, 1.3 (113), (n4), and I, 2.2 (n9),
respectively.

Proof of (2): On account of Theorem 2.1 it is sufflclent; to show that
if the modular stracture K is partially co:[:rect with respect to 4 in 2
then a,K <zA, where a,,f{ = {(¢;, d;)};; is the natural description of
ihe program K with respect to e,: a,

We have to prove that for each 7 in I

(4.2.1) s e
(4.2.2) - e Ky <q b;

Since 4 is a compatible description, then by Theorem 2.1 it follows that

the modular structure K is partially correct with respect to 4 in #.
' Henee (4.2.1) implies (4.2.2). The proof of the agsertion (4.2.1) proceeds
by mductlon on the length of an index ¢ in I.
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If i =e then ¢,:4,. Now suppose that condition, (4.2.1) holds for
some 4. g
I K,: o[LM], then applying the definition of a, K, the induetion
hypothesis (4.2.1) and the assumption that 4 is a compatible descrip-
tion, we get that ¢, = o, <44, <,a,. In virtuo of (4.2.2) we can anal-
ogously prove that ¢, <,-a;,.

The considerations in the case 1%.;: ¥ [yLM] are similar.

Now let us examine the case 1‘(.;: * [y M ].

G e AN ok

@ " & o
yalUcx[pm( ]
(pnlcsypmf )M

In accordance with the definition of the natural d_es‘(\iription aeIf, we

must show $hat ya ey [yM[ )] <za,. On account of the rule I, 2.2
(n10) it is sufficient to prove that for each ¢ in N :

(4.2.3) (race [y MY <q a;.

The proof of this fact proceeds by induetion on a number g. For ¢ =0,

(4.2.3) follows from (4.2.1) and from the assumption of compatibility

- of A. Suppose that the fact (4.2.3) holds for some ¢. Hence by I, 1.3 (n4)
it follows that ' ' :

rAG [y ML <aya(lya e [pM{ 1Y) v (Tpa v [pH( 19)
-<._a YA (}'AlC-.\L[‘yM[ ]]q) M<gynay M,

Since the modular structure K is partially correct with respect to 4 in
&, then yaa; M <aynb;, <, ;;, Which completes the preof of (4.2.3),
(4.2.1) and of the whole assertion (2).

Proof of (3): Let f{ﬁ = {{¢;, d;)};.; be the natural description of the
program K with respect to the formula 8. The definition of l%ﬁ, § 3 implies
that for each i in I '

(4.3.1) 0 K,d,.

8o it remains to prove that for each 7 in I we have Fa VC;, where V(, is
the verification econdition of the vertex i in I with respect to the deserip-
tion Kp. The proof proceeds by induction on the length of modules ff,
for 4 in I. ' '
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" In the cages when K: s is a substitution, K;: o[LM], or Ky x[yLM]
. we apply the appropriate definitions, [6], 5.1, and the schemata (A7),
(As) of axioms, [6], 4, respectively. In order to cope with the case K,:
«[yM] it is sufficient to observe that I, 2.3 (pl), (p2), (p3) iroply the fol-
lowing facts: ’ - :
o *[VM]biA_]?‘gbif
N fyM ] (v d)a "Iy <
NxpM[]pvblay< MO\ x[pML v b,
#[yM]b; < ﬂl[?M[ ]] (yv b;).

Proof of (4): Let Kb, = {(ﬁf,;ci, ¢)}iz be the natural description
with respect to the formula c.: b,.
_ Suppose that the modular structure 'K is correct with respect to the
degcription A-in 4. We have to show that for each 4 in 1

(4.4.1) a; <a K0,
(4.4.2) by <@ Ci-

Since K is correct with respect to 4 in 4, then assertion (4.4.2) implies
(4.4.1). The proof of (4.4.2) proceeds by induetion on the length wf an
index i in I. If i = e then ¢,: b.. :

We shall consider only the case f(t-: w [y M)

a A b

MNx [yM[ ]](yvr:i)
N [pml Pz ved

From b < g6 We have to deduce that b <aV X[y M )] (7 ).
In virtue of the rule I, 2.3 (p4) it is sufficient to show that for all ¢ in ¥

(4.4.3) by <ax [y M[ 14y ve)-

We shall use induction with respect to ¢. For g =0, on account of the
agsumption on correctness of A and the induction hypothesis (4.4.2), we
get that by = (yabu) v (T1yAby) <@ 7V bi<a ¥V ¢;. Suppose that (4.4.3)
" holds for some g. On account of the correctness of A we obtain that

‘ by = (yAby)v (Tlya bi1)'-<-.g (paay)v {T1ya b)) <g (¥A Mby)v (T1yA b}
E'il’)’M[']] b . :



e 'I}.‘ iBé.na.c'-h:'owsk'i- "
According to (4.4.3) it follows that
bo <ax[yM[ Jx[yM[ F(yve) =~ [P ] (yvey).

So the inequalities (4.4.3) and (4.4.2) are true.

Now let us assume that 4 g ﬁb, == {(ff,-cf, ¢)}ir- Hence for every
tin T, 6, <q Ko, <qp K, Since 4 is a deseriptiori compatible with & in
2, then by Theorem 2.1 for every ¢ in I, a;a f(,-l g b;. 8o a; <, K;b; for
all i in 1, i.e. the modular structure K is correct with Tespect to A in 2. m

In the sequel we shall assume - that the sets of predicates va, for all-
% in N, are enumerable. Now we return to the problem which was for-
mulated at the beginning of § 3.

Let H = (1, K ) be the tree of a program K and let « and B be formulas,
Let # = (14 .0y @) and 7 = (215 ..y %) be sequences of all different
individual and propositionsl variables, respectively, which oeceur in the
expressions K, o and 8. Let I' be the set of all sequences y = (y,, ..., Vi)
such that y, is equal to % or "1z for every i =1,...,m. Let {232 and
{13 be Sequences of different n-argument predicates not occurring
in K, ¢, and B. .

. By a predicate description of the program K we shall mean the descrip-
tion P = {(P}, P})},; such that for every ¢ in I

1
-

Pyt A (Par oo Ay, = el(@),
PE(FLe e rpe

Phe A (1A e Ay = a(B).
Y=(¥1r- 0 vplel’

Let B be a fixed realization in g non-empty set J and a two-element
Boolean algebra B,. -
By a relational. description of the program K we shall understand
& sequence u = {(u}, u?)},; where uX: J" X By — B, for each i in I and
E=1,2 :
By a realization generated by the relational description u — {2y 1i)}ir
we shall mean the realization B, defined as follows:
7 (1) for every fumetor or predicate not appearing in the sequences
{7} and {027 the realization R, coincides with R;
(2) for every ¢ in I, every Sequence y = {yy, ..., y,,) in I" and every
objects j,, ..., 4, in J: ' :

81?81{(.7-1! "'!j‘n) = p}(jl! "'Jjn) By evey ?]m)!

Ger(jlp e dn) = F'?(jn ---:jm-"h’ oy )y
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i

V if Vi 2y

=1. for k=1,...,m.
A 7 if Vit _lzk

L}

Let us observe that the realization R, has the following property:
gor all 4 0 I, Jip--oyfn in o and 71y .05 T in B,

P}R.u(ju ey Jnr Mo ---5%) = ."'Hju sy Jrntin eey i)

and
P‘%R#(jli NS PIT ooy ) = F‘i(ju ey dnr M ---7'7m5-
Les M, be the set of all relational descriptions x = {4}, #9)}er STCD
that . -
. (1) Plp(v) = aglv) for every valuation v,
(2) the modular structure K is partially correct with respect to the
predicate description P in the class {R,}.

Let M? be the set of all relational deseriptions g = {(u1, i)k sSuech
that

(1) Pig(v) = Bz (v) for every valuation v, .

(2) the modular structure K is correct with respect to the predicate
description P in the class {R,} .

4.2, If oK = {(@, b)}kia ond KB = {(¢;y &) }ix ore natural deserip-
tions, then , :

(1) for every relational description p = {(ph, sk ™ Mo for every ¢
in I a;p < pb and bp < i, '

(2) for every relational description ¢ = {(¢}, 0V} N M* and every ©
in I o S ¢ and o} = Gip.

Proof: Since the formulas a;, b;, ¢;, and d;, for 4 in I, do not contain
any predicate from the sequences (s and {o?}fq , we have

Mg = g, Din = b, for all pin M,

and _
'c,-R = c‘iRerﬂ—diR = diR@ fOI' a.ll e in .M'B.
Now we can apply Theorem 4.1 to the classes {E,} and {Ro}s respectively,
getting that
for every win M,, oK ‘~<~{R,,}P

and N ' X
- for every g in M%, P <pyHEB.

Hence by the equalities above we obtain 7a,ssertions (1) and (2). m
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5. An extension of a task of a program to a description

5.1. Por every ‘program K, every formulas a,f,y and 6 and every class
of realizations R ‘ .

(1) ¢f K is partially correct with respect 0" a and f in &, then the modular
‘struoture K is partially correct with respect to the deseription A such that
4(e) = (a, f) and A(i) = (aK)(i) for all ¢ in-I—{e};

(2) ¥f K is correct with respect to the formulas y and 8 in &, then the
snodidar siructure K is correct with respect to the description C such that
Cle) = (y, 8) and C() = (R8)(i) for all i in I—{e}.

Proof: Let VC!, VC?, VC* and VC* be the verifieation conditions of
the program K with respeet to the descriptions oK, 4, K8 and 0,

respectively. By our agsumptions we have o Saf and y <, K4 Henge
VO' <4 VO* and VO® <, VC'. On accomnt of assertions (1) and (3) of

Theorem 4.1, k4, VO! and k, VO So Fq VO* and k, VC* and therefore

the descriptions A and ¢ are compatible with X in 4. From the assump-
tions oh 4 and O and from agsertions (2) and (4) of Theorem 4.1 it follows

that K is partially correct with respect to A in # and is correct with
respect to ¢ in #. m

Now we shall define a certain deductive system for proving partial
correctness of programs. Let & be a fixed class of realizations. We assume '

the following formulas as axioms:

(@[1=8 i Fy(a=>p) and {(sp)'s = f)

for all formulas ¢, # and substitutions s. ,
We admit also the following rules of inference:

6[]=a, oK =8 ok =8, f[ ] =4
0K = 8 , (B2) aK = § ’

el =8, BM = § (ery) K = 8, (an ) M =B
&) —omin ey B ax [yEM] > B ’

(Rs) B = By ((av BIAY)L ] = oy, ((av A Tp)[ ] = B
ax[yK] = g ’

for all programs K » ¥, open formulas y and arbitrary formulas «, g,
3, t1, fi. * .

5.2. For every program K and every formulas a and f§, K is partially
correct with respect to a and f in R off the formula (aK = B) is provable
in the formal system defined above.

(R1})

Proof: As is easy to verify, the axioms of the above system are valid

and the rules are congistent, i.e. -thex allow to deduce from valid premises
- the appropriate valid conelusions: So if the formula (aK = f) i8 provable

T
e
P =y oy

T
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" .then the program K is partially correct with respect to the formulas
a and f. Let us assume that H = (I, K) is the tree of the program K and
“that K is partially correct with respect to ¢ and g in £. By 5.1, (1) it
f_oliows that there exists a description A = {(a;, b;)};; compatible with

X in # and such that a,: o and b,: 8. Let VO be the verification condition
of K with respect to .A. Thus k, VC. Now it is easy to construct a proof
p of the formula (oK = f) from the verification condition. VC. We shall
define by induction on the length of ith module the proof p; where
% belongs to I.

Namely, if fi’.',-: s 18 a substitution then
P = (sl 1= (5D, ((sB)'s = by, (a8 = b)),
I X,: o[LM], then B
Po = (@&l ] = aa), Pay Gul 1 = 0, D, Bl 1 = b)) (@ = b))
If K;: v[yLM], then '
ps = {{(@AN T 1 = ag)y Py Bal 1= B, ((an T[T = ), _
o Paos (B[ 1= B, (a2 » ).
If H;: «[yM], then 7 ‘
2 = {{{(a;v b)Ay)[ 1 = aﬂ): (((aev bi)a TI9)0 1 = b), 2ass (@K, = b))

~ In this way p, is the proof of the formula (¢cK = f). m

ExaMPLE. Now let us return to the example in §2. Let @yo be the
class of all models of the theory Boolf. Below we shall give a proof of
the formula (1M =z = y) for the class of realizations %p,q;-

(1) ({1 > (= = 2AQ = B)) ' axiom,

(2) ((z = 2AD = O)[2/2 y[B] = (2 = zry = D)) axiom,
(3)-(L[2/o Y] =+ (z — any — O)) (R1)(1, 2),
@ (wuz =o)[ 1= (pur@ufe—f@) =¢))  axiom, -

®) (([pusi@v(e—1@) = olylyUf(@) slz—f(a)]) = (yuz = 2)) axiom,
(6) (yuz = alylyUf(a) ¢ls—f(@)] = yuz = a) (R1)(4, 5),

(7) ((((z =gay =DQ)vyuz ——--..’L‘)AZ #ﬂ)[] > YUz = m) axiom,
(8)‘((((z=amy=ﬁ)vyuz=m)/\z=@)[]=>w=y)\ axiom,

(9) (& = ony = @) [ £ By /yUf(@) 2/z—f(@)]] = & = y) (BE)(6,8,7), .
(10) {Lo[[z/z y/@1x[z # Blylyuf(®) sla—F(@)]]] = = y) (R3)(3, 9).



i SR T e T

6. Opéfn .descripﬁons

- In practice we meet usually descriptions -consisting solely of open
formula,s Sueh descriptions will be called open. The following théorem
establishes the complexity degrees of properties of a modular structure
with respeet to open descriptions.

6.1. In every class of realizations %

(1) the "properties of partial correciness of a modular structure with
respect to open descriptions and of validity of open formulas are recm*swely
reducible to each other;

(2) the properties of correctness of a modular structure with respect to
. open descriptions and of correctness of a program with rvespect to open for-
mulas are recursively reducible to each other.

Proof: Assertion (1) results from Theorem 2.1 and the following simple
fact: for an arbitrary formula «, e =(1[ ] = a).

Now we comsider assertion (2). Let K be a program correct with
respect tio open formulas ¢ and # in a class of realizations #. Observe
that the correetness of K is reducible to the stop property of the program

M- V[ao K[ 180 il ]] Namely,

(1) ) " {e=>Kf) = 5

Now let o[P*[yQ]] be a program in the normal form equivalent to
M [6], §8. We remind that P and @ are loop-free programs. In turn,
the convergence of the program o [P [yQ]] is equivalent to the correctness
of the program IL: *[yv px[po[P[p j07]] Q] with respect to the formulas
p and 1, where p i3 a propositional variable not oceurring in the ex-
. pressions P, @ and y.

Let H = (I, L) be the tree of the program L. We have for I the
equivalence kg (p = L1) iff the modular structure L is correct in % with
respect to the description A given by A(e) = (p,1) and A(i)=(1,1)
for i e I— {é}.

The converse follows from (i) and the followmg simple observations:

b (K1A ML) iff Fov [pEM]l  and  a = [ 7Ja[ JJ1

where K, M are programs, p is a propositional variable ocewrring neither
.in K mnor in M and. e is an open formula. m

7. Rroperﬁes of programs and second order logic

The main result of this section ig included in Theorem 7.2.

First we must prove some auxilliary fact.

Let K be a program and let a, § be formulas. We shall agsume that
z and % are sequences of all different individual and propositional variables,
respectively, oceurring in K, « and f.
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" Let H = (I, k) be the tree of K and let P — {(P!, P}, be the
-predicate description of the program K. The quantifiers binding all the
predicates of the predicate description P will be written in the abbreviated
. form as AP or VP. . '
7.1. For every class of realizations %

Fe(Klna = Kf) iff ke IPYZVZ[VOA (P! < a)a(P: < )],

where VC is the verification condition of the program K with respect lo the
predicate description P. .

- Proof: Suppose that kp (KlAc = K 8). By virtue of 5.1 (1), the modular
structure X is partially correct with respect to some degeription 4 = {{a,,
b;)}:r such that a,: a and b,: 8. Now we can define the meaning of the
Predicates from P in the following way: P! =,.q, and P =45, for all
iin I, where &’ is the class of appropriate extensions of realizations from 2.
- Thus kg (VOA (Pl < ap)n (P2 < b,)) and hence ' :

ke IPYEYZ (VOA (P! <= a)a (P2 <> ).

The converse results immediately from Theorem 2.1. m

By Py we shall understand the set of all formulas of the second order
predicate caleulus, i.e., Fy; is the least set containing #; and closed under
Propositional ecomnectives and the following rules:

if ¢ is in #;; and x is an individual variable then (dza) and (Vza)
are’in #;

if ¢ is in F'yy and ¢ is n-argument predicate in ¥, then (Jee) and (Voa)
belong to Fy;.

We say that a formula o in 7 is Fy-emistential (Pr-universal) provided
there exists a formula y in ¥, and a sequence of predicates w such that
a = Fwy) (a = (Vay)). .

In the sequel K, M will denote any programs and a, £ will denote
any formulas from F,, fixed from now on. '

7.2. (1) The following formulas are Fr,-existential:

_ a. Klaa > KB P las of partial _—
ormulas of partial ecorreciness.
b. oK = 8 . P
(2) The following formulas are Frr-universal:
e = Kf formula of correctness,
Kl halting formula,

KIA MIA (Ko< MB) formula of equivalence of total programs,
- 1K Jormula of counter-domain.

op o
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Proof: We can assume that the sets of free and bounded variables
occurring in ¢ and § are digjoint.
- Tiet Y = (Uys -+ Yns Yns1r +--» Ym) D@ the sequence of all different
variables occurring in the expressions K, a, g and such that ¥,,..., ¥, are
mchwdual variables and Yni1y + vy Y ATS Propositional vana.bles

Let t = (f1y eeeytay buprs <oy tm) DO 2 sequence of different variables
nqt-occurrilig in K, a, p and such that ¢,...,t, are individual variables
and 2, 4170 by TO propositional variables. ‘

Let ¢ = (el, a3 €y Catry ---3 Op) be a sequence of different constants
not occurring in K, a, § and such that ¢, ..., ¢, are 0-argument functors
and ¢,y ..., Cp 8T O-argument predicates.
~ Let K, o’ and g’ be the expressions resulting from K, a, f, respect-
ively, by the simultaneous repla.eement of all oecurrences of the variables

from ¥ by the variables from ‘. Moreover, K": o[[t/c]K | and let o”
and #'' be the formulas obtained from «' and f’ respectively, by the
smultaneous replacement of all free occurrences of the variables from

t by the constants from ¢ , Tespectively.

Let P = {{P;, P))}.x be the predicate descrlptlon of the progra.m
K" and let VC be the verification condition. of the program K" with
respect to the description P. Let VC' be the formula resultmg from VC
by the simultaneous replacement of the constants from ¢ by the variables '
from y , respectively.

The following two lemmas can be regarded as the analogues of the
results of Manna [16]. !

7.3. #(K]./\a =>Kﬁ)¢>3.PVt(VG Al P1¢Q)A(P2¢ﬁ)))

Proof: Applying 7.1 to the program K and to formulas ¢" and §
we get that for every realization E

!

(1.31) Eg(BE'lad’ = K'f) iff b, APV (VO (Piea”) A(Pie> ).

Observe that the formulas in 7.3.1 have constant values in every realization
R. Hence )

E((E"1aa” = KE'f)« EIPV?(VOA (Ples YA (P2 B)).

Since the above formula is a tautology, we can replace all the oceurrences

of the constants from ¢ by the variables from ¥ which do not occur in
the formulas in question. We get that

F([[EHIE]1aa = [EYIE]F) < APVI(VC A (PL<> a) A (P< B)).
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-Henee, because of o[[t/y]K]l = Kl and o[[t/y]K]ﬁ = Kf, we finally

‘' -obtain the faet 7.3. m

T4 H{(@ > Ef) + VPIi(a = T(VC APIA (Pl 18))))-
Proof: First we apply 7.3 to the program K and formulas 1 and 5.

" - 'We get that

k ((Kl = K8 = EIPV?(VO' AP A (Pl —lﬁ')))-

Hence, by negatmg both sides of the above equivalence and mtroducmg
the formula o), we finally obtain the fact 7.4. m

7 Now let us consider the program M: ofK’ *[t #0[ ]| Let P be
the predicate description of M. Let VC be the verification conditiom
of the program M with respect to the description P. Let VO’ be the for-

mula resulting from VTJ by the simultaneous replacement of all oceur-
rences of the constants from ¢ by the variables from y, respectively.
Then the following lemma holds.

T5. k (0K = B)< APV (VO A (Bi < o) A (Bl B))).

Proof: Applying Lemma 7.1 and I, 3.1(1), we get that for every
._rea,hza,tmn R

(1.81) Ep(a’ M = g) iff FRHPV?(%A(P:¢G')A(P§¢ ")

Observe that the formulas im (7.5.1) have constant values in every realiz-
ation R. Hence

(@ 3 > 7)< FBVI[VOA (Pl a) a (B - 1))

Since the above formula is a tautology, we can replace all the occurrences

of the constants from ¢ by the variables from ;I; which do not oceur in
the formula in question. We get

E{(o B «[t £3[ 1] = B)< IPVI(VC A (Bt d') A (B2 < B))).

Hence, because of a'K'*[?;&g_f[ ] =eK, we obtain the fact 7.5. m

Agssertions (1)a, (2)a, (2)b, (1)b and (2)d of 7.2 follow from Lemmas
7.3, 7 4 and 7.5. Assertion (2)c can be reduced to assertion (2)a. Namely,

ot y he 3 sequence of all vamables ocouring in the expressions K, M, a
and 8 a,nd let # be a copy of . Then

(Kl,(\ M1A (Ka< MB)) = (L= o[[7 /yo[EM#)]} (a < B(2))).
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; On account of the deduction theorem and of the completeness theorem;
Theorem 7.2 implies the following important fact. :
' 7.6. Let A be o finile set of formulas of the first order predicate calculus
andlet T = {&, C, A} be the algorithmic theory based on the set A of axioms.
- Let a be an Fp- 'amwersal formula.
' Then a i8 a theorem of T iff a certain effectively constructible formula
“of the first order predicate caleulus is wnsatisfiable.
This theorem reduces the examination of an appropriate property
of programs to an automatic theorem proving based on the Herbrand
_ theorem (compare 7.6 with the partial Herbrand theorem in [21]).
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