SpecVer & LEM’12 projects XX (2017) 1{30] 1

Dombrova Research

A new proof of Euclid’s algorithm

Andrzej Salwicki
salwicki @mimuw.edu.pl
Dagbrowa Lesna

manuscript: July 8, 2017

Abstract. All the proofs of correctness of Euclid’s algorithm that we know (in mathematical as well
as in computer science texts, cf. [[Grz71 Sie50, BK82| [Knu77]]) are of semantical nature. They are
conducted in an intuitive number theory. For 1° they study sequences of numbers telling these are
computations of the algorithm, 2° they do not analyze the structure of algorithm, 3° all these proofs
assume that the computations are done in the standard model of natural numbers (programmers
say(!): unsigned integers). For these and other reasons the proofs go beyond the elementary Peano’s
theory.

We present a new proof of correctness of Euclid’s algorithm[E] Our proof has the following features:
1° We are constructing and later proving the halting formula [H] of the algorithm, we do the same
for correctness formula, 2° accordingly, we analyze the structure of the algorithm (our proof makes
no references to the computations of the algorithm), 3° our proof makes use of inference rules of
algorithmic logic (i.e. calculus of programs), 4° only the axioms of the calculus and axioms of
algorithmic theory of natural numbers are accepted without proof.

1. Introduction

History of Euclid’s algorithm is over 2300 years long. The proof of the theorem that the algorithm
computes the greatest common divisor of two natural numbers is commonly accepted.

Still there are some open questions. Many mathematical theories are intuitive — this means that neither
the language of theory nor its axioms are precisely described. Since Euclid’s Elements, the majority of
mathematical theories is axiomatized. The formalized theories are studied when one wishes to avoid
paradoxes cf.[RS63]]. Till today, every one of known proofs of correctness of Euclid’s algorithm is
conducted in an intuitive number theory. Among others, it is assumed that the arguments are standard
natural numbers. No axioms excluding non-standard elements accompany the proof. (Yes, we are aware
that it is impossible in the frame of any first order theory. But are we limited to first-order logic?).

2 A. Salwicki/On Euclid’s algorithm

The computations of the algorithm are studied, without mentioning that the notion of algorithm does
not belong to the theory. The correspondence between the text of the algorithm and its computations is
assumed in an intuitive way. Nothing disturb us, we believe in the correctness of Euclid’s algorithm. The
proof is accepted by the vast majority of humans. Is it an intersubjective proof? Will it be accepted by
computer? It is worthwhile to think of creating such a proof that will be accepted by a proof-checker.

A bit of history

We shall recapitulate the results achieved in the metamathematics and see how they are related to our
problem.

In XIX'" century Peano presented the set of axioms describing the structure of natural numbers (cf. .
It helped in making many precise proofs. However, the proof of the correctnes of Euclid’s algorithm was
still led by a circuitous route, through analysis of its computations. The algorithm itself remained foreign
to the theory. No one analyzed its structure, like was in the case of proofs of (first-order) formulas. The
relation between the algorithm and its computation was intuitive one. In the beggining of XX*" century
it turned out (the results of Lovenheim and Skolem) that Peano theory has non-standard models (cf.
[Grz69| p. 288). Twenty years later K. Goedel obtained a result on undecidability of Peano’s arithmetic.
From this C. Ryll-Nardzewski deduced that there is no finite set S of formulas of first -order logic, such
that the only model of S would be the standard structure of natural numbers ([RN52]). In this way
we learned there is no elementary theory in which one can construct a proof of correctness of Euclid’s
algorithm.

Summing up, we assert that

the formalized first-order theory 7 hg based on the Peano’s axioms APe,

Tho=(L, , L 6 APe)

language logic axioms

does not contain a theorem on correctness of Euclid’s algorithm.

There are three reasons of that: 1° The language L of the theory has no algorithms nor the formulas
expressing the halting property of programs. 2° Calculus of predicates, i.e. first-order logic £ has
no tools helping in analysis of algorithms. 3° Peano’s axioms A Pe have both the standard as well as
non-standard model of natural numbers. In a non-standard model, Euclid’s algorithm may have infinite
computations cf. Appendix A. We shall see later, that it is necessary to replace all three components
(L, L, APe) of the formalized theory 7T ho in order to obtain a theory that contains the theorem on
correctness of Euclid’s algorithm.

Do we need a new proof?

This text is addressed to programmers and computer scientists as well as to mathematicians. We are
going to convince you that:

* Proving properties of programs is like proving mathematical theorems. One needs: axioms, calcu-
lus of programs and well defined language. In other words,

— programmers,

A. Salwicki/On Euclid’s algorithm 3

— makers of specifications (of software),

— verifiers of software properties,

should accept algorithmic theories as the workplace.

Such a theory contains classical theorems i.e. first-order formulas and algorithmic theorems as
well. In the proofs of theorems on certain programs we can use earlier theorems on other programs
(and classical theorems also). In the proofs of some first-order theorems we can use some facts
about programs. Section [5] gives a flavour of such theory, to be developed.

* Developers of algorithmic theories of numbers, of graphs, etc. should accept programs as “first
class citizens” of the languages of these theories. Moreover, the language should contain formulas
that express the semantical properties of programs. And, naturally, the reasoning should be done
in a calculus of programs that contains the predicate calculus.

We believe that by constructing a new proof of correctness of Euclid’s algorithm we shall gain a new
insight into the nature of (algorithmic) theory of numbers. It is commonly accepted that algorithms play
an important role in this theory. We need the tools adequate to the structure of analyzed texts. By this
we mean that 1° the algorithms should be treated as “first class citizens” of the theory, like the formulas
are, 2° the semantical properties of algorithms should be expressed by the formulas, 3° these formulas
should be the subject of studies having as aim their proof or a counterexemple.

We expect that the proofs will be intersubjective ones. It means, that everyone reading the proof will
necessarily agree with the arguments. Finally, such a proof should be analyzable by a proof—checkerm

The fact of incompleteness of first-order theory of natural numbers should not be used as an indul-
gence for our laziness.

In algorithmics the natural numbers and Euclid’s algorithm play a significant role. (In the most
used programming languages one encounters the structure of unsigned integers.) For example, in some
programming languages we find a clas Int. The details of implementation can be hidden (even covered
by patents). One may doubt, whether such a class is a proper model, and of which theory. In the appendix
A we show such a class Cn that satisfies the axioms of the theory of addition. We are also showing that
for some arguments the computations of Euclid’s algorithm need not to be finite.

Which calculus to choose?

It seems important that a theory in which we shall conduct the correctness proof of Euclid’s algorithm
will not have non-standard models. Therefore, we are seeking for a categorical axiomatisation of natural
numbers. We can choose among: weak second order logic, logic of infinite disjunctions L., [Eng67,
Kar64]] and algorithmic logic £ 4. We prefer algorithmic logic for it has a system of axioms and inference
rules. Moreover in the language of algorithmic logic we dispose the formulas that express the semantical
properties of programs.

The next question which appears is: should we look for a new set of axioms of natural numbers or
perhaps the set proposed by Peano will do. Consequently we shall consider three algorithmic theories
and will find which of three is suitable for conducting the correctness proof of Euclid’s algorithm. The
result of comparison we present in the table [I]

I proof-checkers of algorihmic proofs do not exists yet
2(lass is a kind of program module

4 A. Salwicki/On Euclid’s algorithm

The Euclid’s algorithm is very important for mathematicians as well as for programmers. There is
no doubt on it. However, the proofs of correctness of this algorithm do not satisfy us. Why?
One can split the goal of proving the correctness of an algorithm A with respect to the given precondtion
« and postcondition S onto two subgoals: 1) to prove that if some result exists then it satisfies the
postcondtion /3, and 2) to prove that if the arguments satisfy the precondition « then the computation
of the algorithm terminates. The first subgoal is easier. In the case of Euclid’s algorithm, it suffices to
remark that a common divisor of two numbers n and m is also a common divisor of n and the difference
n — m. The second subgoal is harder. We require that a proof of the correctness starts with axioms
(either axioms of logic or axioms of natural numbers) and uses the inference rules of logic to deduce
some intermediate formulas and to terminate with the halting formula.

All the proofs we know, do not satisfy this requirement. Let us take an example. In some monographs
on theoretical arithmetic the proof goes as follow: 1°some intermediate formulas are proven, 2°a claim is
made that the scheme of induction is equivalent to the principle of minimum, 3°therefore for any natural
numbers n and m the computation of Euclid’s algorithm is finite and brings the gcd(n, m).

Let us remark that in a proof like mentioned above :

(i) The claim on finiteness of descending sequences is true conditionally. The so called principle of
minimum is valid only in the standard model. One has to assume that the algorithm works in the
standard model of natural numbers. However, no elementary theory can garantee that every of
its models is isomorphic to the standard one. Moreover, the assumption on standard model is not
written at all.

(i) The proof contains a phrase “for any natural numbers n and m ... This is perfectly ok as long as the
arguments of the algorithm are standard natural numbers. What happens if they come from another
model of Presburger or Peano axioms? If Euclid’s algorithm is executed in the non-standard model
of Presburger arithmetic its computations may be infinite ones. See the Appendix A.

(iif) The proof analyzes some sequences of numbers saying this is an execution sequence of the algo-
rithm. It means that the proof goes around. It would be acceptable if the proof itself led correctly
to the conclusion.

A. Salwicki/On Euclid’s algorithm 5

Table I. Which theory allows to prove the halting formula of Euclid’s algorithm?

Theory Language & Logic Axioms Is there a proof?

Tho L — 1-st order Peano No - the language does
not accept algorithms,
nor algorithmic formulas.
There is nothing to prove.

Thy L 4 — algorithmic Pressburger No - the halting formula is
independent from the ax-
ioms of this theory.

Tho L 4 — algorithmic Peano No - the halting formula is
independent from the ax-
ioms of this theory.

Ths L 4 — algorithmic Algorithmic Yes - there exists a proof.
Arithmetic

2. A few words on calculus of programs

The reader familiar with the algorithmic logic [MS87] can safely skip this section. For the convenience
of other readers we offer a few words on the calculus of programs and in the Appendix B we are listing
axioms and inference rules of the calculus.

A formalized logic £ is determined by its language L and the syntactic consequence operation C, £ =
(L,C). How to describe the difference between first-order logic FOL and algorithmic logic AL? The
language of algorithmic logic is a superset of the language of first-order logic and it is a superset of
deterministic while programs, it includes algorithmic formulas and is closed by the usual formation
rules. In the language of AL we find all well formed expressions of FOL. The alphabets are similar.
Moreover, the language of AL contains programs and the set of formulas is richer than the set of first-
order formulas. As you can see the language WJF F 41, contains programs. Moreover, the set of formulas
Far is a proper superset of the set of first-order formulas Fror..

6 A. Salwicki/On Euclid’s algorithm

program calculus AL
WFFarL ={Tar UFarUPar}

Fror & Far
predicate calculus FOL calculus of program schemes PAL
WFFror ={Tror U Fror} WFFpar ={FparL UPpaL}

N~

{ propositional calculus PL J

WFFpr ={Fpr}

Figure 1. Comparison of logical calculi w.r.t. their WFF sets

2.1. Three algorithmic theories

From the earlier discussion it follows that the elementary theory 7T hg is not suitable for proving the
halting property of Euclid’s algorithm. We shall discuss three algorithmic theories T hi, T ha, T hs. All
three theories have the same formalized language. All theories share the same consequence operation
determined by the axioms and inference rules of program calculus, see appendix B. The theories have
different sets of specific axioms. The following expression is a program (in each theory).

while n # m do
ifn>mthenn:=n—melsem:=m—nfi (E)
od

FEuclid's algorithm

And the following formula expresses the stop property of the program [E]

while n # m do
V20 Vim0 ifn>mthenn:=n—melsem:=m—nfi }(n=m) (H)
od

halting formula of Euclid's algorithm

All three algorithmic theories T hy, T ha, T hs have the same language L = (A, WJFF). The alphabet
A has the following subsets: set of functors ¢ = {s, P, +,*, -}, set of predicates @ = {=, <}, set
of logical operators {A,V,=-,—}, set of program operators {:=, ;, while, if }, and auxiliary symbols,
parentheses and others. The alphabet A contains also the set of variables.

A. Salwicki/On Euclid’s algorithm 7

The set WFF of well formed expressions is the union of three sets: set of terms (programmers
may say, set of arithmetical expressions), set of formulas (i.e. set of boolean expressions) and the set of
programs.

Definition 2.1. The set of ferms is the least set of expressions 7" such that
e cach variable z is an element of the set T,
« if an expression 7 belongs to the set 7', then the expressions s(7), P(7) belong to the set T,

* if expresions 7 and o belong to the set 7', then the expressions (7 + o), (7 * o), (7 _-_ o) belong
to the set 7.

The set of formulas we describe in two steps.

Definition 2.2. The set of open formulas is the least set Fp of expressions such that
« if expresions 7 and o are terms, then the expressions (7 =), (7 < o) are open formulas,

« if expresions « and /3 are open formulas, then the expressions (a A 5) (aV), (o =), —« are
open formulas.

Definition 2.3. The set of programs (in the language of theories 7 hy, T ho, T h3) is the least set P of
expressions, such that

* If z is a variable and an expresion T is a term, then the expression x := 7 is a program. (Programs
of this form are called assignment instructions. They are atomic programs.)

* if expresions K and M are programs, then the expression K'; M is a program,

* if expresion v is an open formula and expressions K and M, are programs, then the expressions
while v do M od and if v thenK else M fi are programs.

We use the braces { } to delimit a program.

Definition 2.4. The set of formulas is the least set of expressions F’ such, that
* each open formula belongs to the set F',

* if an expression K is a program and an expression « is a formula, then the expression K « is a
formula,

« if an expression K is a program and an expression « is a formula, then expressions | J K « and
() K « are formulas,

* if an expression « is a formula, then the expressions V, o and 3, «v are formulas,

o if expressions « and [are formulas, then the expressions (a A) (a V (), (o =), -« are
formulas.

8 A. Salwicki/On Euclid’s algorithm

Following Tarski we associate to each well formed expression of the language a mapping. The meanings
of terms and open formulas is defined in a classical way. Semantics of programs requires the notion of
computation (i.e. of execution). For the details consult [MS&7]. Two facts would be helpful in reading
further:

* The meaning of an algorithmic formula K« in a data structure 2(is a function from the set of
valuations of variables into two-element Boolean algebra By defined as follow

ag(Ky(v)) if the result Ky (v) of computation at initial valuation v is defined
false otherwise i.e. if the computation of K loops

(Ka)x(v) = {

It explains why the formula[H|expresses the halting property of the program

* The calculus of programs i.e. algorithmic logic enjoys the property of completeness. For the
theorem on completeness consult [MS87].

3. Algorithmic theory of addition 7/,

We consider an algorithmic theory, henceforth its language contains programs and algorithmic formulas.
Note, all axioms of this theory are first-order formulas!

Definition 3.1. The set of specific axioms of the theory T h; consists of the following formulas:

Yy s(z) # 0 (1
VaVy s(z) = s(y) =z =y 2
Ver+0== 3
VaVyz + s(y) = s(z +y) 4)
r<ys y=x+s(2) 3
P(0) =0 (©6)
P(s(z)) == (7)
z_- 0=z €))
z - s(x) =Pz _-_ x))
and an infinite set of formulas built in accordance with the following scheme of induction:

B(x/0) ANVy (P(2) = B(x/s(x))) = Vo D(x) (10)

The last line is a scheme of infinitely many axioms. It is the scheme of induction. The expression ¢
denotes an arbitrary first-order formula with a free variable z. The expression ¢(z/0) denotes a formula
resulting from the expression ¢ by the replacement of all free occurrences of variable = by constant 0.
Similarly, the expression @(x/s(x)) is the formula that results from ¢ by the simultaneous replacement
of all free occurrences of variable x by the term s(z).

Our set of axioms differs insignificantly from those considered by Presburger. cf. [Pre29, |Sta84].

A. Salwicki/On Euclid’s algorithm 9

Fact 3.1. The formula[H]is not a theorem of the theory 7 h;.

Th
Proof:
The formula[HJis falsifiable in a non-standard model 1 of theory T h1, cf. Appendix A. By completeness
of algorithmic logic it follows that the formula is not a theorem of algorithmic theory 7 h;. O

Fact 3.2. The formula[H|is independent of axioms|I]-[10]

Remark that there exist a programmable moodel of this theory.

4. Algorithmic theory of addition and multiplication 7 h,

The set of axioms of the next theory 7 hsy consists of formulas |[1] - E] and two formulas defining the
operation of multiplication. Moreover, the set of axioms contains all the formulas built in accordance
with scheme of induction,

Vex*x0=0 (1D)
VoVyx xs(y) = (x*xy) +x (12)
scheme of induction:

B(x/0) AVy (D(z) = B(x/s(x))) = V. P(x)

As in the preceding section, we shall limit the scheme of induction: the formula @(z) must be a first-
order formula.
Note, that all axioms of theory 7 ho are first-order formulas.

Fact 4.1. The theory T ho has (at least) two non-isomorphic models. One is the standard model 9%y of
theory T hg, another is a non-standard model 9t of the same theory.

Despite the fact, that we extended the language adding the operator of multiplication and the set of ax-
ioms adding the definition of the operation of multiplication, the new theory does not contain a theorem
on correctness of Euclid’s algorithm. It is so because, in the non-standard model 91 Euclid’s algorithm
has infinite computations for non-standard elements.

10 A. Salwicki/On Euclid’s algorithm

5. Algorithmic theory of numbers
The set of specific axioms of the theory 7 h3 contains the following formulas:

Ves(z) #0
VaVys(x) =s(y) =z =y
Vo {y :=0;whiley # z doy := s(y) od}(z = y)

x—i—yg{t = 0;w:=x;whilet # ydot:=s(t);w := s(w) od}w
x<yg{w = 0;while w # y Aw # zdow = s(w) od}(w =2 Aw # y)
P(x) d:f{ w :=0; if # 0 then while s(w) # x do w := s(w) od fi }(w)
x_y 4 {w:=z;t:=0;whilet # ydot:= s(t);w := P(w) od}(w)

The third of axioms [[§] is an algorithmic, (not a first-order), formula).

@
M)

®)

(A)
L)
(P)
(®)

In addition to these three formulas [[L[ML[S]] we assume four more axioms [A|[LJ[P[O] that are defining

operations: addition, predecessor, subtraction 4+, P, _-_and ordering relation <.

This theory T hs allows to prove the halting formula H of the Euclids algorithm £. Why? 1°) The theory
is categorical: every model 90 of this theory is isomorphic to the standard model N of natural numbers.
2°) Computations of Euclids algorithm in the structure 1 are finite, 3°) Hence, the formula H is valid

in each model of the theory 7 hs, 4°) Therefore, the formula H is a theorem of the theory 7 hs.

Below we are presenting a detailed and formalizable proof of the correctness of Euclid’s algorithm.

1. We start by showing that all axioms of the theory 7 hy are theorems of the theory 7 hs.

2. We shall prove also a couple of properties thet occur in the traditional proof of Euclids algorithm.
We omit the proofs of these properties of greatest common divisor, that are theorems of the theory
Tho. E.g. the formula ((n > m Am > 0) = ged(n,m) = ged(n — m,m)) has a proof in the

elementary theory of Peano.

In the following subsection we are proving the scheme of induction.

5.1. Scheme of induction

Lemma 5.1. The following formula is a theorem of the theory T hs.

Ths F {y = 0} J{y == s()}z =)

Proof:
The following equivalence is a theorem of algorithmic logic cf. [MS8&7] p. 62.

F{y:=0;whiley # x doy := s(y) od}(z = y) & {y := 0} U{ify # x then y := s(y) fi}(z

=)

A. Salwicki/On Euclid’s algorithm 11

Another theorem of algorithmic logic is the following equivalence

F{y =0} H{y = s}z =y) & {y:= 0} J{ify # = then y := s(y) fi} (z = y).

By propositional calculus we have

- {y :=0;while y # x doy := s(y) od}(x = y) < {y := 0} J{y:=s()}(=z=y).

By modus ponens we obtain

Ths F{y =0} J{y == s(w)} (= = v).

Lemma 5.2. The following equivalences are theorems of algorithmic logic.

F{y =0} Jly = s@)}aly) & {o:= 0} J{z = s(2)}al2)

F{y =0}y = s)}aly) & {z:= 0} {2 := s(2)}alz)

Proof:

Let a(x) be an arbitrary formula with free variable x. The expression a(y) denotes the formula resulting
from the formula a(x) by the simultaneous replacement of all free occurrences of the variable z by the
variable y. It is easy to remark, that for every natural number ¢ € N the following formula is a theorem

a(y/s'(0)) & a(z/s'(0)).

By the axiom Ax14 of the assignment instruction we obtain another fact , for every natural number i € N
the following formula is a theorem

{y =0y = s()} aly) & {z:= 0H{z == s(z)} a(x)

Now, we apply the axiom Ax1g and obtain, that for every natural number i the following formula is a
theorem.

{y =0y == s(y)} aly) = {z = 0} | J{z = s(2)} a()
We are ready to apply the rule R4. We obtain the theorem

{y:= 0} J{y = s} aly) = {z := 0} | J{z == s(2)} a(a).

In a similar manner we are proving the other implication and the formula

{y=0y =35} aly) & {z:= 0}z = s(2)} ala).

12 A. Salwicki/On Euclid’s algorithm

In the proof of scheme of induction we shall use the following theorem.

Metatheorem 1. For every formula « the following formulas are theorems of algorithmic theory of
natural numbers.

ThsFVya(r) < {z:=0} ﬂ{x = s(z)} a(x) (13)
Thstk I a(z) < {z:=0} U{x = s(x)} az) (14)

Proof:
We shall prove the property (14). Let () be a formula.
Every formula of the following form is a theorem of algorithmic logic.

Fa(x) = a(z) Ay =0} J{y = s}z =y).
This leads to the following theorem of the theory 7.
Ths b a(x) = {y == 0} J{y == s()}alz) Az =y).
In the next step we obtain.
Thy b a(z) = {y == 0} J{y = s(v)}a(y).

Now, we can introduce the existential quantifier into the antecedent of the implication (we use inference
rule R6).

Thy 3 a(z) = {y := 0} J{y = s()}a(y).

By the previous lemma 5.2 we obtain.
Ths 3z a(z) = {z:=0} U{az = s(z)}a(z).
The proof of other implication as well as of formula (I3)) is left as an exercise. O
We are going to prove the scheme of induction.
Metatheorem 2. Let «(x) denote an arbitrary formula with a free variable x. The formula built in

accordance with the following scheme is a theorem of algorithmic theory of natural numbers 7 hs.

Ths - (a(:v/O) AVy () = a(x/s(x)))) = Vya(z) (15)

Proof:
In the expression below, 5 denotes a formula, K denotes a program. Each formula of the form

F((BAK(B=KB)=[)KB)

A. Salwicki/On Euclid’s algorithm 13

is a theorem of calculus of programs, i.e. algorithmic logic (cf.[MS87]] p.71(8)).
Hence, every formula of the following form is a teorem of algorithmic logic.

= ((a(@) AV = s(2)} (alz) = {z = s(2)}a(2))) = [{z = s(2)} a(2))

We apply the inference rule R2
a, K true

Ka (R2)

and obtain another theorem of AL
- {2 = 0} (ale) A iz = s(2)} (alz) = {2 = s(@)}a(2))) = [[z = s(2)} a(z))

Assignment instruction distributes over conjunction (Ax15) and implication(cf. [MS87]p.70 formula
(4)), hence

F(({z:=0}a(x) A {z :=0} ﬂ{x = s(2)} (a(z) = {z := s(x)}a(z))) = {z:= 0} ﬂ{$ = s(z)} ax))
We apply the axiom of assignment instruction
F (a(x/0) A {x := 0} ﬂ{x = s(2)} (a(z) = a(x/s(x)))) = {z:= 0} ﬂ{x = s(z)} a(x))

Now, we use the fact that in the algorithmic theory of natural numbers the classical quantifiers and
iteration quantifiers are mutually expressive. (cf. formula (I3]))

(e /0) Az = 0} ({2 = s(2)} (a(z) = alz/s(2)))) = {z = 0} {z = s(2)} a(z))

Ve Va

and obtain scheme of induction — each formula of the following scheme is a theorem of algorithmic
theory of natural numbers 7 hs.

Ths b (a(2/0) A (va)(a(z) = alz/s(2))) = (Ve)a(x))

Observe the following useful property of natural numbers. Many proofs use the following lemma.

Lemma 5.3. Let o be any formula. Any equivalence built in accordance to the following scheme is a
theorem of theory 7 hg

t:=0;
tm 0 while ¢ #£ y
. do
while ¢ # s(y) b= s(t),
Thst{ do o & d‘_s V.
od;
t = s(t); .
i1 5(y)
od
’ then ¢ := s(t);
fi

14 A. Salwicki/On Euclid’s algorithm

Proof:
The proof makes use of the following theorem of AL

t:=0;
hile ¢
£z 0 ;Vle # s(y)
o
while ¢ # s(y)
t = s(t);
F< do o & .
od;
t=s(t); .
i1 4 s(y)
od
then ¢ := s(1);
fi

where a is any formula

and the axiom @ It suffices to consider the formulas « of the form 5 A ¢ = s(y) without loss of
generality. O

The lemma can be formulated in another way: the programs occurring in the lemma[5.3]are equivalent.

5.2. Addition

The operation of addition is defined in the theory 7 hs3 as follows.

Definition 5.1.

rT+y==z 4 {t :==0;w:=x;whilet # ydot:=s(t);w:=s(w)od}(z =w) (A)
We have to check whether the definition is correct. It means that we should prove that for any pair of
values x, y there exists a result. Moreover, we should prove that the result is unique and that it satisfies
the recursive equalities © + 0 = x and = + s(y) = s(z + y). First, we remark that for every = and y the
result w of addition is defined.

Lemma 5.4.
Ths VY, Vy {t :=0;w :=x;while t # ydo t := s(t); w := s(w) od}(t = y)

Proof:
Proof starts with the axiom (S). Next, we use the following auxiliary inference rule of AL, cf. [MS87] p.
73(19).
{t :== 0; while t # ydo t := s(¢) od}«
{t :=0; whilet # ydot := s(t);w:= s(w) od}«

Thus we proved the following theorem

Thst {t:=0; whilet # ydot:=s(t);w:=s(w)od}(t =y)

A. Salwicki/On Euclid’s algorithm 15

The latter formula can be preceded by the assignment instruction w := x (we use the inference rule R2).
ThstF{w:=x;t:=0; whilet # ydot:= s(t);w := s(w) od}(t = y)

In the next step we may interchange two assignment instruction, for they have no common variables.
Thst {t:=0; w:=x; whilet # ydot:=s(t);w:=s(w) od}(t =y)

Finally we can add the quantifiers (rule R7) and obtain the thesis of lemma.

Ths Yy Vy {t :==0; w:=z; while t # ydot := s(t);w := s(w) od}(t = y).

g
Our next observation is
Lemma S.5.
ThsbFxz+0==x
Proof:
From the definition we have
r+0=z<{t:=0w:=x;whilet #0do t := s(t);w := s(w) od}(z = w)
We apply the axiom Axs; of while instruction to obtain
r+0=2z2< {t:=0;w:=uz;ift =y then else whilet # 0do ¢t := s(t); w := s(w) od}w
Indeed, from the properties of while instruction we obtain the implication.
Thsty=0= {t:=0,w:=z;whilet # ydot:=s(t);w:= s(w)}a < {t :=0;w = z; }a.
We conclude that 7 hs - x + 0 = z. O

Our next goal is

Lemma 5.6.
Thstx+s(y) =s(x+y)

16 A. Salwicki/On Euclid’s algorithm

Proof:
Proof uses the equivalence:

t:=0;
w =T
t:=0; .
while ¢ £ y
w = x; d
0
while ¢ # s(y)
t:=s(t);
do a & Q.
w = s(w)
t = s(t);
od;
w = s(w) .
ift # s(y)
od
then ¢ := s(t); w := s(w);
fi
\ 7
The expression « is any formula. The equivalence is an instance of the lemmal5.3] O

5.3. Definition of relation <

Definition 5.2.

x<yd:f{w::0;whilew7$y/\w7éxdow::s(w)od}(w:m/\wyﬁy).

We shall prove the useful property.

Lemma 5.7.
ThybEV.Vy(r <yVez=yVy<ax).

Proof:
It follows from the axiom (S)), that

Ths V.V {w:=0;whilew #y Aw #zdow :=s(w)od}(w=zANw#yVw#yAw=yVr=y).

because, the formula (w =z Aw #yVw #yAw =y Vx =y)is a theorem of AL and the implica-
tion (w # y Aw # x) = w # x is a theorem of AL, too. From the axiom of algorithmic logic Ax15 we
deduce

Ths F Y,y ({w := 0;while w # y Aw # z dow := s(w) (w=zxAw#y) (16)
V{w := 0; while w # y A w # x do w := s(w) (w#yAw=y) (17)
V{w := 0;while w # y A w # x do w := s(w) od}(z = y)). (18)

od}
od}

A. Salwicki/On Euclid’s algorithm 17

It is easy to observe, that the first and second line of the above formula are the definitions of relations
z < yand y < x. We can skip the program in the third line for 1° the program always terminates and 2°
the program does not change the variables = or gﬂ Finally we obtain 7 hg - V,V, (z <yVz =yVy <

O

Lemma 5.8.
<y Iy=x+s(z)

Proof:
We are recalling the axiom (S)) of the theory T hg

Ths F {w := 0; while w # y do w := s(w) od}(w = y).
From the definition of the predicate < we obtain
ThatFx<y={w:=0;whilew #yAw # zdow:=s(w) od}(w=2xAw#vy).

Therefore
Ths b2 <y= {w:=z;while w # y dow := s(w) od}(w = y).

Since x # y, hence the assignment instruction w:=s(w) will be executed at least once. Speaking more
precisely, the former formula is equivalent to the following one by the axiom Axa;.

Thst oz <y= {w:=z;w:= s(w);while w # y do w := s(w) od}(w = y).

g

Lemma 5.9.

Ths=Vyx < s(x)
Lemma 5.10.
(r <y) < {w:=z;while w # y do w := s(w) od}(w = y)
Lemma 5.11.
ThsEVVyr <y=>zx+z<y+z
Proof:
Proof goes by induction with respect to the value of variable 2. O

3*From the axiomone can easily deduce the formula {w := 0; while w # y A w # z dow := s(w) od}(w =y Vw = x)
and the following formula (z = k) = {w := 0; while w # y do w := s(w) od}(z = k).

18 A. Salwicki/On Euclid’s algorithm

5.4. Predecessor

The operation of predecessor is defined by the following axiom [P}

Definition 5.3.
w = 0;
d if x # 0 then
Py Ly 7 (1) ®)
while s(w) # x do w := s(w) od
fi
Lemma 5.12.
P(0)=0
Lemma 5.13.
x#0=s(P(x)) ==z
Lemma 5.14.
r#0=Pz)<z
Lemma 5.15.
(x < y) < {w:=y;while w # x do w := P(w) od}(w = x)
Lemma 5.16.
P(s(z)) =z
Lemma 5.17. For every natural number ¢
Pi(si(z) =

We shall prove the fundamental property of the predecessor operator.

Theorem 5.1.
V. {while z # 0 do z := P(x) od}(xz = 0)

Proof:
For every i € N the following formula is a theorem of AL

Vo {y = 0;(if y # = theny := s(y) i) }(z = y) = {y := 0; (if y # = theny == s(y) i)’ }(z = y).

We use the scheme of mathematical induction and the lemma to prove that for every ¢ € N, the
following formula is a theorem of the theory T h3

Vo {y:=0;(if y # = theny := s(y) i)'} (z = y) = {(if © # 0 then z := P(x) i)’} (z = 0).

A. Salwicki/On Euclid’s algorithm 19

Remark, the antecedent in each implication asserts z = s°(0), and the successor of the implication asserts
0= P'(x).
Hence we can apply the axiom Axo; of AL and obtain that for every ¢ € N

Ths V. {y :=0;(ify # rtheny := s(y) i)'} (x = y) = {whilex # 0doz := P(z) od}(z = 0).
Now, we apply the inference rule Rg to obtain
Ths V. {y:=0;whiley # zdoy := s(y) od}(z = y) = {whilez # 0doz := P(z) od}(z = 0).
The antecedent of this implication is the axiom (S) of natural numbers. We deduce (by the rule R;)
Ths =V {while z # 0 do = := P(z) od}(z = 0).
O

Remark. This theorem states that Euclid’s algorithm halts if one of its arguments is one. We shall prove
the halting property in general case.

Another remark. Every model 91 of the theory 7 h; such that Euclid’s algorithm halts when one of
arguments is equal 1, is isomorphic to the standard model 91y of natural numbers.

End of remarks.

We need the following inference rule

Lemma 5.18.

Let 7 be a term such that no variable of a program M occurs in it, Var(7)NVar(M) = (). If the formula
((x =7) = M (x = P(7))) is a theorem of the theory 7T hs, then the formula

{while x # 0 do M od}(z = 0) is a theorem of the theory too. Hence, the following inference rule is

sound (¢ =7) = M(x= P(r))
T=T)= x = P(r
Thst {while z # 0 do M od}(z = 0)

in the theory T hs

Proof:
For every i the following formula is a theorem of AL

{z:= P(2)}'(z = 0) = {M}'(z = 0).
We are using the premise ((z = k) = {M})(z = P(k)). Hence, for every i € N
{z:= P(x)}'(x = 0) = {while 2 # 0 do Mod}(z = 0).
Now, we apply the rule R3 and obtain
{while x # 0do z := P(x) od}(z = 0) = {while z # 0 do Mod}(xz = 0).

The antecedent of this implication has been proved earlier (Th[5.1)), We apply the rule R; and finish the
proof. O

20 A. Salwicki/On Euclid’s algorithm

The following lemma is useful in the proof of the main theorem.

Lemma 5.19. The following inference rule is sound in the theory T hs:

(x=k)= M (x < P(k))
Ths {while z # 0 do M od}(z = 0)

Proof:
The proof is similar to the proof of preceding lemma. We leave it as an exercise. a

Corollary 5.1. Let z be an arbitrary number € N. Each descending sequence such that a; = z and
for every ¢, a;1 < a;, is finite and contains at most = elements.

5.5. Subtraction

The operation of subtraction is defined by the following axiom [0}

Definition 5.4.
T _y 4 {w:=z;t:=0;whilet # ydot := s(t); w := P(w) od }(w) O)
Lemma 5.20.
ThybFV,z - 0=x
Lemma 5.21.
Ths = vxvyx - 3<y) = P(.%' - y)
Lemma 5.22.
ThsbEVyVy(x >y>0)=>2z_ y<z
Lemma 5.23.

y=0

6. Proof of correctness of Euclid’s algorithm.
The proof splits on two subgoals:

(i) to prove that for any natural numbers n and m, the computation of Euclid’s algorithm is finite,
i.e. we are to prove that the halting formula [H|is a theorem of the theory T hs,

(ii) to prove that the algorithm computes the greatest common divisor of numbers n and m.

A. Salwicki/On Euclid’s algorithm 21

Let us quote the formula [H|
while n # m do

ifn>m
then
else
m:=m__n
fi
od
It is rather easy to prove the following fact
Fact 6.1.
ifn>m
then
n:=mn__m
Ths E (n#mA (mazx(n,m) =p) = 1 (maz(n,m) < p) (20)
else
m:=m—n
fi
Proof:
In the proof we use the axiom of if instruction — Axsy and lemma|[5.22] O

Now, by lemma we obtain the desired formula [Hl Hence the computations of Euclid’s algorithm
are finite.
It remains to be proved

Fact 6.2. .
ifn>m
then
n:=mn_- m
Ths & (ged(n,m) = p) = else (ged(n,m) = p). (21)

m:=m_-_n

In the proof we use a few useful facts
n >m = gcd(n,m) = ged(n _-_m, m)

m >n = gcd(n,m) = ged(n,m __n)

n=m = gcd(n,m)=mn

22 A. Salwicki/On Euclid’s algorithm

All three implications are well known and we do not replicate their proofs here cf. [Grz71].
Combining these observations and 21| we come to the conclusion that the formula expressing the
correctness of Euclid’s algorithm is a theorem of theory 7 hs

Theorem 6.1.
while n # m do
ifn>m
then
Ths nemn_m (n = ged(n,m)) (22)
else
mi=m _- n
fi
od
\
This ends the proof.
Moreover

Making use of the lemma we note another theorem of the theory 7 hs. It says that the following
program has all computations finite

ri=n;
hiler > m d

Thst (n>m)= wawer = mao (0<r<m)
ri=Tr __m;
od

This leads to another observation

((r:=n;q:=0;
while » > m do
Thst (n>m)= ri=r__m; O0<r<mAn=qgxm-+r)
q:=s(q)
od

\ 7

A. Salwicki/On Euclid’s algorithm 23

And another fact

n = ng; M:i=mg; T i=n;
while r # 0 do

ri=n;

while » > m do
Ths E (ng >mp) = ri=r__m (n = ged(ng, mo))
od;

7. Final remarks

So far, we succeeded in developing one small chapter of algorithmic theory of natural numbers. The
whole theory contains much more theorems. Some are first-order formulas, some are algorithmic formu-
las. The theorem on correctness of Euclid’s algorithm is deduced from a couple of earlier theorems. The
algorithmic theory of numbers does not begin nor does it end by this theorem. We claim that the calculus
of programs (i.e. algorithmic logic) is a useful tool in building the algorithmic theory of numbers.

Let us compare the high points of the present proof and a traditional one.

24 A. Salwicki/On Euclid’s algorithm

How the proofs of correctness of Euclid’s algorithm go - a comparison

Proof within algorithmic theory of natural A traditional proof
numbers 7 hs

1. Prove induction scheme from axioms of T h3 1. Prove the regression principle from induc-
1.1 prove Metatheorem1 tion scheme:

J.P(x Vezo®(x Jy<a® @0
Ths b 3z a(r) < {z:=0} U{aj = s(z)} a(z) (B:2() 1 (Fero(e) =) = 20)
if for some element x property ®(z) holds and

1.2 use the following tautology (thm.) of AL for every x # 0 from ®(x) it follows that the
property ®(y) is satisfied for some element
= ((BA ﬂ K (8= KpB)) = ﬂ K B) y < x then this property is satisfied by zero

i.e. ®(0) holds. Remark, one needs to as-

sume that the structure is not a non-standard

Ths F (a(z/0) A (Vo) (a(z) = a(z/s(x)))) = (Vz)a(z)) model of axioms of Peano. It is preferable
to make such an assumption explicitly. How-
ever, most texts assumes the limitation to the
standard natural numbers tacitly.

1.3 prove the induction scheme

2. Prove the “convergency‘ property 2. Expose the structure of computations,
prove that the values of a chosen variable
Ths bV, {whilez # 0do z := P(z) od}(z =0) forma decreasing sequence.
Remark, the language of elementary theory of
numbers has no notion of algorithm. Hence
the concept of computation of an algorithm is
presented in an intuitive way.

3. Find a ”convergent®, i.e. prove a formula of the 3. Apply the regression principle to assert the
form: finiteness of computations.
(x=k)= M (z < P(k))

and apply an auxiliary inference rule (cf. lemma

P19

In this way we are offering another way of reasoning about semantic properties of algorithms. Let us
repeat, the traditional proofs are correct. However, one has to take into consideration that the future
development of algorithmic theory of numbers will demand to analyze more complicated algorithms —
the intuitive way of describing computations may happen error prone or leading to paradoxes. On the
other hand, it is very probable that, in programming, we shall encounter some erroneous (or fake) classes
that pretend to implement the structure of unsigned integer (i.e. natural numbers).

We hope, that programmers and computer scientists will note that proving of programs need not to start a
new, with every program one wishes to analyze. In the process of proving some semantical property sp
of a certain program P, one can use lemmas and theorems on other semantical properties of programs,
that have been proved earlier. We demonstrate this pattern within the correctness proof of Euclid’s
algorithm. In other words, we propose to develop the algorithmic theory of natural numbers. In fact, we
did it in the book [MS87] p. 155. Such a theory may be of interest also to mathematicians. One can note

A. Salwicki/On Euclid’s algorithm 25

the appearance of books on algorithmic theory of numbers, algorithmic theory of graphs, etc. We are
offering calculus of programs i.e. algorithmic logic as a tool helpful in everyday work of informaticians
and mathematicians.

Acknowledgment

Grazyna Mirkowska was very helpful during preparation of this text.

Appendix A - a class implementing nonstandard model of theory 7 h;

We present a class Cn (written in Loglan programming language). This class defines and implements an
algebraic structure 9. The universe of the structure consists of all objects of the class NCN (this is an
infinite set). Operations in the structure 9t are defined by the methods of class Cn: add, equal, zero and
s. All the axioms of the algorithmic theory 7 h; are valid in the structure 90, i.e. the structure is a model
of the theory. We show that for some data the execution of Euclid’s algorithm is infinite.

that is a non-standard model 90t of axioms APr of Presburger arithmetic as . Programmers tend to
believe that once a program is written and compiled it works correctly. What happens if someone imports
the class NSN?

We define a class NSN such that, the objects of the class satisfy the Presburger’s axioms of natural
numbers with the operation of addition.

26 A. Salwicki/On Euclid’s algorithm

unit Cn: class;
unit NSN: extends Nat class (intpart,nomprt, denom: integer);
begin
if nomprt=0 and intpart <O then raise Exception fi;
if nomprt <0 then raise Exception fi;
if denom =0 then raise Exception fi
end NSN;
unit add: function (n,m: NSN) : NSN;
begin
result:= new NSN(n.intpart+m.intpart,
n.nomprt*m.denom+n.denom*m.nomprt, n.denom*m.denom)
end add;
unit equal: function (n,m: NSN): Boolean;
begin
result := (n.intpart=m.intpart) and (n.nomprt*m.denom=n.denom*m.nomprt)
end equal;
unit zero: function: NSN;
begin
result := new NSN(0,0,1)
end zero;
unit s: function(n: NSN): NSN;
begin
result := new NSN(n.intpart +1, n.nomprt, n.denom)
end s;
end Cn;

The reader may wish to extend this class adding function subtract and Boolean function less.
Note,

* The set of objects of class NSN is isomorphic to the subset M of Cartesian product Z x R such
that

(k,x)e M e{kec ZANzeRANx>0N(x=0=k>0)}

where k is an integer, x is a non-negative rational number and when x is O then & > 0,
* the operation addition is defined componentwise, as usual in a product,
* the successor operation is defined as follow s((k,x)) = (k + 1, z),

* constant zero 0 is (0, 0).

A. Salwicki/On Euclid’s algorithm 27

Theorem 7.1. The algebraic structure 9t which consists of the set | N.SN| of all objects of class NSN
together with the methods add, s, equal and constant zero

M = (|INSN|, zero, s, add, subtract, equal, less)

satisfies all axioms of natural numbers with addition operation, cf. section 3]

Proof:
This is a slight modification of the arguments found in Grzegorczyk’s book [[Grz71]p.239. O

Have a look at the following example and verify that Euclid’s algorithm has infinite computations, i.e.
does not halt, when interpreted in the data structure 1.

Example 7.1. Suppose that the values of variables x, y, z are determined by the execution of three in-
structions

x :=new NSN(12,0,1);

y :=new NSN(15,0,2);

z :=new NSN(15,1,2);
Now, the computation of the algorithm E(x,y) is finite and results is new NSN (3,0, 1).
An attempt to compute F(x, z) results in an infinite computation, or more precisely, in a computation
that can be arbitrarily prolonged, as it is shown in the table below.

States of memory during a computation

n m
new NSN(12,0,1) new NSN(15, 1,2)
new NSN(12,0,1) new NSN(3, 1,2)
new NSN(12,0,1) new NSN(-9, 1,2)
new NSN(12,0,1) new NSN(-21, 1,2)
new NSN(12,0,1) new NSN(-33, 1,2)

new NSN(12,0,1) new NSN(15-i*12, 1,2)

The non-standard programmable model C'n of theory 7 hy has more applications.

Remark 7.1. Class C'n brings a counterexample to the Collatz hypothesis. Consider the program
while n # 1 do if even(n) then n := ndiv2elsen :=3n + 1 fi od

An attempt to execute the program for n = z results in an infinite computation.
This means that theory 7 h; does not allow to prove the Collatz hypothesis. It seems unlikely that theory
T ho will help. On the other hand, if the hypothesis is true then it is provable in algorithmic theory T hs.

28 A. Salwicki/On Euclid’s algorithm

Appendix B - axioms and inference rules of program calculus AL

For the convenience of reader we cite the axioms and inference rules of algorithmic logic.
Note. Every axiom of algorihmic logic is a tautology.
Every inference rule of AL is sound. [MS87]

Axioms

axioms of propositional calculus

Ay ((a =) = (8= 0) = (a=9)))

Azy (o= (aV p))

Azy (B = (aVp))

Azy ((a=9) = ((B=9) = (aVp)=1)))
Azs ((a A B) = «)

Azg ((a A) = B)

Az (6= a) = ((6 = B) = (0= (N f))))
Azg ((a = (8= 19)) & ((aAp)=10))

Azg ((a A —a) = f)

Az (o= (a A —a)) = —a)

Az (aV —a)
axioms of predicate calculus
Az1e ((Vx)a(z) = a(x/T1)))

where term 7 is of the same type as the variable x

Aziz (Vo)a(z) & —(3z)-a(z)

axioms of calculus of programs
Ay K((Fr)a(@)) & @y)(Kal/y)) fory ¢ V(K)
Az K(aV p) < (Ka)V (Kp))
Az K(aNp) < (Ka) A (Kp))
Az17 K(—a) = ~(Ka)
Aris (= 7)7 & ((e/7) A (2 = T)true)) A((q =)y < 1(a/7)
Az19 begin K; M end o & K(Ma)
Azog if ythen K else M fia < ((—y A Ma) V (v A Ka))
Azo; while ydo K od o < ((—y Aa) V (v A K(while vy do K od(—y A «))))
Azgo ﬂKa & (a A (KﬂKa))

Axog UKa<:> (a\/(KUKa))

A. Salwicki/On Euclid’s algorithm 29

Inference rules

propositional calculus

R a, (ozB:> B)
predicate calculus
(a(z) = B)
% @ne@ = 9
g (8= a@)
(8= (V)a(z))
calculus of programs AL
(a=B)
Rz (Ko = Kp)
R {s(if v then K fi)'(—=y A @) = Blien
3 (s(while v do K od a) = f3)
Ry {(K'a = B)}ien
(UKa=5)
R {(a = K'B)}ien
i (a=NKP)

In rules Rg and Ry, it is assumed that x is a variable which is not free in 3, i.e. x ¢ FV (). The rules
are known as the rule for introducing an existential quantifier into the antecedent of an implication and
the rule for introducing a universal quantifier into the successor of an implication. The rules R4 and Rs
are algorithmic counterparts of rules Rg and R7. They are of a different character, however, since their
sets of premises are infinite. The rule 23 for introducing a while into the antecedent of an implicationis
of a similar nature. These three rules are called w-rules.

The rule Ry is known as modus ponens, or the cut-rule.

In all the above schemes of axioms and inference rules, o, 3, § are arbitrary formulas, v and +' are
arbitrary open formulas, 7 is an arbitrary term, s is a finite sequence of assignment instructions, and K
and M are arbitrary programs.

References

[BK82] Lech Banachowski and Antoni Kreczmar. Elementy analizy algorytmoéw. Biblioteka inzynierii Opro-
gramowania. WNT, Warszawa, 1982.

[Eng67] Erwin Engeler. Algorithmic properties of structures. Math. Systems Theory, 1:183-195, 1967.

[Grz69] Andrzej Grzegorczyk. Zarys logiki matematycznej, volume 20 of Biblioteka matematyczna. PWN,
Warszawa, drugie wydanie edition, 1969.

[Grz71] Andrzej Grzegorczyk. Zarys Arytmetyki Teoretycznej. PWN, Warszawa, 1971.

30 A. Salwicki/On Euclid’s algorithm

Kar64] Carol R. Karp. Languages with expressions of infinite length. North Holland, 1964.
Knu77] Donald Knuth. The Art of Programming. 1977.
MS87] Grazyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. PWN & D.Reidel, Warszawa, 1987.

—_ —, /.

Pre29] Mojzesz Presburger. Uber die Vollstindigkeit eines gewissen Systems der Arithmetik ganzer Zahlen , in
welchem die Addition als einzige Operation hervortritt . pages 92-101,395, 1929.

[RN52] Czestaw Ryll-Nardzewski. The role of the axiom of induction in elementary Arithmetic. Fundamenta
mathematicae, 39:239-263, 1952.

[RS63] Helena Rasiowa and Roman Sikorski. Mathematics of metamathematics. PWN, Warszawa, 1963.
[Sie50] Wactaw Sierpinski. Teoria Liczb. Monografie Matematyczne. PWN, 1950.

[Sta84] Ryan Stansifer. Presburger’s Article on Integer Arithmetic: Remarks and Translation. Technical Report
TR84-639, 1984.

	Introduction
	A few words on calculus of programs
	Three algorithmic theories

	Algorithmic theory of addition Th1
	Algorithmic theory of addition and multiplication Th2
	Algorithmic theory of numbers
	Scheme of induction
	Addition
	Definition of relation <
	Predecessor
	Subtraction

	Proof of correctness of Euclid's algorithm.
	Final remarks

