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1 Introduction

In the last ten years new high level programrning languages have been devel-
oped,for instance, PASCAL [14], ADA [1], CLU [10] and EDISON [7]. Some of
these languages allow a dynamie storage management for the data and subprogram-
units, generally they are then called dynamie languages. If such languages are to
be used for real-time applications, the implementation of their run-time system
has to guarantee total security, without any loss of efficiency. The main goal
of this paper is to discuss this general security-with-efficieney problem and, in
particular, to present a new, secure approach to storage management with in-
teresting properties in terms of computing eost. Every high level programming
language allocates memory bloeks to unit instances. Instances of the so ealled
non-addressable units, like procedures and functions in PASCAL,can be allo-
cated and automatically dealloeated using a stack. On the other hand, a stack
implementation is not suitable for languages whieh admit addressable units,
like aceess-type in ADA. For instanee, in PASCAL non-addressable units are
alloeated in a staek, while addressable units are allocated in a heap. In the early
’60s, the programmer was fully responsible for the deallocation of unit instances
[12]. Then this technique was found to be unsafe and therefore rejected. Af-
terwards two other strategies have been proposed: the so-called retention and
deletion strategy [2]. In a pure retention strategy, all instances (addressable and
non-addressable) are kept in the memory until the available space runs out. At
this point a garbage collection proeedure is triggered to remove all non-accessible
instances. It is well known that this strategy can be very time consuming, be-
cause of the frequent calls on the garbage collector. However, this problem has
been deeply analyzed in the literature, and, even if interesting solutions have
been found [6,13], many open problems remain [3]. In the deletion strategy, the
no-longer-needed instances are removed as soon as possible, and the run-time
system is made responsible for the efficient detection of such instances. Unfor-
tunately, a significant execution time overhead could result also in this case [9].
More recently, in the implementation of some languages, a new strategy: pro-
grammed deallocation by specific commands, has been introduced (e.g., dispose
of PASCAL, free of ADA, kill of LOGLAN [11]). However, also this technique
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has a great disadvantage, known as the dangling reference problem. In fact,
when a pointer refers to a deallocated instance, the run-time system cannot
discover such an incorrect reference and unpredictable results could tum out.
In this paper we follow the programmed deallocation strategy, and, in order
to avoid the mentioned dangling reference problem, we introduce one general
data structure to manage all instances, both addressable and non-addressable,
in a unique, unified environment. We also define algorithms for allocation and
deallocation of unit instances and analyze their complexity.

2 Genera l data structure

Let us first assume that a program, after being loaded, obtains a contiguous
frame of the memory space for its run-time data. Let M[O],... , M[N] (see Fig.
1) denote this frame. In the proposed data structure the memory M, available
for run-time data and units, is divided in two areas which are allowed to grow
from opposite ends. The area where instances are allocated, denoted by INS
(INstance Space), grows from M[O]. The other area, denoted by lAT (Indirect
Address Table) grows backwards from M[N] and contains the so-called indirect
addresses. Two system pointers, Lastused and Lastitem, indicate the las t
word of the area INS and the first word of the table lAT, i.e., the last indirect
address, respectively. Let M[d], M[d + 1], ... , M[d + s-l] denote the s contiguous
locations of the area INS, where a given instance of size s is allocated (starting
from the relative address d). Every component of the given instance is addressed
relatively to its base address d. We assume that each instance is characterized
by its size, represented as its first component, namely the eontent of the location
M[d], i.e., M[d] = s. Therefore all, algorithms operating on instances treat them
as logically sirnilar objects, without any specific assumption about their phy sic
al structure. According to these assumptions we can wri te INS[ d], ... ,INS[
d + s-l] instead of M[ d], ... , M[ d + s-l], and INS[ d] instead of s. The
table lAT is an auxiliary array used for checking if a referenced instance is not
deallocated and, if necessary, to access it. The entries of lAT are of constant size
since they have only two components: d (the base address of an instance) and
guard counter (an integer value). Guard counter is used for checking whether
a given pointer variable points at a non-deallocated instance or has the value
none which represents undefined reference. If b is the address of an entry of lAT,
IAT[b].d and IAT[b].guard counter denote these two components respectively.
In order to have a unique notation, we shall denote the size of an instance
INS[d], ... , INS[d + s-l] by INS[d].size. Consider now a pointer variable x. In
our data structure its value will be always an ordered pair 〈b, counter〉, where
b is the address of lAT entry pointed at by x, and counter is an integer value,
manipulated according to the rules described in the next sections. The genera l
invariant of the data structure is the following:
(i) x 6= none iff counter = IAT[b] .guard counter.
In order to check if x 6= none and to obtain the base address of an instance
referenced by x, we should perform the actions defined by the following function
member. The description of this function, and of all other programs in this
paper, follows a Pascal-Iike syntax (with some slight changes). In particular we
note that the elements of memory space M[0],... , M[N] are of type address.
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function member( input b : address, counter: integer ;
output d : address) : boolean;

begin
if counter 6= lAT[b]. guard counter
then member :=false
else member := true; d := IAT[b].d
fi

end

It is elear that by virtue of invariant (i), the function member is correct, i.e.,
(b, counter) refers to a non-deallocated instance iff member(b, counter, d) =
true and then the value of d yields the physical address of an instance. Thus,
to prove the correctness of other procedures presented in the following sections
it will be sufficient to establish that the invariant (i) always holds.

3 Instance deallocation

Let x be a pointer variable, with 〈b, counter〉 as its value, and let us suppose
that a deallocation operation (called free) for an instance referred to by x is to
be performed. First of alI, x is checked:
- if x = none, then no other actions have to be undertaken;
- otherwise the corresponding instance should be deallocated.
In order to preserve the general invariant, IAT[b].guard counter is increased by
one. This is the critical step of the algorithm. In fact, after this step all reference
variabies, with 〈b, counter〉 as values, have now the value counter different from
the fresh (increased) value of IAT[b].guard counter. Of course, in this case the
value IAT[b].d does not point at any instance and, consequently, it may be used
for other purposes. Therefore, the entry IAT[b], with the new guard counter
value may be added to a list of available lAT entries. This list will be structured
as a FIFO queue, with IAT[Head) as its first element and IAT[Tail) as its last
one, while the corresponding lAT[b].d’s serve as list pointers. The last step
of the algorithm releases the frame previously allocated to an instance in the
memory space:
- if such a frame is bordering upon the free space between the two pointers
LastUsed and LastItem, we can simply decrease LastUsed,
- otherwise that frame may be inserted into the set of free frames.
The management of this set (insertion of released frames and search for free
frames of a given size) must be performed in a very efficient way. This problem
has been deeply analyzed [3,7,8]. However, for our purpose in the present paper
it will be sufficient to describe two main operations:
insert(s, d) which inserts a free frame INS[d), ... ,INS[d + s-I) into the set of
free frames,
search(s, d) which looks for a free frame size s, and returns the physical address
of a frame via output parameter d (if such a frame is found, then search is true,
otherwise search is false and d is undefined).
Below we present procedure free.
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Figure 1: Plan of heap memory

procedure free (input b: address, counter: integer);
var d : address;

begin
if counter 6= IAT[b].guard counter
then return fi;
IAT[b].guard counter := IAT[b].guard counter + l;
d := IAT[b].d;
lAT[Tail].d := b; IAT[b ].d := 0; Tail := b; {put on FIFO}
if d + INS[d].size = LastUsed + l {bordering upon Free Space}
then LastUsed := LastUsed - INS[d].size
else calI insert(INS)[ d].size, d)
fi

end
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To prove the correctness of the procedure free, it is sufficient to show that the
invariant (i) always holds. For this purpose we first have to introduce three
more invariants:

(ii) 0 ≤ LastUsed < LastItem,

(iii) if x = 〈b, counter〉, then Lastltem ≤ b ≤ N , counter ≤ IAT [b].guard counter
and (i) holds,

(iv) IAT [b] belongs to the FIFO structure if there is no x = 〈b, counter〉 such
that x 6= none.

The invariant (ii) guarantees that the arrays lAT and INS do not overlap, so
that we do not have to consider any influence of table INS modifications on the
tab le lAT, and vice versa. Moreover, the invariant (iii) is stronger than (i).
Therefore, in order to guarantee the validity of (i) it will be sufficient to prove
(iii). FinaIly, the invariant (iv) tell s that only released entries of the lAT table
are stored in FIFO. This invariant will be used in the correctness proof of the
in stance allocation procedure.

In order to prove (ii), we observe that LastUsed may be decreased by the size
of an existing instance only, therefore 0 ≤ LastUsed ¡ LastItem. Let us consider
an arbitrary pointer variable x’ with 〈b’, counter’〉 as its value. In order to prove
(iii) we observe that if b = b’, then (iii) holds before lAT[b].I is advanced, by
the inductive assump- tion. Then:

counter′ < IAT[b].guard counter < IAT[b].guard counter + 1.

This shows that x’ = none and that (i) holds. It is elear that the conditions

Lastltem ≤ b′ ≤ N and counter′ ≤ IAT[b′].guard counter

are also satisfied. On the other hand, if b 6= b’, then (iii) immediately foIlows
from the inductive assumption. Finally, (iv) is also satisfied, because lA T[b]
is put on the FIFO structure when an instance is deallocated and, by (iii), we
immediately obtain (iv).

4 Instance allocation

Let us consider now the problem of allocating a new instance of size s. First
of all, a free indirect address entry has to be found: - if FIFO is not empty, a
free address is taken from FIFO, - otherwise LastItem is decreased, if possible,
and a new entry is initialized, i.e., its guard Jounter is set to 0, - when there
is no enough space (LastUsed + 2 ≥ LastItem), the compacting algorithm is
triggered. When a new indirect address entry lAT[b] is found, its guard counter
value is correct. In fact, either IAT[b].guardJounter is at least greater by 1 than
the counter of any other pointer value 〈b, counter 〉, or the address b has not
bee used because LastItem is decreased. At this point, to obtain a new frame
of size s, the searching procedure is activated:
- first we try simply to push LastUsed,
- if this is not possible, the function search is applied,
- if this application yields false, then the compacting procedure is caIled,

5



- if, after the compaction, there is no sufficient free space, the computation, of
course, will be stopped.
Let us present the allocation procedure (called new):

procedure new (input s: integer ; output b: address, counter: integer);
var c : boolean, d : address;
begin

c := false;
if Head = 0 {FIFO empty}
then

if LastItem - LastUsed < 3 {no space for lAT entry}
then

c := true; call compactor
fi;
if LastItem - LastUsed < 3 then {end of computation} fi;
LastItem := LastItem - 2; b := LastItem;
IAT[b].guard counter := 0; {initialize new lAT entry}

else {take from FIFO}
b := Head; Head := IAT[b].d

fi;
if Lastltem - LastUsed < s + 1 {Free Space too small}
then

if search(s, d) {frame found}
then

lAT[b].d := d; counter := lA T[b]. guard counter; return
fi;
if c then {end of computation} else call compactor fi;
if LastItem - LastUsed < s + 1 then {end of computation} fi;

fi;
d := LastUsed + 1; INS[d].size := s; LastUsed := LastUsed + s;
IAT[b].d := d; counter := IAT[b].guard counter

end

We shall prove the correctness of this procedure by proving again the invari-
ants (ii)-(iv), assuming, of course, the correctness of procedures compactor and
search. If an entry lAT[b l is found in FIFO (Head 6= 0), then, by (iv) and
(iii), lAT [b].guard counter ≥ counter′ for any x′ = 〈b′, counter′〉. Thus a pair
〈b, counter〉, returned via output parameters, yields a unique reference. Sim-
ilarly, if an IAT [b] entry is obtained from M by decreasing Lastltem, then
the pair 〈LastItem − 2, 0〉 is unique, because b′ can be equal to LastItem − 2
for any x′ = 〈b′, counter′〉. So for our x = 〈b, counter〉, we have (iii) since
x 6= none, Lastltem ≤ b ≤ N and counter ≤ IAT [b].guard counter. For any
other x′ = 〈b′, counter′〉 and b′ = b, (iii) holds by the inductive assumption.
Invariant (ii) holds because LastItem > LastUsed − 2 when LastItem is de-
creased by 2, and LastItem > LastUsed+ s, when LastUsed is increased by s.
Invariant (iv) holds since no new IAT [b] entry is inserted into FIFO.
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5 Time and space cost

First of all, let us consider the question of extra space cost. The values of
guard counters and counters may be quite small, e.g., one byte for each may be
sufficient. To protect the system against a quick overloading of guard counters,
the list of free entries from lAT is arranged as FIFO. Then during the phases
where the storage management works in FIFO fashion, these free entries are
taken from the other end, in order to decrease the probability of using the same
entry several times. However, if a guard counter reaches its maximal value, the
corresponding entry cannot be put on the list of free entries and should remain
unchanged until the compactor is applied. This causes the general invariant of
the data structure to be satisfied. The space for direct and indirect addresses
must be large enough to hold any reasonable address. Thus this extra space cost
depends strongly on the computer. On some computers the pair (b, counter
) may be packed into a single word; sirnilarly we may compact the pair (d,
guard counter). Then, the pointer variables do not need extra space, although
each instance needs one extra word for its indirect address (allocated at the
indirect address table). The tirne cost of the function member is, of course,
constant. This operation is called whenever a remote access is needed, therefore
it should be extremely efficient. If the pair (b, counter) is packed into a single
word, then by storing in lAT the pairs (b - d, guard counter) rather than pairs (d,
guard counter), we can obtain the direct address d and the difference counter
- guard counter by a single subtraction. Thus the whole operation may be
performed in two or three machine instructions, depending on the computer.
As far as operations Free and new are concerned, their costs depend on the
internal representation of the set of free frames. If we are able to perform the
operations insert and search in a constant time, then the operations Free and
new also have constant execution times.

6 Parallelism

When several processors proceed in parallel on a common data structure, some
special security measures should be taken [13]. If we want to design a secure run-
time system, none of the possible parallei calls of new, jree and member should
be able to destroy the data structure invariants. For each processor it will be
assumed that the examination of M[i], assignment to M[i], advancing M[i] by 1
etc. are indivisible operations (with respect to the other processors actions). A
direct analysis of the operations new, Free and member indicates that new and
free should be mutually exclusive, while member may be active simultaneously
with any of the other two operations. Then Free(x) may be performed iff all
the calls of member(x) have been terminated. These constraints are collected
in Table 1. It is quite evident that the synchronization between Free (x) and
member(x) is similar to the readers-writers problem [4]. But in our case only
one writer (i.e., Free(x) is to be considered, since the mutual exclusion of the
operations free and new guarantees that at most one free call waits to enter the
corresponding critical region. Let now extent each entry IAT[b] with three new
components: two boolean semaphores r and w, and one integer m. Moreover,
let g be a global boolean semaphore which synchronizes the calls of Free and
new. We propose the following solution to the problem (in our proposal, one
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can find elements of the standard solution to the readers-writers problem; P and
V denote usual semaphore operations).

function member(x); procedure free(x); procedure new(s);
begin begin begin

P(IAT[b].r); P(g); P(g);

IAT[b].m := IAT[b].m + 1; P(IAT[b].r)]
...

if IAT[b].m = 1 P(IAT[b].w); V(g)

then
... end

P(IAT[b].w) V(IAT[b].w);
fi; V(IAT[b ].r);
V(IAT[b].r); V(g)
... end
lAT[b ].m := lA T[b ].m - 1;
if IAT[b].m = 0
then

V(IAT[b].w)
fi

end

Table 1. Collisions among new, free, and member
new(s) free(x) member(x) member(y)

new(s) C C
free(x) C C C
member(x) C
member(y)
C - for collision x 6=y

Semaphore IAT[b].r guarantees that when free(x) passes through P(IAT[b].r)
no member(x) may enter the corresponding critical region, hence no free(x) wait-
ing on P(IAT[b].w) ever suffers an infinite wait. Semaphore IAT[b].w synchro-
nizes the calls of free(x) and member(x). Semaphore g synchronizes the calls of
new(s) and free(x). On the other hand, member(x) may proceed in parallel with
another member(x) (only a small critical region guarded by lA T[b].r is common
to many member(x)’s), as well as with another member(y). Similarly, there is
no critical region for new(s) and member(x), and for free(x) and member(y).
In this way we fulfilled all conditions displayed in Table l. It must be observed
that in the readers-writers problem a proper implementation has to guarantee
the priori ty of writers over readers. The collision problem between free(x) and
member(x) is somewhat different. In fact, the user wanting to release a frame,
while simultaneously also trying to access the same frame an infinite number of
times, generates a problem which is not a run-time problem. In this case, the
user program is incorrect (as in the case of infinite loop). Therefore, assuming
that the primitive statements are indivisible, we can significantly simplify the
previous procedures as follows:
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function member(x); procedure free(x); procedure new(s);
begin begin begin

IAT[b].m := IAT[b].m + 1; P(g); P(g);

if IAT[b].m = 1 P(IAT[b].w)
...

then
... V(g)

P(IAT[b].w) V(IAT[b].w); end
fi; V(g)
... end
lAT[b ].m := lAT[b ].m - 1;
if IAT[b].m = 0
then

V(IAT[b].w)
fi

end

This solution does not require the semaphore IAT [b].r. When the semaphore
IAT [b].w is accessed by free(x) and many member(x)’s, the correctness di-
rectly follows from indivisibility of primitive operations on IAT [b].m and from
the assumption that the value IAT [b].m becomes 0 after a finite period of time.
However, we would prefer the first solution. In fact, we also want to prevent
incorrectness actions undertaken by the programmer, as we have already men-
tioned above.

7 Conclusion

We have presented a new algorithmic approach to the storage management
problem for run-time systems, in line with the programmed deallocation strat-
egy, without dangling reference. The proposed data structure with its related
algorithms turns out to be completely secure, and therefore immediately usable
in every run-time system for dynamie languages, even for parallel computation.
The specific problem of finding a good free frames structure to perform search-
ing in constant time is still open. Recent results [6] which guarantee constant
time searching are, in fact, relevant only for completely static structures, while
the need to manipulate free frames in a run-time system is typically dynamic.
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