
Explicit Deallocation without Dangling

References II

Andrzej Salwicki, Andrzej Zadro»ny

November 11, 2015

Abstract

The message of present paper is divided in three parts:
First, we argue that the two models of object management systems,
that are used in most popular object programming languages are in-
ferior to the allocation/deallocation system AK, invented by Antoni
Kreczmar [c.f. Cioni and Kreczmar 1984]. We analyze and compare:
(i) the cost of deallocation of an object, (ii) the risk of dangling refer-
ence and/or of memory leakage. This discussion is summed up in the
Table I.
Next, we (brie�y) discuss the chances to integrate the Kreczmar's sys-
tem with the programming languages like C++ or Java. Our second
message tells: there is no easy way of including the system of Krecz-
mar into Java Virtual Machine or into C++.
Third, for those who eventually would try to incorporate the Krecz-
mar's system in some virtual machine(or running-system) we are o�er-
ing its speci�cation ATHM. The speci�cation has two parts. First part
is an interface-like. This is the signature. Second part is a collection
{HM1 −HM8} of (algorithmic) formulas. Together, both parts form
the de�nition of a (formalized) algorithmic theory [c.f. Mirkowska &
Salwicki, 1987]. The speci�cation ATHM has the following property: if
someone constructs a class C such that every axiom of {HM1−HM8}
is an invariant of the class C, then C is a correct implementation of

Kreczmar's system AK.

Keywords: dangling reference, garbage collection, objects, programming
languages, speci�cation

Author's addresses: Andrzej Salwicki, Department of Mathematics and
Natural Sciences, Wóycickiego 1/3, 01-938 Warsaw, Poland,
mailto:salwicki@mimuw.edu.pl
Andrzej Zadro»ny, Institute of Computer Science, Polish Academy of Sci-
ences, 5 Jana Kazimierza Str.,01-248 Warsaw, Poland

1

1 Introduction

The management of objects, especially the problem of e�cient and safe mem-
ory allocation/deallocation, plays an essential role in object-oriented pro-
gramming. A practical system addressing the problem must be safe (i.e., a
deallocated object should be clearly perceived as absent from all places in
the program, preventing an unintended interpretation of �bad memory� as
the contents of an object that formally no longer exists) and e�cient, mean-
ing that the cost of referencing an object (dereferencing an object pointer)
cannot increase too signi�cantly beyond the cost of a simple (machine-level)
indirect memory reference. Typically, the dynamic instances of a program's
modules reside in two disjoint areas in memory: the stack and the heap. The
activation records of functions, methods, contructors, and blocks are allo-
cated on the stack, while the dynamic instances of structures, classes, and,
sometimes, more exotic objects, like coroutines (for those languages that ad-
mit such objects) are stored in the heap. That latter category of objects
is of our primary concern. Owing to the fact that, unlike the former cate-
gory, the patterns of their creation and destruction do not follow a simple
ordered paradigm, but are essentially random and arbitrary, the mechanisms
of their allocation and requisite bookkeeping are open for discussion and
invention, being thus also susceptible to trends. The �rst generation of pop-
ular programming languages with rudiments of objects: Pascal and C, opted
for simplicity (read e�ciency) at the cost of safety. Following the (explicit)
deallocation of an object, any replicate references to the object within the
program would still point to the old chunk of memory originally used to
store the object, thus creating a hazard. It was up to the programmer to
sidestep that hazard by not touching the old references (pointers) until reset.
Note that a mistake consisting in a reference to a deallocatad object would
not, in those circumstances, translate into an immediate error: a read access
would return an incorrect result (that might trigger an error a potentially
long while later), while a write access would potentially corrupt some legiti-
mate object, often with delayed symptoms di�cult to diagnose. When C++
appeared later, inheriting and absorbing the legacy of C under its umbrella,
it did not revolutionize the paradigm of memory allocation for objects, pri-
marily for two reasons: (1) C++ still preferred e�ciency over safety (it was
supposed to replace C without a�ecting the implementation aspects of its C
subset) (2) C++ wanted to be compatible with C (C functions, using the
traditional memory allocator, had to be able to coexist with C++ functions
within the same program allowing both types of functions to operate on the
same pointers).

Java brought a response to the lack of safety inherent in the traditional

2

approach to memory allocation for objects in the postulate to completely
hide the action of object deallocation from the programmer's view. By aban-
doning pointers (plus the large bag of pointer trick available to experts in C
and C++), and replacing deallocation with the implicit and invisible garbage
collection, Java also simpli�ed object-oriented programming, thus making it
accessible to a wider population of programmers (who no longer needed to
be experts on such low-level and mundane aspects of computing as pointers).
C#, introduced by Microsoft as their own �Java�, was basically the same
creation when seen from the viewpoint of run-time memory management.
That global paradigm shift was compatible with the rapid advancements in
CPU and RAM technologies making large and sloppy (less e�cient) pro-
grams vastly more acceptable than in the early days of C++. These days,
few people care whether the e�ciency of non-number-crunching program can
be improved by the factor of 10 or 20 in terms of execution speed or memory
demands for as long as the program appears to work. Following the short
initial euphoria, the sealed, one-size-�ts-all memory allocation system of Java
(and friends) begun to exhibit its own shortcomings. The problem was the
inability of the programmer to indicate to the garbage collector that some
objects were less needed than others, even though references to them were
still present in the program. The standard example of a situation where this
kind of indication would be useful is opportunistic caching where, by de�ni-
tion, an object stored in the cache (and thus being referenced by a �pointer�)
can (should) be removed when memory becomes scarce. Thus, in 1998 (i.e.,
three years after the introduction of the �rst version of Java), the concept of
weak reference was added to the language. The idea was to let the garbage
collector remove an object, if it was reachable solely via weak references.
Notably, that solution didn't quite solve all problems. As of today, there
are four reference types in Java: strong, soft, weak, and phantom (in the
decreasing order of strength) whose role is to cater to the various �avors of
discarding an object without eliminating its reference �rst. Judging by the
amount of discussion on the web, the four reference types cause more prob-
lems to apprentice Java programmers than pointers ever did to newcomers
to C or C++. In the latter case the issue was quite simple: one either under-
stood pointers in their entirety or not at all, whereas in Java the situation
is exacerbated by the fact that one can go some way without any under-
standing of the underlying problem at all. The problem, of course, is that
there are important circumstances where the cog- nizant programmer would
(should) prefer to exercise more or less direct control over memory allocation
for objects. That was realised quite promptly, also within the community
of (expert) Java developers, despite their initial optimistic attitude towards
garbage collection as the sole and ultimate remedy for all problems of mem-

3

ory allocation. In this context, as the pendulum seems to have reached the
end of its swing, and is in fact beginning to move in the opposite direction, we
believe that the time is ripe to revisit the valuable and somewhat forgotten
ideas behind a solution that strikes a compromise between the two extremes,
i.e., direct (unsafe) deallocation and (total, unquali�ed) garbage collection.
This solution comes as safe programmed deallocation.

The structure of the paper is as follows. The next section presents the main
problems of object managing systems. Section 3 exhibits three basic ways of
object deallocation. The table I sums up the the advantages and disadvan-
tages of the systems discussed above. We mention that to adapt the system
of Kreczmar to existing programming languages is not an easy task. The
future implementors of Kreczmar's system in JVM or in the running system
of other programming language will need a speci�cation that is consistent
and complete. Section 4 brings such a speci�cation ATHM. We prove the
consistency of it showing a model. The problem of completeness is more
complicated. We use algorithmic formulas for they are able to express some
properties of Kreczmar's system that are not expressible in the language of
�rst-order logic.

2 Managing objects

Proper management of objects plays an essential role in execution of object-
oriented programs. It must ensure safety and e�ciency. Poorly designed ways
to remove objects appear unsafe. On the other hand, keeping unnecessary
objects slows down the calculations and may lead to a collapse.

It is commonly accepted that dynamic instances of program's modules
reside in two non-overlapping �elds in memory. The activation records of
procedures, functions, constructors, and blocks are alocated on a stack. The
dynamic instances of classes (and also of coroutines, if a programming lan-
guage allows) are alocated on a heap. This paper presents a choice of prob-
lems related to the management of heap. In 1980 Antoni Kreczmar con-
ceived a running system (a virtual machine) for Loglan programming lan-
guage c.f.[Kreczmar1987]. Later, in the paper [Cioni and Kreczmar1984] an
the object management system which is free of dangling references and is
e�cient has been described. Hanna Oktaba studied the system and con-
structed the algorithmic theory of references and analysed its metamathe-
matical properties [Oktaba1982]. The papers of Cioni and Kreczmar and of
Oktaba accomplished the task of veri�cation of the Kreczmar's system. The
system has been thoroughly validated, for it is in use since more than 30 years
as a part of the running system of Loglan'82 object programming language

4

[Salwicki2013].
We believe the time has come to compare the system of Kreczmar to

other object management systems and to explain it in terms of an algorithmic
theory (di�erent from the Oktaba's theory).

Most of presently used object oriented programming languages appeared
after 1984 (C++ in 1985, Java in 1995, Python in 1989, Ruby 1993 [Gupta A.2010]).
No one of them has a system similar to the Kreczmar's one.

In C++ deallocation of objects is fast. However, it is well known that
the system of C++ has no protection against dangling reference errors. The
instruction delete() is executed without any form of control. The same
may be said about the programming language Pascal and its instruction:
dispose().

Java programming language forbids the explicit removal of objects. Its
system is free of dangling reference errors, however it is ine�cient in protect-
ing against risk of memory leakage.

We think that it is worthwhile to discover the inventions contained in
[Cioni and Kreczmar1984] and to apply them in practice, for they o�er the
safety without any loss on e�ciency.

Let us brie�y expose the problems. Objects are 1°created, 2°shared,
3°used, and, 4°eventually become not needed, anymore. We shall abstract
from many technical details of object's creation such as its size, the type of
object, the ways the free memory is organized.

Creation of objects is done through evaluation of object generator expres-
sions, e.g. in the assignment x := new ClassType(actparams). An object,
once created, can be shared among several variables, inspected, and updated.

Sharing is accomplished by execution of assignment instructions e.g. the
assignment y:=x causes that now the object pointed by x is shared by the
variables x and y.

Other forms of object's usage reduce to one of three cases:
inspection � reading the value of an attribute attr of an object e.g. x.attr,
updating � writing the value of an attribute, e.g. x.attr:=8,
servicing � done by calling a method of the object e.g. call x.meth(81).
All three forms of usage should begin with the checking whether the variable
x points to an alive object.

Eventually no further actions on the object will be taken. It is wise to
dispose of it. In these circumstances the designer of an object management
system is confronted to three major threats:

� memory leak problem,

� memory fragmentation,

5

� dangling references problem.

Below, we explain these terms:

memory leak occurs when objects are created and remain unused. Pro-
gram consumes memory. It leads to the slowdown of computations or
even to a complete blockade.

dangling reference A situation when in past some variable x pointed to
an object o, but at present, the object o no longer exists. One says,
the variable x is a dangling pointer if any attempt to use the variable x
is treated without an alarm. The system is free of dangling reference
error if any attempt to use the variable x raises an exception, e.g.
caused alarm: reference to none.

contradiction Two variables of di�erent types mutually contradict them-
selves: variable x says I am pointing to an object of type A, variable
y says I am pointing to an object of type B and both variables point
to the same address. This situation may happen when deallocation
created dangling reference(s).

destruction Suppose the object memory system admits the dangling refer-
ences. It may happen that, after execution of delete(x), the dangling
pointer y points to the memory frame where a new object z resides.
Then the delayed instruction delete(y) will cause the destruction of
the object z.

fragmentation There are many slots of free memory, none is large enough
to hold a new object.

A few words on dangling reference error are in order: one may distinguish
between detected and undetected dangling reference error. The second er-
ror is a real danger. Detected dangling reference happens when the virtual
machine �nds that the value of a pointer is none (or null). This is an un-
pleasant situation, for the programmer must �nd the cause of it. Undetected
dangling reference is much worse for many reasons, see above. One may ask:
if so then perhaps it is possible to equip the compiler in a tool to detect dan-
gling references errors in advance � before an execution of a program? The
answer is: NO, such an algorithm does not exist. 1

1Should an algorithm A for detection of dangling reference errors in source program
exist, then we would construct another algorithm B to detect whether any given program
will terminate or not. This is known to be impossible.

6

There exists a variety of object management systems. One may classify
them with respect to di�erent de�nitions of garbage.

The �rst, most natural, de�nition of garbage reads �An object o is a
garbage, whenever the program instructs (the runtime system) it is no longer
needed.�. This de�nition is accepted in C++ programming language. A C++
program may contain instruction delete(x). However, the instruction has
a side e�ect: the dangling reference may appear. Namely, one can observe
some variables that point to segments of memory where no object resides.
A dangling reference may lead to another error of contradicting information.
This phenomenon occurs when two variables point to the same address and
one says: �I am pointing to an object of type A� and the other says �I am
pointing to an object of type B�. Errors of both kinds are di�cult in diagno-
sis and very dangerous ones. There is no algorithm to detect the dangling
reference in the text of program. For the problem is reducible to the halting
problem.

Another de�nition of garbage reads: �Object with no references to it, is a
garbage�. Some programming languages try to keep track of references with
reference counters (e.g. Python [Wikipedia2013b]). In this way a garbage
collector can easily identify objects with reference counters equal zero as
garbage. However, by introducing reference counters one creates an overhead
in code's length and also in execution time. The result is a slowdown of
execution (A. Appel says �On the whole, the problems with reference counting
outweigh its advantages�,[Appel1998] p.264). The same opinion had O.-J.
Dahl, the father of object oriented programming [Dahl1974]. Let us recall
that reference counters do not help in recognition of cycles of no longer needed
objects.

Subsequent de�nitions of garbage base on di�erent types of references.
Namely, one di�erentiates weak references from normal ones. Now, �Object
o is an garbage if there is no normal reference to it, even if there exist weak
reference to o�. The weak references were introduced with two aims: 1° to
decrease the cost of reference counting, 2° to diminish the risk that some
objects will be kept because the programmer forgot to nullify all references
to it.

All three types of object management systems have certain de�ciencies.
The question arises: is it possible to replace operation delete by another op-
eration, say kill, such that kill has no side e�ect of dangling reference. In
[Cioni and Kreczmar1984] it was shown that there exists an objects manage-
ment system with kill operation.

Any program that intensively creates objects and deallocates some, may
cause fragmentation of the object memory. Sometimes, the situation may be

7

improved by the defragmentation.2

The system designed by Kreczmar integrates the features mentioned above.
For it allows to:

� deallocate no longer needed objects (kill operation),

� compactify heap of object (defragmentation),

� collect garbage, i.e. objects that are not accessible.

Below we compare object programming languages. We indicate that it is
desirable that the languages and running systems satisfy the following con-
ditions:

r1) For every type (class) T , for every variable x. If the variable x is of type
T then its value is an object of a subclass U of class T or x = none.
(This is a fundamental invariant (i.e. axiom) of any true object system)

r2) For every object s it is possible to distinguish the �elds containing
pointers to objects from the �elds that hold values of primitive types,
like e.g. integer, �oat, boolean,...

3 Various systems of object management

In this section we brie�y present the solutions taken in di�erent object ori-
ented languages.

3.1 Model A � e.g. C++, object Pascal, Objective C

We shall limit our considerations to the programs free of malloc instruction.
For malloc instructions break the rules r1, r2, listed above.

Object y can be deleted with delete(y) statement. The e�ect of this
instruction can be exempli�ed by the following implication

(x == y == z! = null)︸ ︷︷ ︸
precondition

=⇒ {delete(y); y = null; }︸ ︷︷ ︸
statement

(y == null ∧ x == z! = null)︸ ︷︷ ︸
postcondition

.

The variables x, z that were pointing to the removed object preserve their
value. It leads to the dangling references error. It is normal and expected
that an attempt to read the value of y.attr throws an exception. However
an evaluation of x.attr may return a nonsensical value instead of exception

2In [Cioni and Kreczmar1984] the authors use the word compacti�cation.

8

� this is the danger of dangling reference error � a signal is not raised when
it should be.

The error can be avoided if all those variables are nulli�ed x = null; ...z =
null;. It is a task of a programmer to remember all variables referring to the
object getting deallocated and to nullify all of them prior to instruction
delete. Obviously it is an error prone approach. An automatic completion
of the instruction delete(y) by the instruction y=null can be done easily
in many ways. However, it is programmer only who can add the instructions
x=null; z=null;

3.2 Model B � e.g. Java, Python et al.

Already the report on language Modula3 [Cardelli et al.1989] drew attention
to the risk of hanging references and non-existence of an algorithm that could
detect such errors. In Java white paper [Gosling and McGilton1995] there are
quite a few statements describing this problem and justifying the interdict
of delete instruction. Instead of delete() instruction there is a Garbage

Collector mechanism, which frees programmer from manual removing of
references to objects.

Soon, the opinion that garbage collector is an ultimate solution in objects
management was veri�ed. Three years after �rst version of Java (1995), in
JDK 1.2, weak references have been introduced. Why? It turned out, that
in many cases a programmer forgot to nullify all references to an object
destined to deletion, or one simply was not aware of some references created
by a data structure. To decrease the number of such errors the notion of
weak reference was proposed. [Wikipedia2013c]. A developer can declare
variable as weak reference. Weak references do not change reference counter
in cPython [Wikipedia2013a], and garbage collection algorithm does not take
them into account in Java. If there are no strong references to object it is
considered for collection. Even if there are some weak references to it.

Remark 1 Let's consider the following situation from Java:

x1 : x1 → o and yweak
weak
:= x1

One may say: if weak reference y refers to some object o, then there exists a strong

reference xi to the same object

yweak : yweak → o⇔ (∃ xi)xi → o
This is only partially true. After operation x1 := null the weak reference yweak

continues to refer to original object o for some time. Only after run of garbage

collection mechanism object is disposed, and weak reference is nulli�ed. Due to non-

deterministic implementations of most garbage collectors developers cannot predict,

nor e�ectively enforce collection.

9

�

Remark 2 As long as weak reference to the object exists one can create a
situation when object intended for collection will be restored to life:

Disposable tg = new Disposable();

/* A new Disposable object o is created, tg is a reference to the object o */
WeakReference<Disposable> weak_tg = new WeakReference<Disposable>(tg);

/* creates Weak Reference to the same object o */
tg = null; /* remove last normal reference to the object o

The object o is ready to be collected */
System.gc(); /* This is a hint � not an obligation � to activate GC */
Disposable tg2 = weak_tg.get();

/* It may happen that GC was not activated.

And operation get will reestablish a strong reference to the object o */

This will happen when instruction System.gc() will be ignored for some rea-
son by the virtual machine.

�

3.3 Model C � Tombstones

There is a way to handle objects that allows to deallocate objects and to avoid
dangling references. The technique is known as tombstones cf. [Lomet1975],
[Gabbrielli and Martini2010] p.248. Every time an object o is created (e.g. by
execution of x:= new C(...)), the virtual machine creates an additional
object t - the tombstone of the object o. The content of the tombstone
is either physical address of object o or null. The value of the variable
x of type C is the physical address of the tombstone t. An assignment
y:=x; copies the address of t to y. Any access to the object o requires two
memory cycles. Deletion of the object o can be done safely. It su�ces to
put null as the new value of the tombstone t and recycle the memory frame
occupied by the object o. It seems that no object programming language
uses this technique. There is some amount of prejudice concerning the cost
of tombstones. Most comments repeats that the overhead is too big. One may
observe that these comments are not accompanied by any form of arguments.
We may add that the extra cost in time and space is worth its price for the
threat of dangling references is enormous. Moreover, the critique of costs
was written some 30 years ago when the speed of computers and the size of
memory were signi�cantly smaller. Tombstones seem to be an ideal solution.
For they o�er the safety for a reasonable price. However the tombstones

10

have some drawbacks. Namely, there is no way to get rid of tombstones.
They accumulate and one is confronted with the phenomenon of memory
leak again. Perhaps this is the reason, for which no popular programming
language uses the tombstones.

An attempt to overcome this problem was proposed in [Fisher and Leblanc1980].
We quote the entire description of their proposal.
�An attractive method of pointer checking is to represent a pointer as a pair
(key, address) and head each allocation from the heap with a lock �eld. When
a pointer is used, the key value must agree with the lock �eld of the object refer-
enced. This is again a very e�cient run-time test. It does not provide absolute
security since the key �eld is simply a bit pattern that could be fabricated by a
malicious user. This relative security is acceptable if accidental fabrication is
very improbable.�.

The structure is known as �keys and locks" c.f.[Gabbrielli and Martini2010].
Kreczmar, independently found a similar solution. The paper [Cioni and Kreczmar1984]
contains details of implementation as well as the proof of correctness.

3.4 Model D � Loglan'82

An informal presentation was done above in section 1. Its speci�cation is
contained in the section 4. More on its feasability is in appendix A. The
details are in [Cioni and Kreczmar1984].

3.5 Comparison

In the Table 1 on page 25. we compare the ways di�erent programming lan-
guages deallocate objects. We distinguish three groups of the languages: the
�rst group consists of the Loglan'82. The languages of the second group ad-
mit programmed deallocation (C++, Pascal, etc.) The third group contains
the languages that forbid deallocation, and rely on garbage collection. The
following �ve aspects were taken into consideration: Pre-condition - common
in all cases, Code - that leads to deallocation, Post-conditions - observe the
di�erences, Cost - order of time units needed, Risk - that deallocation fails
and leaves the object intact, or that an error occurs.

Some explanations concerning cost of deallocation operation seem neces-
sary: The cost of delete() in C++, dispose() in Pascal, and free() in
Ada are known [Stroustrup2013, Jensen and Wirth1974, Barnes1996]. The
cost of kill() is calculated in [Cioni and Kreczmar1984], and it will be ex-
plained below, see Appendix A. The cost of any garbage collector gc() is
known as O(m), where m is the size of heap i.e. object memory. Note, any
garbage collecting algorithm must visit each object in the heap.

11

4 Algorithmic speci�cation of Kreczmar's sys-

tem AK
Below, we present a speci�cation of the Kreczmar's heap management sys-
tem. A speci�cation S is an extension of an interface by a set Ax of algo-
rithmic formulas. The set Ax may be used in the process of analysis of an
application. We present an example of reasoning on a program in Appendix
B. The formulas of the set Ax are used as axioms. The same set of formulas
may be used as a criterion of correctness. Namely, we shall accept a class C
as a model of the speci�cation S if the class C implements all the methods
listed in the speci�cation S and moreover it does it in such a way that all
formulas of the set Ax are invariants of the class C.

The speci�cation contains a few lines with the signature of operations (in
Java it would be called an interface) and a few lines of invariants aka axioms.
The invariants are algorithmic formulas.

We are showing that there exists a programmable model of the speci�ca-
tion. By the more general property of algorithmic logic it follows that the
speci�cation S is free of contradictions i.e. it is consistent.

4.1 Informal description

The universe of a heap managing HM system consists of states and objects. A
state may be viewed as a �nite set of objects. For the purpose of the present
work we can abstract from the structure of objects, of their types, even from
their size. Therefore we shall speak of frames instead of objects. In order to
make our presentation easier to follow, we abstract from the limitations on
the size of states. This limitation is inessential one. 3)

The universe of HM system consist of three sets

U = Frames ∪ States ∪ {none}

with the following operations:

reserve : States→ Frames

insert : Frames× States→ States

delete : Frames× States→ States

member : Frames× States→ {true, false}
3One can add these ingredients of object's size and its content later.

12

initSt ∈ States

kill : Frame× States→ States

States are �nite sets of frames. For each state s function reserve returns
a frame f from outside the state s, that is f does not belong to s. For each
pair 〈e, s〉 operation insert returns the set-theoretical union of the set s, and
the element e. Similarly, operation delete returns the set s′ that results by
the deletion of element e from the set s. The element initSt is the empty
set.

4.2 Algorithmic theory ATHM of heap management

In this subsection we develop a speci�cation of the Kreczmar's system in
the form of an algorithmic theory, i.e. a theory based on algorithmic logic
instead of �rst-order logic c.f. [G.Mirkowska & A. Salwicki1987]. Our theory
AT HM di�ers from the one proposed by Hanna Oktaba [Oktaba1982] by
the presence of functor kill and the corresponding axiom of kill.

Each formalized algorithmic theory T can be identi�ed with a triple
T = 〈L, C,A〉, where L is a formalized algorithmic language, C is the
syntactical consequence operation de�ned by the notion of proof. The
last element of the triple is the set A of axioms speci�c for the theory
T . We can assume that the notion of proof is de�ned on the basis of the
sets AL of axioms and R the set of inference rules of algorithmic logic.
The formalized algorithmic language L of our theory AT HM consists of
three sets of well formed expressions: terms T , formulas F , and programs
P . The alphabet of the language contains the sets of variables, of func-
tors, of logical functors, of program connectives, and auxiliary symbols
like parentheses, commas, etc.
The set of algorithmic formulas is the least set of expressions that con-
tains all �rst-order formulas over the same alfabet and is closed with
respect to the usual formation rules.Moreover, for any program K and
any algorithmic formula α, the expression Kα is an algorithmic formula.

We shall consider variables of type F - for frames, usually denoted by f, f ′, ...
and of type S - for states,usually denoted by s, s′,
The set of functors and predicates of the theory's language consists of:

res : S → F

amb : S → F

13

ins : F × S → S

del : F × S → S

mb : F × S → {true, false}

kill : F × S → S

and two constants none /∈ {F ∪ S} and eS ∈ S. The value of any variable f
of type F is a frame, or none.

The logical consequence operation ` is de�ned as in [G.Mirkowska & A. Salwicki1987]
Axioms speci�c of the theory AT HM are given below

HM1) ∀s∈S ¬mb(res(s), s)
For every state s, operation res(s) returns a new frame, not an element of s

HM2) ∀f∈F ¬mb(f, eS)
the initstate eS is the empty set of frames

HM3) ∀s∈S


while s 6= eS do

s := delete(amb(s), s)
od

 (s = eS)

For every state s, the program while (above) terminates, hence, every state is a

�nite set of frames

HM4) ∀s∈S s 6= eS ⇒ mb(amb(s), s)
For every non-empty state, function amb returns a member of the state s

HM5) ∀f∈F∀s∈S{s′ := ins(f, s)}(mb(f, s′) ∧ ∀f ′∈F (f
′ 6= f =⇒ mb(f ′, s) ⇔

mb(f ′, s′))
operation ins adds frame f to the state s

HM6) ∀f∈F∀s∈S{s′ := del(f, s)}(¬mb(f, s′) ∧ ∀f ′∈F (f
′ 6= f =⇒ mb(f ′, s) ⇔

mb(f ′, s′))
operation del deletes frame f from the state s

14

HM7) mb(f, s)⇔



begin

s1 := s; bool := false;
while s1 6= eS ∧ ¬bool
do

f1 := amb(s1);
if f = f1 then bool := true �;
s1 := del(f1, s1);

od

end


bool

This formula de�nes the properties of relation member. It is not an implementation

however. We postulate that the implemented cost should be constant.

HM8) The operation kill is characterised by the axioms of the following scheme.

The index k may be any natural number k > 0, let 1 ≤ i ≤ k.

((f1 = ... = fk) ∧mb(f1, s))︸ ︷︷ ︸
precondition

⇒ [s′ := kill(fi, s)]︸ ︷︷ ︸
statement

(f1 = ... = fk = none)︸ ︷︷ ︸
postcondition

Any formula of this form is an axiom, it tells that operation kill in one move nulli�es

all the references to the object pointed by the variable fi. And indeed, in the system

of Kreczmar the cost of the operation kill is constant.

4.3 Applications of the speci�cation

The above set of algorithmic formulas de�nes the requirements imposed on
a class to be implemented. Moreover, it allows to prove some useful facts,
i.e. the theorems of the ATHM theory.

Theorem 1 The program in the axiom HM7 never loops, more precisely

{HM1− 6} ` ∀s∈S∀f∈F



begin

s1 := s; bool := false;
while s1 6= eS ∧ ¬bool
do

f1 := amb(s1);
if f = f1 then bool := true �;
s1 := del(f1, s1);

od

end


true

For the proof see the Appendix B.

15

Theorem 2 For every state s, the following program terminates

{HM1-8} ` ∀s∈S



begin

s′ := eS;
while s 6= eS do

r := res(s′);
if mb(r, s) then s := del(r, s) �;
s′ := ins(r, s′)

od

end


(s = eS)

i.e. the operation res: reserve a new frame, may replace the operation amb
in the postulate that every state is a �nite set of frames.

�

The following two instructions are included in a body of operation new

f:= res(s); s:= ins(f,s);

i.e. reserve a new frame and include it into the set of reserved frames. Now,
with this information in mind one may deduce the important fact

Theorem 3 Let T be any class, let (a1, . . . , ak) be a list of actual parame-
tres.

{HM1-8} ` new T (a1, . . . , ak) 6= new T (a1, . . . , ak)

�

4.4 Properties of the speci�cation

One can investigate the properties of the speci�cation itself. We are able to
state an important metatheorem about the system of axioms in HM. The fol-
lowing theorem was not formulated in [Cioni and Kreczmar1984]. H. Oktaba
proved a theorem on consistency for a similar set of axioms [Oktaba1982],
basically it was the set {HM1 - HM7 }.

Metatheorem 1 (on consistency of the set {HM1-8})
The system of axioms HM1 � HM8 has a model.

For a sketch of the proof see the Appendix A. The model constructed in the
proof will be called the standard model.

�

16

H. Oktaba proved another important fact:

Metatheorem 2 (representation theorem)
Every two models of the axioms HM1 � HM7 are isomorphic, up to imple-
mentation of operations amb and res, to the standard model.

We are accepting that the operations res and amb may be implemented in
several versions. For example, in one implementation the operation res takes
a frame from the set of freed frames, in another implementation res may
take a portion of unused memory. It will su�ce that their implementations
satify requirements mentioned in the axioms HM1 and HM4.

However, to prove a similar metatheorem for the system HM1 � HM8 is
a di�erent and non-trivial task.

4.5 Variations of axiom's system

Are the simpli�cations we made important? One can easily observe two
points:

� One can consider a slightly di�erent operation reserve - with a parame-
ter appetite de�ning the size required for an object. This can be easily
done by modi�cation of the signature res : S ×N → F and leads to a
new (consistent) set of axioms.

� Another extension of our system HM is de�ned when one describes the
internal structure of an object. (The structure is determined by the
declaration of class). This extension is also consistent.

Till now we needed not to introduce an operation of garbage collection. In
our abstract version the set of Frames is isomorphic with the set of natural
numbers.To make our theory more realistic we should introduce a postulate
that the set of frames is �nite.In this case a need arises of garbage collection.

One can ask how to express the property the set Fr of frames is �nite?
The answer is easy:
HM9) ∃s0∈St∀f∈Frmb(f, s0)
Which reads: the set of frames is equal to some state, hence Fr is a �nite
set.
The set of the axioms HM1 � HM9 is inconsistent. However, it is quite easy
to repair it. We leave this as an exercise. Hint. Introduce a predicate full,
a dual to the predicate empty.

17

5 Final remarks

Let us remark that since Java was introduced in 1995, the memory size
has grown thousand times, from megabytes MB to gigabytes GB. The cost
of garbage collection increased accordingly. For each algorithm of garbage
collection must touch each cell of objects memory.

In the paper [Cioni and Kreczmar1984] the memory management system
is treated as a whole. The problems of garbage collection and dangling
references were not separated. The safety question does a given pointer points
to an alive object takes the central place of the system.

In Loglan'82 operation kill() is safely implemented with low, �xed cost.
Each access to an object is checked, and it is done through three machine
instructions only.

The heap management system of Loglan'82 is richer,it o�ers �ve opera-
tions:

� creation of a new object � x := new T(),

� disposal of an object � kill(x),

� member(x) � veri�cation if the value of a variable x is an alive object

� compact() � defragmentation of unused memory

� gc() � garbage collection

The frequency of garbage collection is reduced due to following discipline:

1° kill operation is called whenever an object should be deleted, the freed
frame is added to the list of free memory frames,

2° during an operation of creation new object, the list of free memory
frames is checked and used, prior to slicing a fragment of unoccupied
memory (between the stack and the heap),

3° the operation of compacti�cation (i.e. defragmentation) has priority
over operation of garbage collection. (The cost of defragmentation is
less than the cost of garbage collection.)

Open question.
Is it possible to construct the heap management system of better features (a
cheaper or faster one)? An author of a (veri�ed !) answer will obtain a prize
of 50 Euro.

18

Acknowledgement

The authors are grateful to prof. Paweª Gburzy«ski and Marek Warpe-
chowski for their valuable comments and suggestions.
The second author was �nanced by research fellowship within the Project In-
formation technologies: Research and its interdisciplinary applications, Agree-
ment number UDA POKL.04.01.01-00-051/10-00.

Appendix A - How to construct a model of ATHM

theory?

In this section we gather remarks useful in the process of implementing the
axioms/invariants of the theory ATHM.

Metatheorem 1. (on consistency of the set {HM1-8}) The system of ax-
ioms HM1 � HM8 has a model.

This theorem does not appear in the paper [Cioni and Kreczmar1984].
However, the construction of the heap management system and the proofs
of invariants contained there, lead in a straightforward way to the proof of
the metatheorem 1. We shall not repeat the detailed discussion, instead we
present the main points. The presentation in [Cioni and Kreczmar1984] is
loaded with the details concerning the ways to treat the retrieved memory.
For this presentation we shall assume that no limit is imposed on the mem-
ory and we shall not explain how to organize the memory retrieved from
deallocated objects. We hope that the reader is able to �ll this gap.

Kreczmar observed that the question: does a variable x points to a live
object? is the principal one. The notion of a dead object was known in the
context of garbage collection. A dead object need not to be deleted immedi-
ately. It is enough to guarantee that it will be deleted in some future. And
indeed in some programming languages the garbage collection may refuse
to start immediately when called by gc() instruction, cf. [Aho et al.2007],
Kreczmar considered the whole life cycle of object.

Kreczmar remarked that the answer to the question: is the object x alive?
is more important than the task of calculating the physical address of it.

Digression. Nobody is astonished that a compiler �rst checks whether
the indexed variable A[i] exists and later calculates its physical address. In
some languages this check is obligatory. End of digression

The �rst proposal is to use the concept of tombstones cf. [Gabbrielli and Martini2010].
Remark that tombstones do not eliminate the error of memory leakage. Us-

19

Creates & initializes

Alive

Dead

new F(. . .)

x:=. . .

Kill

Figure 1: Diagram of states of an object

ing tombstones one can retrieve the portions of memory previously occupied
by objects. But how to retrieve the tombstones?

Kreczmar proposed another solution: object consists of a frame and a
handle to it. The information contained in a handle allows to: 1°identify
the frame (i.e. to calculate its physical address), and 2°answer whether the
object is alive or not.

Objects = Frames×Handles

Now, a handle h to an object o contains two pieces of information:

h[0] - a reference to the object, i.e. its physical address,

h[1] - an identi�cation link of the object = serno.

Each object upon its creation obtains a unique, serial number. This number
is stored in the object itself and also it is stored in the handle, as its second
element h[1].

In the table 2 on page 26 below, we are sketching the implementation
of the operations creation, disposal, member. Operation create is de�ned as
the composition of operations reserve and insert. Similarly operation disposal
uses the operation delete.

20

Now, the proof of Metatheorem 1 may proceed by the induction w.r.t.
the number of executed operations create, access, disposal. The thesis we are
going to prove is Let the value of a variable x is 〈b, key〉. Then x 6= none i�
key = lock i.e. =Memory[b+1]

Appendix B - proof of Theorem 4.1

The aim of this section is to show the advantage of speci�cations over inter-
faces. Pro�ts of speci�cation follow from the possibility to use it as a base
for formal proof of an application. The proof uses the calculus of algorithmic
logic.

Theorem 4.1 The program in the axiom HM7 never loops, more precisely

{HM1− 6} ` ∀s∈S



begin

s1 := s; bool := false;
while s1 6= eS ∧ ¬bool
do

f1 := amb(s1);
if f = f1 then bool := true �;
s1 := del(f1, s1);

od

end


true

Proof. The proof takes only 10 steps. We start with the axiom HM3.
In each step we are using one axiom and/or one rule of algorithmic logic. All
these tools are quoted below for the convenience.

Ax19 begin K;M endα ≡ K (M α).

Ax18 ((x := τ)γ ≡ (γ(x/τ)

R1
α, (α⇒ β)

β

R2
(α⇒ β)

(Kα⇒ Kβ)

aux1
(α⇒ β)

while β do K od true⇒ while α do K od true

aux2
while α do K od true, (M ;K α) ≡ K α

while α do K;M od true

aux3
α, M true

M α

21

The formal proof of the theorem is given below.

1) ∀s1∈S

 while s1 6= eS do

s1 := delete(amb(s1), s1)
od

 (s1 = eS) axiom HM3

let us denote the program by K

2) (s1 = eS)⇒ true tautology

3) ∀s1∈S K(s1 = eS)⇒∀s1∈S K true from 2) by R2 rule

4) ∀s1∈S

 while s1 6= eS do

s1 := delete(amb(s1), s1)
od

 true from 1) and 3) by R1

5) {s1 := delete(amb(s1), s1)}α ≡ {f1 := amb(s1); s1 := delete(f1, s1)}α by Ax18
α is any formula that does not contain the variable f1

6) ∀s1∈S

 while s1 6= eS do

f1 := amb(s1); s1 := delete(f1, s1)
od

 true from 5) and 4)

7) ∀s1∈S


while s1 6= eS do

f1 := amb(s1); s1 := delete(f1, s1)
if f = f1 then bool := true �;

od

 true by aux1 rule

8) ∀s1∈S


while (s1 6= eS) ∧ ¬bool do
f1 := amb(s1); s1 := delete(f1, s1)
if f = f1 then bool := true �;

od

 true by aux2 rule

9) ∀s∈S


s1 := s; bool := false;
while (s1 6= eS) ∧ ¬bool do
f1 := amb(s1); s1 := delete(f1, s1)
if f = f1 then bool := true �;

od

 true by aux3 applied twice

10) ∀s∈S



begin

s1 := s; bool := false;
while (s1 6= eS) ∧ ¬bool do
f1 := amb(s1); s1 := delete(f1, s1)
if f = f1 then bool := true �;

od

end


true by Ax19

�

22

References

[Aho et al.2007] A. Aho, M. Lam, R. Sethi, and J. Ullman. 2007. Compilers:
principles, techniques & tools. Addison Wesley, Boston. 1009+26 pages.

[Appel1998] A. W. Appel. 1998. Modern Compiler Implementation in Java.
Cambridge University Press.

[Barnes1996] J. Barnes. 1996. Programming in Ada 95. Addison-Wesley
Publ., Boston. 720 pages.

[Cardelli et al.1989] L. Cardelli, J. Donahue, L. Glassman, J. Mick, B.
Kalsow, and G. Nelson. 1989. Modula-3 report. Technical Report 52.
Xerox.

[Cioni and Kreczmar1984] G. Cioni and A. Kreczmar. 1984. Programmed
Deallocation without Dangling References. Information Processing Let-
ters 18 (1984), 179�185.

http://lem12.uksw.edu.pl/wiki/Programmed_dealocation_

without_dangling_reference. (1984).

[Online; accessed 29-October-2014].

[Dahl1974] O.-J. Dahl. 1974. On garbage collection. personal communication
to A.S.. (June 1974).

[Fisher and Leblanc1980] C.N. Fisher and R.J. Leblanc. 1980. The imple-
mentation of run-time diagnostics in Pascal. IEEE Trans. Softw. Eng.
6 (1980), 313�319.

[Gabbrielli and Martini2010] M. Gabbrielli and S. Martini. 2010. Program-
ming Languages: Principles and paradigms . Springer.

[Gosling and McGilton1995] J. Gosling and H. McGilton. 1995. The Java
Language Environment. Technical Report. 30 pages.

[Gupta A.2010] J. Damato and A. Gupta 2010. Garbage Collection and the
Ruby Heap Presentation. Presented as RAILSCONF 2010, Baltimore,
Maryland.

[Jensen and Wirth1974] K. Jensen and N. Wirth. 1974. Pascal user manual
and report . Springer Verlag, New York.

23

[Kreczmar1987] A. Kreczmar. 1987. A short introduction to the new running
system written in Loglan'82.

http://lem12.uksw.edu.pl/Loglan82/Doc/rsloglan-in-Loglan.

pdf. (1987). [Online; accessed 1-October-2014].

[Lomet1975] D.B. Lomet. 1975. Scheme for invalidating references to freed
storage . IBM Journ. R & D 19 (1975), 26�35.

[G.Mirkowska & A. Salwicki1987] G. Mirkowska and A. Salwicki. 1987. Al-
goritmic Logic. PWN & Reidel, Warszawa & Dordrecht. 367 pages.

http://lem12.uksw.edu.pl/images/3/35/Algorithmic_Logic.pdf.
[Online; accessed 28-November-2014].

[Oktaba1982] H. Oktaba. 1982. On algorithmic theory of references. Ph.D.
Dissertation. Institute of Informatics, University of Warsaw.

[see also Mirkowska and Salwicki 1987, pp. 328 - 341].

[Salwicki2013] A. Salwicki. 2013. Loglan'82.

http://lem12.uksw.edu.pl/wiki/Loglan'82project. (2013). [On-
line; accessed 2-November-2013].

[Stroustrup2013] B Stroustrup. 2013. The C++ Programming Language.
Addison-Wesley Publ., Boston. 387 pages.

[Wikipedia2013a] Wikipedia. 2013a. Python programming language �
Wikipedia, The Free Encyclopedia. (2013). http://en.wikipedia.

org/w/index.php?title=Python(programminglanguage)&oldid=

552039830 [Online; accessed 29-October-2013].

[Wikipedia2013b] Wikipedia. 2013b. Reference counting � Wikipedia, The
Free Encyclopedia. (2013). http://en.wikipedia.org/w/index.php?
title=Reference_counting&oldid=552039830 [Online; accessed 11-
May-2013].

[Wikipedia2013c] Wikipedia. 2013c. Weak reference � Wikipedia, The
Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=

Weak\reference\&oldid=552039830. (2013). [Online; accessed 11-
May-2013].

24

Table 1: Various models of deallocation of objects.

Model D
(e.g. Loglan'82)

Model A
(e.g. C++, Pascal)

Model B
(e.g. Java, Python)

Pre- Certain object o is referenced by the variables x1 = x2 = ... = xn, 1 ≤ i ≤ n.

Code

kill(xi) delete(xi);
xi = null

x1 = null;
x2 = null;
...
xn = null;

Now, the instruc-
tion

gc()
the object o will be
deleted.

Post- All the variables
took the value
none.
Object o is deleted.

Object o has been
deleted. The vari-
able xi has the
value null. Other
variables point to
the deleted frame �
it is a dangerous er-
ror � dangling ref-
erence.

Object o has been
deleted � under
condition that all
the strong (normal)
references to the
object have been
earlier assigned the
null value.

Cost O(1) O(1) O(n+m)
m is the global size
of the heap of ob-
jects.

Risk No risk(!)
For each attempt
to read and/or
write from the
deleted object
will raise an error
signal reference

to none.

If n>1 then dan-
gling reference er-
ror occurs.
High probability of
the error of contra-
dicting information
and/or destruction
error.

Chances that pro-
grammer will forget
to nullify some ref-
erence to the object
o and hence that
the object will re-
main not deleted.

25

Table 2: High points of Implementation
action example code

creation x:=new T(length) �nd a piece of free memory
of the size length, and sec-
ond of size 2. Let fr and
h be their addresses respec-
tively.
new object is <fr, h> ;
fr[0] ← length; h[1]←
serno;
h[0] ← fr; x[0] ← h; x[1]
← serno;
serno← serno +1

access
(is alive?)

x.attr h← x[0];
if h[1] = x[1] then

addr ← h[0] else
signal excep-
tionReferenceToNone
�;
return addr[attr]

disposal kill(x) h← x[0]; h[1]← h[1] + 1
and manage the retrieved
memory

26

