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Preface

0.1 Thirty years later

This is a new edition of the report. The project Loglan'82 has more than thirty
years and is still alive.

We present the report with the following categories of readers in mind:

• Ambitious programmers �Loglan'82 o�ers a few constructs not known
in any other programming language:

� should you avoid a dangerous phenomenon of dangling references and
to manage the memory of objects then use the instruction kill(),

� should you create both concurrent and distributed programming then
Loglan'82 o�ers a uniform model for these two sorts of programming
saving you the time of learning,

� if you wish to learn a genuine protocol of alien call � a truly object
mechanism of communication/synchronisation of threads,

� if you wish to apply a powerful and clean tool of coroutines.

• Teachers � Loglan'82 is a good choice if you wish to present all the meth-
ods and tools of object programming without passing from one language to
another for presenting the complete set of object programming constructs,

• Researchers � may �nd interest in Loglan'82 as it is a product of studies.
Many scienti�c problems were solved before we de�ned the language and
its semantics. Some open problems are still open.

0.2 Why Loglan?

We recommend Loglan'82 to those who are investigating. For the language came
out as the result of research on questions like:

• is it possible to inherit from a class in a function?

• how to de�ne inheritance when the extended class is not a brother of the
present class?

• is it possible to keep the scheme of accessing to non-local ...

• how to de�ne coroutines in a consistent manner?

vii
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• is it possible to de�ne semantics of concurrent and of distributed program-
ming in a uniform way?

• is it possible to deallocate objects ina a safe and e�cient way?

We are launching a new project named LEM'12. LEM'12 is going to be yet
another object programming language. It will pro�t from the experience gained
by Loglan'82 as well as the other programming languages.

LEM'12 is to be a part of much bigger project SpecVer ...



Chapter 1

Introduction

LOGLAN-82 1 is a universal programming language designed at the Institute
of Informatics, University of Warsaw. The shortest, informal characterization
of the language would read as follows. LOGLAN-82 belongs to the Algol family
of programming languages. Its syntax, however, is patterned upon Pascal's [5].
Many ideas are borrowed from SIMULA-67 [3]. The language includes also some
modern facilities such as concurrency and exception handling.

The characteristic programming constructs and facilities of the language are
as follows:

• a convenient set of structured statements,

• block structure, i.e. nesting of modules ,

• procedures and functions,

• classes,

• inheritance, alias pre�xing,

• safe, programmed deallocation,

• adjustable arrays,

• formal types and formal procedures,

• coroutines,

• processes, one uniform model, common for concurrent as well as for dis-
tributed programming,

• a genuine protocol of alien call of methods of one process' object from
another process,

• encapsulation techniques,

• exception handling,

• �le processing.

1Much later we learned about another Loglan � an esperanto-like language developed by
dr C. Brown in US.

1
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LOGLAN-82 history

In the early seventies the Institute of Mathematical Machines "MERA" (with
two members of the present team of authors) and the Institute of Informatics
of Warsaw University initiated the design of a new high level programming lan-
guage2. There were two main inspirations for taking up this research. First, the
awareness that the SIMULA 67 programming language was a substantial con-
tribution to the software methodology, and second, that the fast development of
multiprocessor hardware will change the software practice. We began our work
with analytical studies, seminars and lectures dealing with the basic constructs
and features of the known programming languages. This helped us to establish
the goals a new programming language should reach. By then, however, we
decided that the design of the programming language would be a component of
a broader software project, called LOGLAN.

There is no doubt that the environment in which our investigations have been
carried out has shed a new light on these goals. In particular, the experience
accumulated by a big part of our team in the �eld of Algorithmic Logic [4][15]
in�uenced the form of the solutions accepted.

The �rst step of our work was �nished in 1977 with the report on the
LOGLAN programming language [6][12]. The report provided a general out-
line of a universal programming language. Among its most important features
let us mention a new approach to arrays, assignments, parameter transmission
and parallel computations. This version was not implemented. It constituted
the base for the agreement between the University of Warsaw and the State
Industrial Trust MERA, signed a year later.

A careful analysis of the constructs suggested in the primary project preceded
an actual implementation. With the intention of attaining this, the interpreter
of the language was designed. At that stage a number of important modi�cations
were introduced to the proposed outline. They resulted from experiments with
the interpreter which proved the usefulness of some constructs and the useless-
ness of some others. At the next stage of research the language was implemented
on the original Polish two-processor minicomputer MERA 400. The design was
restricted in several points because of the implementation constraints. Some
constructs were rejected, the decision concerning some others was put o� until
a more elaborate analysis was carried out. The experience of the team in the
�eld of abstract data types and computational complexity helped us to solve
one of the most fundamental implementation problems - a proper structure for
secure and fast storage management. In consequence, the language is furnished
with a programmed deallocator which allows the user to design the best strat-
egy of storage management at run time. The implementation of unrestricted
pre�xing needed a completely new approach. The well-known mechanisms like
Dijkstra's display do not allow us to release the SIMULA restrictions (the most
important forbids the use pre�xing at di�erent levels of unit nesting). Such a so-
lution was found and the LOGLAN-82 users may apply pre�xing at an arbitrary
level of unit nesting.

Of the results we have obtained so far let us mention paper [2][1], which
deals with the principles of an e�cient implementation of programming lan-
guages with pre�xing at many levels. The paper introduces the generalized

2words written in 1984
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display mechanism and proves the correctness of an update-display algorithm.
A new data structure for e�cient and secure storage management is also pro-
vided. Paper [1] deals with the design and implementation of class Simulation
(improving that provided in SIMULA 67). The concurency problems are de-
scribed in the special mathematical model [][19]. The correctness of the monitor
implementation is proved in [20]. The semantics of an assignment statement
for subscripted variables is de�ned and carefully examined in [21]. Paper [16]
describes the semantics of allocation, deallocation and control statements. A
comprehensive survey about LOGLAN-82 and its applications is supplied in [8].
Let us mention the close connections between the development of the language
itself and of Algorithmic Logic, see [15, 22, 23, 24, 25, 26].

NEW PUBLICATIONS
NEW WORK

1983 - Summer School on Loglan. Hans Langmaack solves the problem of static
binding of identi�ers in the presence of multilevel inheritance.
1984 - Pawel Gburzynski and Andrzej Litwiniuk install Loglan on Siemens com-
puter.
1985 - Danuta Wasersztrum-Szczepanska ports Loglan to VAX/VMS system.
J.Findeisen ports to PDP-11.
1986 - Danuta Wasersztrum-Szczepanska ports Loglan to IBM PC.
1987 - continuation of the works on PC
1988 - Bolek Ciesielski proposes and realizes a new concept of parallel processes
and a new communication mechanism "alien call". He realizes as well an exper-
imental network of PCs executing Loglan's processes.
1989 A Loglan to C crosscompiler was realized by M.Wojtylak and T.Gottwald.
1990 - J.Bartoszek wrote a structured editor
1991 - Pawel Susicki installs Loglan in Unix environment
1992 - Sebastien Bernard ports Loglan to Atari STE
1993 - distribution of Loglan by network.

LOGLAN-82 high points

• An orderly and intellectually manageable fashion of program design.

• Clean, modular extensibility (by means of the above mentioned facilities,
in particular by pre�xing). An algorithm employing an abstract data
structure can be pre�xed by a class realizing that structure. The class
may be programmed by the user himself or by another user, taken from
the system library etc. In this way, programs may be developed by teams
of programmers.

An environment for distributed and safe development of large programs
and systems with easy inter-communication between members of software
teams, i.e., di�erent parts of the design are easy to read, check and modify.
The modi�cations do not entail unexpected interactions.

• Possibility of systematic debugging in a way which contributes to con�-
dence in the overall program correctness.
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• Type checking, especially of references to objects, which substantially re-
duces the need for run-time checks and increases the safety of handling
pointers.

• E�cient storage management by means of well-tailored allocation/deallocation
operations.

• Clear visibility rules with the capability of unit encapsulation techniques.

• Concurrent computations in which several processes are simultaneously
and independently executed by any number of processors. The concur-
rent multiprocessor computations were treated with due care. We reached
the necessary foundations for the description of atomic operations for the
concurrent statements. The atomic operations may be e�ciently imple-
mented in any operating system kernel. It is well known that concurrent
computations have to be synchronized and scheduled. We do not pre-
judge which facilities are to be used for those purposes. In LOGLAN-82
all known synchronization methods may be declared as prede�ned classes.
For example, let us mention that it is possible to de�ne:

• monitoring dialect similar to CONCURRENT PASCAL, cf.[5], with the
main notions: process, monitor, entry procedure, delay, continue,

• tasking dialect similar to ADA's tasks, cf.[11], with the main notions: task,
accept, select, rendez-vous.

First implementation of LOGLAN-82

The �rst implementation of the language was �nished in December 1981 on the
two processors Polish minicomputer MERA-400 (uni-bus architecture). The
whole compiler was programmed in FORTRAN IV Standard(!). The run-time
system and �le processing were coded in the Mera Assembly Language GASS.
The implementation team was headed by Antoni Kreczmar (who is the author of
Running System) and included Paweª Gburzy«ski (File Processing), Marek Lao
(Semantic Analysis), Andrzej Litwiniuk (Code Generation), Wojtek Nykowski
(Parsing) and Danuta Szczepa«ska-Wasersztrum (Static Semantics).

Further work on LOGLAN-82

Although we are convinced that LOGLAN-82 will prove to be useful for an
average user, we would like to stress that we were interested mainly in �nding
answers to research questions. Our approach is more scienti�c than commercial.
Among the studies that are planned for the nearest future, let us mention further
research on LOGLAN-82 itself and on its �rst compiler. The portability of the
compiler seems to be the main target of our team. Moreover, LOGLAN-82 has
been used in several applications. In this way the language will be veri�ed and its
usefulness will be analyzed. We are convinced that the new computer architec-
ture and multiprocessor environment should be taken into account. Therefore,
we plan studies which could support an e�cient implementation of the language
with richer semantics are planned. It seems that the crucial point of the future
hardware would be the e�cient implementation of the storage management.
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30 years later

3 From the perspective it is easy to observe two facts:

• Loglan'82 remains forgotten,

• it enjoys several features which are important for software engineering but
remain unknown to the community of programmers.
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Chapter 2

The basic characteristics of

LOGLAN-82

2.1 Control structure

Compound statements in LOGLAN-82 are built up from simple statements
(like assignment or call statement) by means of conditional, iteration and case
statements.

The syntax of a conditional statement is as follows:

if boolean expression

then

sequence of statements

else

sequence of statements

fi

The semantics of a conditional statement is standard. The keyword � allows
us to nest conditional statements without the appearence of the "dangling else"
ambiguity. The "else" part in a conditional statement may be omitted:

if boolean expression

then

sequence of statements

fi

Another version of a conditonal statement has the form:

if B1 orif ... orif Bk

then

sequence of statements

else

sequence of statements

fi

For the execution of a conditional statement with the orif list the speci�ed
conditions B1, ..., Bk are evaluated in succession, until the �rst one evaluates

7



8 CHAPTER 2. BASIC CHARACTERISTICS

to true. Then the rest of the sequence is abandoned and the "then" part is
executed. If none of the conditions evaluates to true, the "else" part is exe-
cuted (if any). The orif construction provides a good method for a short circuit
technique, since the boolean expression controling the conditional statement
execution need not be evaluated till the end.

Similarly, a conditional statement with the andif list has the form:

if B1 andif ...andif Bk

then

sequence of statements

else

sequence of statements

fi

For the execution of this kind of statement the conditions B1, ..., Bk are
evaluated in succession until the �rst one evaluates to false. Then the "else"
part is executed (if any). Otherwise the "then" part is executed.

The basic form of an iteration statement in LOGLAN-82 is the following:

do

sequence of statements

od;

To terminate the iteration statement one can use the simple control state-
ment exit, which has the following syntactic form:

exit ..... exit

repeated an arbitrary number of times. It may occur in a nested loop state-
ment. The execution of exit.....exit (i - times) statement consists in the con-
trol transfer to the statement immediately following the i-th od after the exit
statement, (where in counting the od's, the pairs do-od are disregarded). In
particular, when exit occurs in a simple loop the control is transferred to the
statement immediately following the od symbol, which allows us to terminate
the loop. Similarly, a double exit terminates two nested loops, a triple exit ter-
minates three nested loops etc. Moreover, a LOGLAN-82 iteration statement
allows us to place many loop exit points in arbitrary con�gurations, e.g., exit
may appear in nested conditional statements, case statements, etc.

Iteration statements with controlled variables (for statements) have the forms:

for j := A1 step A2 to (or downto) A3

do

sequence of statements

od;

The type of the controlled variable j must be discrete. The value of this
variable in the case of the for statement with to is increased, and in the case of
the for statement with downto is decreased. The discrete range begins with the
value of A1 and changes with the step equal to the value of A2. The execution
of the for statement with to terminates when the value of j becomes for the �rst
time greater than A3 (with downto when the value of j becomes for the �rst
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time less than A3). The values of the expressions A1, A2, A3 are evaluated
once, upon entry to the iteration statement. The default value of A2 is equal
to 1 (when the keyword step and A2 are omitted).

An iteration statement with the while condition has the form:

while boolean expression

do

sequence of statements

od;

and is equivalent to

do

if not boolean expression then exit fi;

sequence of statements

od;

To enhance the users's comfort, the simple statement repeat is provided. It
may appear in an iteration statement and causes the current iteration to be
�nished and the next one to be continued (something like jump to CONTINUE
in Fortran's DO statement). In general, this statement has the form:

exit ... exit repeat

and causes the current iteration of the corresponding enclosing iteration
statement to be �nished and the next one to be continued.

A case statement in LOGLAN-82 has the form:

case A

when Q1 : G1

when Q2 : G2

...

when Qk : Gk

others G

esac

where A is an arithmetic expression, Q1, ..., Qk are constants and G1, ..., Gk
are sequences of statements. A case statement selects for execution a sequence
Gj where the value of A equals Qj. The choice others covers all values (possibly
none) not given in the previous choices.

2.2 Block structure

LOGLAN-82 adopts and extends the main semantic features of the ALGOL
family programming languages (ALGOL-60, ALGOL-68, SIMULA-67) i.e., the
block structure. The block concept of ALGOL-60 is a fundamental example of
this mechanism. The syntactic structure of a block is as follows:

block

list of declarations

begin

sequence of statements

end



10 CHAPTER 2. BASIC CHARACTERISTICS

The list of declarations de�nes some syntactic entities, e.g. constants, vari-
ables, procedures, functions etc., whose scope is that block. The syntactic enti-
ties occurring in the sequence of statements are identi�ed by means of identi�ers
which are introduced in the declaration lists. For every identi�er occurrence it
must be possible to identify the corresponding syntactic entity. This kind of cor-
respondence between occurrences of identi�ers and syntactic entities is necessary
to de�ne the semantics of a block statement. The block statement semantics
may be described as follows.

When a block is entered, a dynamic instance of the block is generated. In a
computer, a block instance takes the form of a memory frame containing syn-
tactic entities declared in that block. All local syntactic entities of an instance
will be called its attributes .

The frame of a block instance may be viewed as a box (with displayed
attributes when necessary).

------------------------

| attribute k |

-----------------------|

| ... |

-----------------------|

| attrbute l |

------------------------

a block instance
A block is a statement, and so other blocks may occur in its sequence of

statement (i.e., blocks may be nested). Observe, that the occurrences of iden-
ti�ers in an inner block need not be local. They can refer to entities declared
in the outer block. For a non-local occurrence of identi�er, the corresponding
attribute of a non-local instance should be identi�ed. That identi�cation is
possible thanks to an auxiliary notion of a syntactic father.

Consider the following block structure:

---------------------

| block outer |

| |

| ------------- |

| | block | |

| | inner | |

| ------------- |

| |

---------------------

When the statements of block2 are executed, the following two dynamic
block instances are created:

------------- -----------------

| DI{inner} | ==================> | DI{outer} |

------------ SL -----------------
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Here O[1] is an instance of the block1, and O[2] is an instance of the block2.
The instance O[1] is called the syntactic father of O[2] (or alternatively the

instance O[2] is syntactically linked by the SL-link with the instance O[1]).
During a program's execution the sequence of syntactic fathers determined by
an active instance forms a chain, called an SL-chain. The instances forming the
SL-chain correspond to the consequtive enclosing units of the program, starting
from the active one and ending on the main block. Thus, this chain allows us
to identify all non-local occurrences of identi�ers.

A block statement terminates when the control reaches its �nal end, and
then its instance is automatically deallocated.

2.3 Procedures and functions

A block statement is the simplest example of a unit. Upon execution of a block
statement an activation record is generated. The instructions of the block are
executed in the environment modelled upon the declarations contained in the
block. The activation record is deallocated automatically when the end symbol
is reached. Procedures and functions constitute the next step of know-how in
high level programming languages.

The syntactic form of a procedure declaration is as follows:

unit name: procedure(formal parameters);

list of declarations

begin

sequence of statements

end;

A procedure is a named syntactic unit which may be invoked only via its
identi�er by means of a call statement:

call name (actual parameters);
(Procedures di�er from blocks also in that they can have parameters, but

this question will be discussed later.)
When a procedure is called, its instance is created, as in the case of a block.

All local attributes are allocated in the new frame. A syntactic father of such
a newly generated instance is de�ned as usual, and allows us to identify all
non-local attributes.

A procedure call is terminated when the control reaches return statement or
the �nal end. Then the control returns to the instance where the procedure was
called. That instance is referred to by another system pointer (DL-link).

After the termination of a procedure call there is no syntactic means to
access its local attributes, hence its instance is automatically deallocated.

Functions di�er from procedures only in that they return a value and are
invoked in the expressions.

2.4 Classes

To meet the need for permanent data structures LOGLAN-82 introduces the
notion of class (cf [3]). Class is declared in a similar way to procedure. It is
named and may have parameters:
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unit M :class(formal parameters);

list of declarations

begin

sequence of statements

end M;

The main di�erence between classes and procedures consists in the way the
instances of these syntactic units are treated. (To distiguish class instances from
those of blocks, functions and procedures they will be called class objects or
simply objects). The class generation yields a class object which is a permanent
data unlike the vanishing procedure (function, block) instance. The object O of
class M is generated by the object generator statement:

new M(actual parameters)

This statement invokes the same sequence of actions as a procedure call,
i.e., it opens a new object, transmits parameters and executes the sequence of
statements of M. Return to the caller is made by the execution of a return
statement or when the �nal end is reached. The access to such an object is then
possible if its address is set to a variable. The variables whose values point to
class objects are called reference variables. A reference variable of type M is
declared as follows:

var X: M;

and may point to any object of class M, for instance, the statement:

X:=new M(...)

generates an object O of class M and assigns its address (reference) to X.
The default value of any reference variable is none, which denotes �ctitious non-
existing object. What is left behind is a structure of attributes which can be
accessed by means of dot-notation. These accessible attributes are either formal
parameters or local entities. If X is a reference variable of type M and W is an
attribute of class M, then the remote access to the attribute W has the form:

X.W

The above remote access is correct if X points to an object O of class M.
Otherwise a run time error is raised (for instance when the value of X is none).

2.5 Inheritance alias Pre�xing

Pre�xing is another important programming facility borrowed from SIMULA-
67. Its most important feature consists in the possibility of unit extension.
Consider the following example. Let M be a class:

unit M: class;

list of declarations of M

begin

sequence of statements of M

end ;
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Now let N be a class:

unit N: M class

list of declarations of N

begin

sequence of statements of N

end ;

Class N is pre�xed by class M. The name of the pre�x is located immediately
before the symbol class. Class N is treated as an extension of M, i.e., the object
of class N has a compact frame consisting of the attributes of N as well as the
attributes of M:

---------------

| |

| ... | M-attributes

| |

--------------- - - - - - -

| |

| |

| ... | N-attributes

| |

---------------

object of N

The structure of such an object is determined by the class M as well as by
N (thus containing both M-attributes and N-attributes). The statement

X:=new N ,

where X is a variable of type N, creates an object of class N.
The sequences of statements of classes M and N are also concatenated. In

the sequence of statements of a class the keyword inner may occur anywhere,
but once only. The sequence of statements of N consists of the sequence of
statements of M with inner replaced by the sequence of statements of N (inner
in N is equivalent to an empty statement). If class N pre�xes another class P,
then inner in N is replaced by the sequence of statements of P, and so on. If
inner does not occur explicitly, an implicit occurrence of inner just before the
�nal end of class is assumed.

Pre�xing allows the programmer to extend units. Assume, for instance, that
STACK is the data structure which de�nes a push-down memory:

unit STACK :class;

...

unit pop: function...

end;

...

unit push: procedure...

end;

...
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begin

...

end STACK;

Any class pre�xed by STACK inherits the operations on stack. For instance,
in a class declaration

unit N: STACK class;

...

begin

...

call push;

...

end ;

the function pop and the procedure push may be used as any other local
attribute.

A class may also be used to pre�x blocks, procedures and functions. An
instance of a pre�xed block is a compound object and is created upon entry to
the block and deallocated after its termination, as in the case of a simple block.
Similarly, an instance of a pre�xed procedure (function) is a compound object
which is created when a procedure (function) is called and deallocated after its
termination.

2.6 Object deallocator

The classical methods used to deallocate class objects are based on reference
counters or garbage collection. Sometimes both methods may be combined. The
reference counter is a system attribute holding the number of references pointing
to the given object. Hence any change of the value of a reference variable X
is followed by a corresponding increase or decrease of the value of its reference
counter. When the reference counter becomes equal to 0, the object can be
deallocated.

The deallocation of class objects may also occur during the process of garbage
collection. During this process all unreferenced objects are found and removed
(while memory may be compacti�ed). In order to keep the garbage collector
able to collect all the garbage, the user should clear all reference variables, i.e.,
set to none, whenever possible. This system has many disadvantages. First of
all, the programmer is forced to clear all reference variables, even those which
are of auxiliary character. Moreover, the garbage collector is a very expensive
mechanism and thus can be used only in emergency cases.

In LOGLAN-82 a dual operation to the object generator, the so-called object
deallocator is provided. Its syntactic form is as follows:

kill(X)

where X is a reference expression. If the value of X points to no object (none)
then kill(X) is equivalent to an empty statement. If the value of X points to
an object O, then after the execution of kill(X) the object O is deallocated.
Moreover, all reference variables which pointed to O are set to none., This
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deallocator provides full security, i.e., the attempt to access the deallocated
object O is checked and results in a run-time error. For example,

Y:=X; kill(X); Y.W:=Z;

causes the same run-time error as

X:=none; X.W:=Z;

The system of storage management is arranged in such a way that the frames
of killed objects may be immediately reused without the necessity of calling the
garbage collector, i.e., the relocation is performed automatically.

2.7 Arrays

LOGLAN-82's array is a kind of a class with indices instead of identi�ers select-
ing the attributes. A variable of an array type is a reference variable pointing
to an object which contains components of a one-dimensional array. The com-
ponents of such an array may also point to one-dimensional arrays and so forth,
hence multi-dimensional arrays may be generated as well.

The declaration of a variable Y of array type has the following form:

var Y : arrayof ... arrayof T

where the number of arrayof de�nes the dimension of Y. The declaration of
a variable Y �xes its dimension, while the bound pairs are still undetermined.
The array generation statement has the form

array Y dim (l : u)

where l, u are arithmetic expressions determining the lower and upper bounds
of the �rst index. The object O of an array is generated and the reference to O
is assigned to Y.

If Y is declared as a two-dimensional array, then one can generate a two-
dimensional array by means of the statements

array Y dim (l:u);

for i:=l to u

do

array Y(i) dim (li:ui)

od;

where the shape of each row is determined by the bounds li, ui. Hence
triangular, tridiagonal, streaked arrays, etc. may be generated. Moreover, the
assignment statements allow us to interchange array references that are of the
same dimension and the same type, e.g. Y(i):=Y(j). In consequence, the user
may operate on array slices. The default value of any array variable is none, as
in the case of a reference variable.
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2.8 Parameters

In LOGLAN-82 there are four categories of parameters: variable parameters,
procedure parameters, function parameters and type parameters.

2.8.1 Variable parameters

Variable parameter transmission is simpli�ed in comparison with ALGOL-60
and SIMULA-67. There are three transmission modes of variable parameters:
input mode, output mode and inout mode. In the syntactic unit which is a
procedure, a function or a class, the formal input parameters are preceded by
the symbol input, the formal output parameters are preceded by the symbol
output and the formal inout parameters are preceded by the symbol inout.
The default transmission mode is input. Input parameters are treated as local
variables initialized by the values of the corresponding actual ones. Output
parameters are treated as local variables initialized in the standard manner
(real with 0.0, integer with 0, reference with none, etc.). Upon return their
values are assigned to the corresponding actual parameters, which in this case
must be the variables. Inout parameters act as input and output parameters
together.

2.8.2 Procedure and function parameters

In LOGLAN-82 procedures and functions may also be formal parameters. This
category of parameters allows us to parametrize a unit with respect to some
operations. A formal procedure (function) has the full speci�cation part, i.e.,
the parameter list (and the function type), for instance :

unit Bisec: procedure(function f(x: real): real; a, b, eps:real);

begin

...

end;

Type parameters Types are also allowed to be transmitted as parameters.
This kind of parameters enables us to parametrize a unit with respect to some
types. For instance consider the following declaration:

unit sort:procedure(type T; A:arrayof T; function less(x, y:T):boolean);

begin

...

end

The actual parameter corresponding to the formal T must be a non-primitive
type. The array A must be the array of elements of the actual type. If function
less de�nes the ordering relation on the elements of the actual type, then this
procedure may be invoked to sort the array A.
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2.9 Coroutines

Notion of coroutine is an extension of the class notion. A coroutine object is
an object whose sequence of statements can be suspended and reactivated in
the programmed manner. The generation of a coroutine object terminates with
the execution of the return statement (then the control is passed to the caller
as in the case of classes). A coroutine object after the execution of the return
statement is suspended. A suspended coroutine object may be reactivated with
the help of the attach statement:

attach(X)

where X is a reference variable designating the activating object.
In general, from the moment of generation a coroutine object is either active

or suspended. Any reactivation of a suspended coroutine object O causes the
active coroutine object to be suspended and continues the execution of O from
the statement following the last executed one.

During a coroutine execution some other unit instances may be generated.
They are dynamically dependent on that coroutine object. Thus, an active
coroutine (in particular the main program) can be illustrated by the following
chain:

-------- -------- --------

| O[k] | ---> |O[k-1]| --->...---> | O[1] |--->

-------- -------- --------

coroutine head

where the arrows denote the DL-links.
This DL-chain is transformed into the DL-cycle when the control is trans-

ferred to another coroutine as the result of the attach statement.

-------- -------- --------

| O[k] | ---> |O[k-1]| --->...---> | O[1] |--->

-------- -------- -------- |

| |

<----------------------------------------------|

2.10 Processes

The concept of process in LOGLAN-82 is a natural extension of coroutine.
Coroutines are units which once generated may operate independently, each one
treated as a separate process. For coroutines, however, an essential assumption
is established; namely, when one coroutine object is activated, the active one
must be suspended. When processes are used, the activation of a new process
does not require the active one to be suspended. Thus during a program's
execution many processes may be active simultaneously. Their statements are
computed in parallel. There are two operations, stop and resume, which concern
the control of processes.
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stop Operation which causes the active process to be stopped. resume(X)
Operation which reactivates the process referenced by X.

Synchronization and scheduling.
Elementary synchronization in LOGLAN-82 is achieved by two-valued semaphores

and a number of simple indivisible statements operating on them. These state-
ments are the following (where Z denotes a variable of semaphore type):

ts(Z) Test-and-set boolean function which closes semaphore Z and returns
the value true if Z was open and false if Z was closed. lock(Z) Operation which
tests the value of the semaphore Z and either enables the given process to enter
the critical region guarded by Z (if Z is open) or suspends the process (in the
opposite case) until another one opens that critical region. unlock(Z) Operation
the execution of which opens the critical region guarded by Z. stop(Z) Operation
that opens the critical region guarded by Z and stops the execution of the given
process.

The above operations are implemented in the kernel of the operating system.
One can use them to de�ne any complex synchronization facility, e.g., monitors
(cf. 11.3.). Once de�ned and stored in the library, the facility can be used by
any user. Moreover, using the high level synchronizing tools, the user can cover
the low level, primitive ones (therefore the properties of high level tools cannot
be disturbed). There is also a parameterless function wait. If wait is called in
the given process X, then process X waits for the termination of any of its son
(a son of X is a process which was generated in X). The returned value of wait
points to the �rst terminated son, and then, the computation of process X is
continued. If there is no such son, the returned value of wait is none.

2.11 Other important features

In LOGLAN-82 the access control mechanism is enlarged so that it supports the
data encapsulation technique and the protection of attributes in di�erent envi-
ronments. The mode of accessibility to attributes of a class can be controlled
by means of the speci�cation hidden and close. On the other hand, the mode
of accessibility to attributes of a unit that are inherited from its pre�x can be
controlled by means of the speci��cation taken. This permits more �exible com-
munication across the unit boundary as well as de�ning of abstract behaviour
with a hidden auxiliary structure. (For details see 6).

The language provides facilities for dealing with run time errors and other
exceptional situations raised by the user. These events are called exceptions. So,
the exceptions cause interruption of a normal program execution. The response
to an exception is de�ned by an exception handler. The user is allowed to de�ne
the actions that should be raised when an exception is encountered. (For details
see 10).

Program units can be compiled separately. Two kinds of separately compiled
units are provided: binary items ready to be executed, and library items. The
purposes of separate compilation are the following: creating user libraries, han-
dling system and user libraries, compiling program components during program
testing, and program overlaying. (For details see 12).

Input-output facilities and �le processing are de�ned by means of some sim-
ple primitives. The user is able, however, to declare in the language any class
that provides high-level and secure �le operations. Examples of system classes
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that deal with high-level �le operations are also given. (For details see 13).
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Chapter 3

Lexical and textual structure

The basic character set consists of

(a) 26 upper case letters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

(b) 10 digits:

0 1 2 3 4 5 6 7 8 9

(c) 16 auxiliary characters:

. : , ; _ = / + - * < > ' " ( )

(d) the space character
This set can be extended with the following characters:
(e) lower case letters
(f) other special ASCII characters, e.g.:

# $ ? % ^

(lower case letters are equivalent to the corresponding upper case ones.)
A �nite sequence of characters is called a word. The words called identi�ers

have a special meaning. They are composed of letters, digits, and underscores
and start with a letter:

<identifier>:

----------> <letter> -------------------------->

^ ^ |

| | |

|---> <digit> ----> | |

| |

| |

|--- _ -----> |

| | |

<-------------------------------

21
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Identi�ers serve to identify program entities, i.e., constants, variables, types,
functions, procedures, classes, coroutines and processes. There are a certain
number of prede�ned system identi�ers which have special signi�cance in the
language. The following system identi�ers are reserved words (these identi�ers
cannot be declared by the programmer).

and_if do input others taken
and downto inout output terminate
array is then
arrayof else pref this
attach end kill procedure to

esac process type
begin exit lastwill put
block unit

� main qua
call for mod
case function raise var
class new read virtual
const get none readln
copy handlers not repeat
coroutine hidden return wind

od when
detach if open signal while
dim in or step write
div inner or_if stop writeln

The lexical entities are identi�ers, numbers, strings and delimiters. The
delimiters from the basic character set are:

, ; = / + - * > < . ( ) :

and the compound symbols are :

=/= >= <= :=

Spaces play the role of separators, i.e., at least one space must separate
adjacent identi�ers or numbers. The end of each line is equivalent to a space.

A comment starts with a left parenthesis and an asterisk and is terminated
by an asterisk and a right parenthesis. It may only appear following a lexical
unit or at the beginning or end of a program entity. Comments have no e�ect
on the meaning of a program and are used solely for program documentation.

By an identi�er de�nition we mean a declaration or description in the list of
formal parameters.

The notion of a unit is explained by the following diagram:

---------------------- unit ----------------------

| | |

| | | | | |

-----subprogram---- class in a broad sense |

| | | | | |

| | | | | |

function procedure class coroutine process block

handlers??
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Types

A type T determines a set |T| of values and a family of operations applicable to
the elements of the set. Three kinds of types are distinguished: primitive types,
system types and compound types. Variables may be declared to be of type T.
Depending on the kind of type T we have to distinguish two cases.

a) T is a primitive type. The value assigned to a variable Y of type T must
belong to the set |T|.

b) T is a compound or system type. The value assigned to a variable Y of
type T must be a reference pointing to an object in the set |T| (for the notion
of reference cf 4.3. and 6.3.)

Syntax.

<type identifier>:

-----> <primitive type> ------>

| ^

|-> <system type> ----->|

| |

|-> <compound type> --->|

| |

|-> <formal type> ----->|

| |

|-> <file type> ------->|

Primitive and system types are pre-de�ned, compound types are de�ned by the
user. For �le type see section 13.

4.1 Primitive types

Syntax.

<primitive type>:

-----> integer -------->

| ^

|---> real ---->|

23
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| |

|--> boolean -->|

| |

|-> character -->|

| |

|---> string -->|

Semantics.
A primitive type determines a �nite set of values which can be e�ectively

represented in a computer memory:

|integer| - a subset of integers;

|real| - a subset of reals;

|boolean| - the set consisting of logical values T (true) and F (false);

|character| - a set of characters;

|string| - a subset of strings;

These sets will be precisely de�ned in a concrete implementation. The way
in which the primitive type values are represented in a computer memory is
not essential for the description of semantics; however, the values of integer and
real types are di�erently represented. Namely, integers are represented in the
�xed-point form with a point after the last signi�cant digit, reals are represented
in the �oating-point form. So they will be denoted di�erently, e.g., 2 and 2.0.
Those values can be mutually converted: the value of type integer is converted
to type real by means of conversion into the �oating point form; the conversion
into the opposite direction truncates and transforms the real value into the
�xed-point form.

4.2 System types

Syntax.

<system type>:

--------> coroutine -------->

| ^

|----> process --->|

Semantics.
The set |coroutine| is equal to the union of sets |T| for every type T declared

as:

- unit T : coroutine

- unit T : process

- unit T : S class

where |S| is already a subset of the set |coroutine|.
The set |process| is equal to the union of sets |T| for every type T declared

as:
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- unit T : process

- unit T : S class

where |S| is already a subset of the set |process|.
The user may declare a variable of coroutine (process) type, e.g. of the form

var X : coroutine;

(var X : process;)

and then to assign:

X:=new T

where T belongs to the set |coroutine| (|process|).
The main block belongs to both sets - |coroutine| and |process|. The system

variable main gives the reference to the main block. The variable main may
occur in the statements attach(main) and resume(main) only.

4.3 Compound types and objects

Syntax.

<compound type>:

--------> <array type> ---------->

| ^

|----> <class type> --->|

4.3.1 Array type

Objects of array type will be called array objects or shortly arrays. An array
can be considered as a vector; the access to its components is provided by means
of indexing.

Syntax.

<array type>:

------> array_of -----> <type identifier> ---->

Semantics

LOGLAN-82 types can be uniformly denoted in the following way

(arrayof)iT =


arrayof ... arrayof T︸ ︷︷ ︸

i times

, for i > 0

T, for i = 0

where T is a type identi�er.
For i > 0, the set |(arrayof)iT| consists of the array objects. Every array

object has the attributes accessed via indices l, l + 1, ..., u where l, u are the
values of the lower and upper bounds, respectively, and l ≤ u. The attributes
with the indices l, ..., u are of type |(arrayof)i−1T|.

Let O be an arbitrary �xed array object and let Y be a variable whose value
points to O. The operations related to the object O are:
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- Y (j), where l ≤ j ≤ u, gives the j-th attribute of the object O,

- lower(Y ) and upper(Y ), which give the value l and u, respectively.

4.3.2 Class type

Syntax.

<class type>:

-----> <class identifier> ----->

<class identifier>:

------> <identifier> ---------->

Semantics

A class T is a description of a data structure consisting of attributes i.e.,
types, functions, procedures, variables, and a sequence of statements. The fam-
ily of admissible operations on the objects from the set |T| contains the opera-
tions de�ned in the sequence of statements and those de�ned in the declarations
of functions and procedures. The other operations are related to the notion of
remote access. They allow us to operate on the objects of type |T| from outside
of them.

4.4 Formal types

Syntax.

<formal type>:

-----> <formal type identifier> ----->

<formal type identifier>:

-----> <identifier> ------------------>

Semantics

A formal type is a formal parameter of a unit and can be treated as the
name of an abstract data structure without any attribute. The corresponding
actual type must be a system type or a compound type. The set of objects of
the formal type T from a dynamic object O is equal to the set of objects of the
actual type which occurs in the actual parameter list of O.
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Declarations

Every identi�er which is to be used in a program must be de�ned. System
identi�ers are pre-de�ned, other identi�ers are pre-compiled, (see 12.) or they
are de�ned by means of a declaration or description in the formal parameter
list. LOGLAN-82 is not strongly typed in the sense that sometimes the type
of variable and function value cannot be determined at compilation time. The
user may balance the generality and convenience given by the formal types
mechanism and the risk of reduced e�ciency of his program execution. The
compiler option, however, allows us to supress the run time checking with respect
to the type compatibility.

Syntax.

<declaration>:

------> <constant declaration> -------->

| ^

|--> <variable declaration> -->|

| |

|--> <unit declaration> ------>|

| |

|--> <signal declaration> ---->|

| |

|--> <linked item specific.>-->|

(For the de�nition of a signal declaration see 10.
For the de�nition of linked item speci�cation see 12.)

5.1 Constant declaration

Syntax.

<constant declaration>:

--> const ---> <identifier> ---> = ---> <expression> ------------------->

| |

<------------------------ , ---------------------

27



28 CHAPTER 5. DECLARATIONS

Semantics.
The expression de�ning the constant must be determinable at compilation

time. The type and the value of the constant is given by its declaration. They
are always primitive.

Example.

const pi=3.1415926, pihalf=pi/2;

5.2 Variable declaration

Syntax.

<variable declaration>:

---> var ---><specification list>--->

<specification list>:

----> <identifier list> ---> : ---> <type identifier> ------>

^ |

|<------------------ , <--------------------------------|

<identifier list>:

-----> <identifier> ------->

^ |

|<---- , <---------|

Semantics.
A variable is of a type given in a variable declaration. A declaration is

elaborated at the instant of generation of a unit object which contains that
declaration. An elaboration determines an initial value for every variable. This
value depends on the type identi�er :

integer - 0

real - 0.0

boolean - False

semaphore - open

character and string - defined in concrete implementation

any compound and system type - none

The value of the variable may be modi�ed by means of an assignment statement
(see 9.1.1.), but the variables of type T may only point to the object from the
set |T|.

Example.
var left, right: node, counter: integer, cycle: arrayof boolean;
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5.3 Unit declaration

Syntax.

<unit declaration>:

----> unit -------> <class declaration> ---------------------->

| |

|----> <subprogram declaration> --->|

5.3.1 Class declaration (introduction)

A class declaration is understood as a declaration of a class itself, as well as a
declaration of a coroutine or a process. The pre�xing will be described in 5.3.4..

Syntax.

<class declaration>:

----------><class identifier> : ---> <prefix> -----> class ----->|

| ^ |

------------->|-><system type>->|

|

|<------------------------------------------------------------|

| |

|-> <formal parameter list> ------------------------------->|

|

|<------------------------------ ; ----------|

|

|--> <class body> ----------------------------->

| ^

|-> <class identifier> ->|

<prefix>:

----------------> <class identifier> ------>

Example.

unit complex: class(re, im:real);

var module:real;

begin

module:=sqrt(re*re+im*im)

end ;

5.3.2 Subprogram declaration (introduction)

Syntax.

<procedure declaration>:

--> virtual --> <procedure identifier>--> : --><prefix> ---> procedure
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| ^ | ^ |

|----------| |------------| |

|

<-------------------------------------------------------|

| |

|--> <formal parameter list> -------------------------->|

|

<------------------------- ; ---------------------|

|

|--> <subprogram body> ------------------------------>

| ^

|-> <procedure identifier>->|

<procedure identifier> :

---- <identifier> ------->

<function declaration>:

--> virtual --> <function identifier>--> : --> <prefix> --> function

| ^ | ^ |

|----------| |-----------| |

|

|<------------------------------------------------------------|

| |

|-> <formal parameter list> ---------> : ----> <type identifier>->

|

|<-------------------- ; ----------------------------|

|

|-> <subprogram body> ------------------------------->

| ^

|-> <function identifier>->|

<function identifier>:

-----> <identifier> ---------->

Class (function, procedure) identi�er may optionally follow the end symbol
(and if present must match the unit name).

Example.

unit Euclid: function(n, m:integer):integer;

var k:integer;

begin

do
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k:=n mod m;

if k=0 then result:=m; return fi;

n:=m; m:=k;

od;

end Euclid;

5.3.3 Block

In order to complete the description of LOGLAN-82 units the block syntax is
given here, however the occurrence of a block results in the execution of its
statements - see 9.1.2..

Syntax.

<block>:

--> pref --> <prefix> ---> <actual parameter list> ---> block ---->

| ^ ^ |

|-------------------->|--------------------------->| |

|

|<------------------------------------------|

|

|--> <subprogram body>------>

Example.

block

var a, b, c, p, S:real;

begin

read(a, b, c);

p:=(a+b+c)/2;

S:=sqrt(p*(p-a)*(p-b)*(p-c));

write(S)

end

5.3.4 Inheritance or Pre�xing

A unit which is a specialized form of a certain class (i.e., which has all the
properties of that class and some additional properties de�ned in the unit) can
be de�ned by means of pre�xing. An identi�er of the pre�xed unit may serve
as a pre�x for another unit, and so tree structured hierarchies of units can be
created. By a pre�x sequence of a unit M we mean a sequence M1, ..., Mk of
units such that Mk = M, the unit M1 has no pre�x; for i = 1, ..., k-1, the unit
Mi+1 is pre�xed by Mi. Any unit may be pre�xed by a class without changing
its character (e.g., a pre�xed procedure still remains a procedure). Procedures,
functions, and blocks cannot be used as pre�xes. Process and coroutine, as
special cases of class, may also serve as pre�xes, but not for procedures, functions
or blocks.

If a coroutine (a process) occurs in a pre�x sequence of a unit then this
unit is treated as a coroutine (a process), and so it has all the properties of a
coroutine (a process). Therefore, if a pre�x sequence of a unit M contains both
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a coroutine and a process then M has the properties of a coroutine as well as
those of a process.

No unit is allowed to occur more than once in its pre�x sequence.
Put T pref* S if a unit T belongs to the pre�x sequence of the unit S. Unit

S is called a subunit of unit T. As one can see from the de�nition of object, any
object of S has the attributes of the units S and T. Moreover, the statements of
that object come from the body of the unit T as well as from that of the unit S.

From the way of implementation it follows that pre�xing is not a macro-
de�nition and so it does not require any pre-processing.

5.3.5 Formal parameters

Syntax.

<formal parameter list>:

---> ( -----> <input parameters> ---------------> ) ---->

^ | ^ |

| |--> <output parameters> -->| |

| | | |

| |--> <inout parameters> --->| |

| | | |

| |--> <type parameters> ---->| |

| | | |

| |--> <procedure parameter>->| |

| | | |

| |--> <function parameter> ->| |

| |

|<----------- ; <------------------|

<input parameters>:

----> input -----> <specification list> ------->

| ^

|----------->|

<output parameters>:

----> output ----> <specification list> ------->

<inout parameters>:

----> inout ----> <specification list> ------->

<type parameters>:

----> type ------> <identifier list> ----------->
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<procedure parameter>:

----> procedure ---> <procedure identifier> ---->|

|

|<-----------------------------------------|

|

|---> <formal parameter simp. list> ------>

| ^

|----------------------------------->|

<function parameter>:

---> function --> <function identifier> ------>|

|

|<----------------------------------------------|

|

|--> <formal parameter simple list> --> : --> <type identifier> -->

| ^

|-------------------------------->|

<formal parameter simple list>:

-------> ( --------> <input parameters> -----------------> ) ----->

^ | ^ |

| |--> <output parameters> ->| |

| | | |

| |--> <inout parameters> -->| |

| | | |

| |--> <type parameters> --->| |

| | | |

| |-> <proc.simple param.>-->| |

| | | |

| |--> <func.simple param.>->| |

| |

<----------------- ; <-------------------|

<procedure simple parameter>:

----> procedure -----> <procedure identifier> ------>

<function simp. parameter>:

----> function -------> <function identifier> ------->

Semantics.



34 CHAPTER 5. DECLARATIONS

By a formal parameter list of a unit M we shall mean a concatenated list of
formal parameters of the bodies of all units M1, ...., Mk = M from the pre�x
sequence of unit M (successively from 1 to k). The parameters occurring in
a unit declaration are called formal parameters to stress that they constitute
a pattern for parameters occurring in the unit body. At the instant of object
generation the actual parameters for this generation are �xed. The relations
between formal and actual parameters depend on the transmission mode which
is speci�ed in the formal parameter list.

Those relations make possible the communication between a unit and its
environment. The �rst mode of transmission rectricts the communication to
the input (as the beginning of the body) of the actual parameter value for the
corresponding formal parameter. The second mode restricts the communication
to the output (as the end of the body) of the formal parameter value for the
corresponding actual parameter. The third mode possesses both possibilities
of the input and output transmission modes. In all three cases, the formal
parameters are considered to be declared in the unit body.

The next two modes of transmission are designed for subprograms and types.
The occurrence of a formal subprogram/type in the unit body is matched with
the corresponding actual subprogram/type (which is assigned at the beginning
of the body execution). In the case of a formal subprogram, a simpli�ed de-
scription of its parameters is required.

Hence a LOGLAN-82 unit may be parametrized and designates the union
of all units de�nable by assigning speci�c actual types to the formal ones. The
actual type cannot be a primitive one. Parametrized units make possible the
design of universal algorithms, which will be de�ned in detail at lower levels of
program nesting.

5.3.6 Unit body

Syntax.

<class body>:

---> <inheritance list> ---> <protection list> ---> <body> ----->

| ^ | ^

|--------------------->| |------------------->|

<subprogram body>:

----> <inheritance list> ------> <body> ------>

| ^

|---------------------->|

<inheritance list>:

----> taken -----> <identifier list> -----> ; ---->

| ^

|-----------------------|
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<protection list>:

------------> hidden -------------------> <identifier list> --> ; --->

| | |

|---------> close ------------>| |

| |

|<--------------------------------------------------------------|

<body>:

----> <declaration list> ---->|

| |

<handlers' declaration> ---> begin --> <statement list> --> end -->

| ^

|---------------------------|

<declaration listXE "declaration list"�>:

|------------------------------------>|

| |

--------> <declaration> -------> ; ---------------->

^ |

|<------------------------------|

<statement list>:

------> <statement > ------->

^ |

|<----- ; ------------|

Semantics.
In a unit body, a sequence of statements (if any) starts from the begin

symbol. Declarations/statements are separated by semicolons. An execution of
the unit body begins at the time of the generation of an object (of that unit),
see 9.1.2.. A declaration of a unit M is restricted at several points :

Restrictions
(i) The least (textual) unit containing an occurrence of a control statement

inner (see 9.1.3.) must be a generalized class. An inner statement may occur in
the class body at the most once. If it does not occur explicitly then the body
of unit M is assumed to contain the inner statement as the last one (preceding
the end symbol).

(ii) All identi�ers de�ned in the body of unit M are di�erent.
(iii) The input/output formal parameters of unit M cannot be of a type

declared in unit M.
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(iv) If a type T is a formal parameter of unit M then its occurrence in
the list of parameters must precede the occurrences of other parameters whose
description makes use of T;



Chapter 6

Static and dynamic locations

of identi�ers. Visibility rules.

As noted before, a non-system identi�er used in a program must be de�ned in
the program by a declaration or by a description in a formal parameter list. An
identi�er need not correspond, however, to only one syntactic entity. A program
is composed of units, and so the user designing a unit must pay attention to
the relationship between a given unit and the other ones. He should feel free
to de�ne his own attributes with the same identi�ers as those used in the other
units as long as he is not interested in the entities they describe. Therefore
some strict rules of correspondence between the identi�er and the attribute as
well as its valuation are necessary. The �rst correspondence is called the static
location of an identi�er, and the second is called the dynamic location. The
static location is determined by the syntactic structure of a program. The
dynamic location depends on the dynamic con�guration of objects. 6.1.

6.1 Unit attributes

A set of attributes is assigned to each unit M. This set consists of all syntactic
entities de�ned in M and in the pre�x sequence of M. Most of them form the
set of attributes which belong to each object of the unit, i.e., they are dynamic.
Virtual functions and procedures are attributes of a very special kind. They
are presented separately in 6.4.1. Some other attributes, like constants, are
static, i.e., they are not attrributes of the objects of the unit but of the unit
itself. Therefore static attributes cannot be accessed by means of dot notation
(cf 8.2.3.). The user may protect attributes. The protection mechanisms are
introduced in the following sections and discussed in 8.2.3. LOGLAN-82 identi-
�ers cannot be overloaded, i.e., an identi�er used in the given unit corresponds
to "exactly one" attribute determined by the context. However, identi�ers may
be rede�ned. Therefore strict correspondence between the occurrences of the
identi�ers and the attributes must de de�ned. Let W be a syntactic entity and
M a syntactic unit. We say that W is de�ned in M i� W is a formal parameter
of M (but not of the pre�x of M) or W is declared in M. If W is de�ned in M, the
entity it denotes is the meaning of W. From now on we shall use interchangeably
the notions of an identi�er and of an attribute. Let W be an identi�er and M

37



38 CHAPTER 6. VISIBILITY RULES

a unit. If W is de�ned in M or in a unit from M's pre�x sequence, then W
corresponds to an attribute of M. More precisely, the corresponding attribute
is the one de�ned in M, if it exists, or the one de�ned in the pre�x sequence.
That means that the rede�nition of an identi�er in a pre�xed unit covers the
attribute corresponding to that identi�er. 6.2. Protected attributes Let us con-
sider a declaration of a pre�xed unit. Let M be such a unit and N its pre�x.
The attributes of N are visible in M (unless covered by the local rede�nition).
The user, however, can restrict the use of N's attributes in M. The protection
may be speci�ed already in unit N as well as in M. The �rst way corresponds
to the hidden speci�cation while the second to the taken speci�cation.

6.1.1 Hidden attributes

A list of hidden attributes is a �lter from the pre�xing unit. The user may specify
within pre�x N the attributes whose occurrence is illegal in any unit pre�xed by
N (unless the identi�ers of these attributes are covered by the redeclarations).
Remote access to such attributes is forbidden as well (cf 6.2). The absence of
hidden speci�cation denotes the empty list. Consider an example:

unit N : class;

hidden x, y, z;

var x, y, z:integer;

...

end N;

unit M:N class;

hidden x, t;

var x, y, t:integer;

...

end M;

Variables x, y declared in N are redeclared in M, and so the identi�ers x, y in
M refer to the local entities. Variable t is declared in M and is hidden in the
units pre�xed by M. Variable z is hidden in N, hence it cannot be used in M.

6.1.2 Taken attributes

The list of taken attributes is a �lter on the pre�xed unit. In unit M the user
may specify explicitly the attributes from pre�x N which are used in M. Then
in M the only attributes accessible from N are those from the taken list. The
occurrence of another attribute from N in M's body is illegal. The absence of
taken speci�cation denotes the list of all (legal and not hidden) identi�ers from
N. This means that the user is not interested in the speci�cation of this kind of
�ltering. The identi�ers in the taken list must be de�ned in the pre�x sequence,
not in unit M. An exception is an identi�er of a virtual attribute (cf 6.4.).

6.1.3 Legal and illegal identi�ers

In this section we consider only identi�ers corresponding to the attributes of a
given unit.
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All identi�ers de�ned in a unit are legal in that unit. In particular, all
identi�ers declared in a non-pre�xed unit are legal.

Now let M be a unit, N its pre�x and W an identi�er not de�ned in M. Then
W is a legal identi�er corresponding to an attribute of M i�

- W is legal in N - W does not occur in the hidden list in N - W occurs in
the taken list in M or this list is absent

All identi�ers speci�ed in every context in a unit must be legal in that unit.
All identi�ers speci�ed in the taken list must be legal in the pre�x.

An identi�er is illegal in a unit i� it denotes an attribute of the unit (ac-
cording to 6.1) and that attribute is not legal.

6.1.4 Close attributes

Close attributes are not accessible by means of remote access (cf. 8.2.3.) outside
the unit.

Let M be a unit with the pre�x sequence M1, ..., Mk=M. An attribute W
of unit M is called a close attribute if W occurs in the close list of Mj for some
j, 1<=j<=k, and W is not rede�ned in any unit following that Mj in the pre�x
sequence. However, remote access to a close attribute W is allowed within the
text of the unit M specifying it to be close, i.e., if the static quali�cation of the
object expression is equal to M, remote access to W is allowed in all the units
declared (directly or indirectly) in M.

The list of close attributes must consist of legal identi�ers. All hidden at-
tributes are simultaneously close attributes.

Example

block

var v:A;

unit A: class;

hidden z;

close x;

var x, z:real, y:A;

unit B:A class;

var t:B;

begin

... z ... (* is illegal since hidden in A *)

... x ... (* is legal *)

.. y.x+y.z .. (* is legal since y is qualified by A

and the expression is within A *)

... t.x .. (* is illegal since t is qualified by B *)

end B;

begin

... v.x+y.x .... (* is legal *)

end A;
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begin (* outside A *)

... v.z .. (* is illegal since hidden, and so close as well *)

... v.y.x ... (* is illegal since x is close *)

end

6.3.

6.2 Static location

We say that the occurrence of an identi�er W is in a unit M if M is the syn-
tactic unit most tightly enclosing that occurrence. On the basis of the program
structure every occurrence of an identi�er W in a unit M can be unequivocally
related to a unit N, where the corresponding attribute W is de�ned. The unit
N is called the static container for that occurrence of W in M and is denoted by
SC(W, M). More precisely, by a static container of an occurrence of an identi�er
W in a unit M we mean a syntactic unit N such that:

- W is de�ned in N
- there exists a unit P satisfying the following conditons:
(1) N belongs to the pre�x sequence of P (or is P), (2) M is declared in P

directly or indirectly, (3) there is no other unit closer to M than P satisfying
(2) in which W is an attribute, (4) N is P's nearest pre�x de�ning W (5) if W
is illegal (hidden or not taken) in P, then the static container is unde�ned.

The following �gure illustrates this de�nition
the pre�x sequence of P

P <-------- R <------------ SC(W,M)=N ... declaration of W ...

\^

|

.

.

.

\^

|

M ... the occurrence of W ...

The static location of an identi�er W is de�ned for the occurrence of W in
a unit M i� there exists a static container SC(W, M). Every program must be
an expression in which the static location is de�ned for all occurring identi�ers.
The static container is su�cient to determine the static attribute of a unit
(constant).

Example.
Consider the following program

block

unit M: class; var X ... end M;

unit N: M class; var X ... end N;

begin

pref N block (* P *)

var Y : ...;
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unit R: class;

... X ... Y ...

end R;

begin

new R;

...

pref N block (* S *)

var Y : ...,

unit T: R class;

... X ... Y ...

end T;

begin

new T;

...

end S;

end P;

end

Here we have

SC(X, R)=SC(X, T)=N

and SC(Y, R)=P, SC(Y, T)=S.

6.3 Objects

An object O of type M with the pre�x sequence M1, ..., Mk=M (k=>1) is:
- a k-tuple of the form O = (<V1, M1>, ... <Vk, Mk>) where Vi is the

valuation of non-static attributes de�ned in the unit Mi, - and a unique reference
pointing to this k-tuple.

Since the references are unique, two objects are di�erent even if their tuples
are identical.

Now let us de�ne the valuation of an attribute of object O, depending on
the kind of that attribute:

- the valuation of variables and variable parameters gives their values, - the
valuation of an attribute which is a subprogram is the text of its declaration and
an environment. (The environment is the object containing the declaration of
the subprogram. In the case of a formal subprogram the value is determined by
the actual one (see 9.1.2.). The case of virtuals is discussed below.) - an attribute
which is a type has the value of the form: (arrayof)<j> text of declaration.

6.3.1 Virtual attributes

The main feature of virtual atributes is that a redeclaration of an identi�er
denoting a virtual subprogram in a pre�xed unit does not cover the declaration
in the pre�x but replaces it in all occurrences. The replacement takes place in
the so-called virtual chains of identi�ers. We de�ne this notion below. Let F be
a subprogram and M a unit. By a virtual chain of F in M we mean a sequence
of virtuals corresponding to the maximal subsequence N1, ..., Nk of the pre�x
sequence of M such that:
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(1) F is a legal identi�er in every Ni and denotes an attribute speci�ed as
virtual (unit virtual F: ...) (2) In all the units Ni except Nk, F must not occur
in the hidden list (3) In all the units except N1, F must occur in the taken list
unless the list is not speci�ed. F must not occur in the taken list in N1 if the
list is speci�ed. (4) After removing the declaration of F from N1, F should be
an illegal attribute in N1 (hidden in the pre�x, not taken) or should denote a
non-virtual attribute (5) If Nk is not M, then one of the following conditions
must be satis�ed: - F occurs in the hidden list in Nk, - F does not occur in
the taken list in the unit pre�xed directly by Nk if the list is speci�ed, - F is
rede�ned in the unit pre�xed directly by Nk as a non-virtual attribute (then
it must not occur in the taken list either). The class Nk from the de�nition is
called the end of the virtual chain. For a given unit and an identi�er there may
exist more than one virtual chain.

Example 6.1. M unit virtual F: <M-body>

N unit virtual F: <N-body>

P .... F ....

R unit F: <R-body>

S unit virtual F: <S-body>

hidden F;

T unit F: <T-body>

We have three virtual chains of F with respect to T. One is for F from the
classes M and N:
(F: <M-body>), (F: <N-body>),
The second is for F from the class S:
(F: <S-body>)
And the third one is for F in T:
(F: <T-body>)

Restrictions

(i) All virtual attributes belonging to the same virtual chain must be of the
same kind (either function or procedure),

(i) All the declarations of the virtuals belonging to the same virtual chain
must have formal parameter lists of the same pattern, in particular:

- the lists may use di�erent names of formal parameters, but the cor-
respondence between formal types must remain valid,

- the class types of corresponding formal variables or functions must
belong to the same pre�x sequence,

- the types of variable parameters or formal functions in the ending
of the virtual chain must not be less strongly de�ned than the types
of the corresponding parameters in the beginning, i.e., a formal or
system type against a statically de�ned type,
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- the types of virtual functions must be identical or the type of the
function from the beginning of the virtual chain must be a pre�x of
the type of the function from the ending,

(iii) The compatibility of virtuals must be de�ned statically.

Example 6.2. (1) The following lists are not compatible

.... (type T; type P; X: T; Y: P) ....

.... (type R; type S; X: S; Y: R) ....

(2) The following lists are compatible i� M and N belong to the same pre�x
sequence (and both are classes)

.... (type T; Z: T; Z1: M) ....

.... (type P; X: P; Y: N) ....

(3) The following lists are compatible i� M denotes a system type (coroutine
or process) or is a formal type

at the beginning: (X: M; Y: real)

at the ending: (X:coroutine; Y:real)

(4) The following lists are not compatible:

... (Y:integer)

... (Y:real)

(5) The lists of the function from the beginning of the chain

... function (Z:integer; Z1:P) : M

and from the ending

... function (Z:integer; Z1:P) :N

are compatible i� M is a pre�x of N.

6.4.2.

6.3.2 Valuation of virtuals

Let O be an object of type M with the pre�x sequence M1, ..., Mk=M. The
value of virtual attribute F declared in Mi is:

- the text of the declaration taken from the end of the virtual chain,
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- the environment of the object O.

Example 6.3. An object of the class T given in the example 1 from 6.4.1 is of
the following form:

---------------------------------------------

| | |

| F : body F from N | M |

---------------------------------------------

| | |

| F : body F from N | N |

---------------------------------------------

| | |

| | P |

---------------------------------------------

| | |

| F : body F from R | R |

---------------------------------------------

| | |

| F : body F from S | S |

---------------------------------------------

| | |

| F : body F from T | T |

---------------------------------------------

The name "virtual subprogram" is derived from the features of virtual entities,
i.e., in any class a virtual subprogram F with an empty statement list can be
declared and then used as a virtual entity within the body of the class. The
user can assume the results of its execution without knowledge of its internal
structure. He can declare in a subclass a virtual subprogram F again. This
declaration replaces the previous one. So, during the calls of the subprogram F
in the body of the class as well as in the body of the subclass, the subprogram
with the text de�ned in the subclass will be executed. This replacement is done
only if F is a virtual attribute of the subclass. Otherwise the new declaration
of F covers the virtual attribute of the class.

Abstention from those rules permits us:

(i) to de�ne the types of the parameters of a virtual subprogram and to check
them already at compilation time,

(ii) to execute the virtual subprogram declared at the beginning of the pre�x
sequence; its body may be empty, but it is always de�ned,

(iii) to end the virtual chain and to cover a virtual identi�er by a redeclaration.

The possibilities (ii) and (iii) can be used in the following case. Let M and N
be system classes of the form :

unit M: class;

unit virtual error: procedure;

(* virtual procedure to be defined in M's subclasses*)

end error;
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begin

...

if B1 then call error fi;

end M;

unit N: M class;

unit virtual error: procedure;

(* the definition of the body of error. It

will be executed during the calls within N

as well as in M *)

end error;

begin

...

if B2 then call error fi;

end N

If the programmer pre�xes his own units by class M, he can declare his own
virtual procedure error. If he does not intend to signalize any errors, he is
able to use M without a redeclaration. Then if the condition B1 is satis�ed, the
procedure with an empty body will be called, i.e., no statement will be executed.
On the other hand, if the programmer uses N as a pre�x of his own units, he
can redeclare his own non-virtual procedure error. In consequence, during the
execution of statements of the classes M and N the procedure de�ned by this
system in the class N will be executed. However during the execution of the
user's units the procedures de�ned by himself will be executed.

6.4 Dynamic location

An executable program must always be a well-formed expression. During its
execution we can deal with many objects of the same syntactic unit even at the
same time. Hence an execution of a statement (in an object) requires identi�ca-
tion and access to all the syntactic entities used. In order to de�ne the syntactic
environment of object O (of unit M) a static link (SL) is introduced. This link
always points to an object O1 of a unit N such that M is declared in N. Let us
consider the occurrence of an identi�er W within a body of class N from the
pre�x sequence of M. Let SL(M) denote the SL-chain of objects starting from
an object of unit M. This means that SL(M) is a sequence of objects O1, ..., Ok
such that O1 is an object of unit M, Ok is an object of the main program, the
SL-link of object Oi points to object Oi+1, for every i=1, ..., k-1.

The dynamic container of the occurrence of W in a body of class N with
respect to an object O1 (denoted by DC(W, N, O1)) is an object Oi from
SL(M) such that:

(*) Oi is an object of the unit pre�xed by the static container SC(W, N);
(**) Oi is the nearest object in the SL-chain such that Oi satis�es (*).

Hence the dynamic container is the unique object which contains the valu-
ation of the entity W related to the occurrence of this entity. Let us return to
the example from 6.3.; after the creation (new T) of an object O of the class T
the SL-chain of O is as follows:

-------------- ------------ ---------------
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| X | M | | X | M | | | R |

<----- |------|-----| <------- |-----|----| <------ |-------|-----|

| X | N | SL | X | N | SL | | |

|------|-----| |-----|----| | | T |

OP | Y,R | P | OS | Y,T | S | O | | |

-------------- ------------ ---------------

Because SC(X, R)=SC(X, T)=N , we have DC(X, R, O)=DC(X, T, O)=OS.
Since SC(Y, T)=S , we have DC(Y, T, O)=OS. On the other hand SC(Y, R)=P
and DC(Y, R, O)=OP. The syntactic environment of an object is determined
by the SL chain. Its main property is that for each identi�er occurrence in the
statements of the given object exists its dynamic container in the chain. In
order to de�ne the dynamic location of identi�er W occurring in object O of
unit M in a body of unit R (which belongs to the pre�x sequence of M), the
following steps are performed:

- a static container N=SC(W, R) is de�ned; - a dynamic container O1=DC(W,
R, O) is de�ned (in the SL chain of object O, the nearest object O1 is found
such that this object has a "layer" <V, N>); - a valuation V1(W) is found in
the layers <V1, N1> of the object O1 such that N1 is the nearest N's pre�x.
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Consistency of types

In order to determine the context-sensitive correctness of an assignment state-
ment and parameter transmission it is necessary to introduce the notion of the
static consistency of types. Nevertheless this notion is not su�cient to deter-
mine the correctness of the executions of those constructs. Therefore, the notion
of the dynamic consistency of types will be introduced to de�ne the semantic
correctness of program. The introduced distinction follows from the implemen-
tation constraints; namely, static consistency is veri�ed at compilation time,
dynamic consistency is veri�ed at run time.

Static consistency of types

The type (arrayof)iT is statically consistent with the type (arrayof)jS, where T
and S are not array types, i� one of the following conditions holds:

• i=j and T=S,

• i=j=0 and T, S are integer or real types,

• both T and S are formal types,

• T is a formal type, S is not a formal type and i<=j,

• S is a formal type, T is not a formal type and j<=i,

• i=j=0 and T, S are generalized class types and T pref* S or S pref* T,

• i=j=0 and T and S are one of them a system type and the other a gener-
alized class or system type.

Dynamic consistency of types.

The type (arrayof)<i>T is dynamically consistent with the type (arrayof)<j>S,
where T and S are not array types, i� one of the following conditions holds:

• - i=j and T=S,

• - i=j=0 and T, S are integer or real types,
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• - i=j=0 and T, S are generalized class types and T pref* S,

• - i=j=0, T = coroutine, and S is declared as:
unit S: ... coroutine ...; or
unit S: ... process .....; or
unit S: R class..., where T is dynamically consistent with R,

• - i=j=0, T = process, and S is declared as:
unit S: ... process .......; or
unit S: R class..., where T is dynamically consistent with R.

At run time all formal types are replaced by actual non-formal ones. Therefore,
there is no reason to de�ne dynamic consistency for formal types. Dynamic
consistency is a subrelation of static consistency. Thus the dynamic consistency
is checked at compilation time, if possible. In other cases the check is made at
run-time. From now on we shall use the following notation:
- for the desription of context properties, an occurrence of an expression E is
considered to be contained in the body of unit M,
- for the desription of semantic properties, an occurrence of an expression E is
considered to be contained in the body of unit M, with respect to an object O
of type M0 such that M pref* M0.
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Chapter 8

Expressions

Expressions are composed of primitive expressions - constants and variables by
means of system operators and functions. They serve as patterns for computing
a certain value. Two kinds of expression properties have to be considered:
context (static) and semantic (dynamic) ones.

Context properties. We consider two context properties of each expres-
sion:

• to be a well-formed formula,

• to have a static type.

The context correctness of an expression is examined at compilation time.
From now on, an expression is said to be a well-formed formula (shortly : WFF)
if it is statically correct. The static type of an expression is determined by the
program text.

Semantic properties. We consider three semantic properties of each ex-
pression:

• to be de�ned, i.e. to have a value,

• to have a dynamic type,

• to have the type of its value.

In some cases (for expressions of formal types) type must be determined
at run-time. Replacing formal types by the corresponding actual ones in the
static types of expressions, we obtain the dynamic types of those expressions.
Notice, that the actual type may not be accessible, if the dynamic container for
the formal type of the expression was killed. The dynamic type will be de�ned
only for the expressions which may occur on the left side of an assignment,
i.e., for variables. When the value and the type of the value are computed, the
semantic correctness of the expression is established. From now on an expression
is said to be de�ned if it is dynamically correct at run-time. The correctness
of an expression will be examined under the assumption that it is a WFF. Five
kinds of expressions are distinguished: arithmetic, boolean, character, string,
and object expressions.
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8.1 Constant

Syntax.

<constant>:

-----> <identifier> ----->

Context.
Let E be a constant Q. The expression Q is a WFF if the static container

SC(Q, M) exists. The static type of Q is determined by its declaration (see
5.1.). A constant cannot occur on the left side of an assignment statement,
as an actual output parameter, or in an expression X.Q, where X is an object
expression.
Semantics.

The constant Q is always de�ned. The value of the constant is �xed from
the declaration of that constant and cannot be modi�ed. The type of the value
is equal to the static type.

8.2 Variable

Syntax.

<variable>:

--------> <simple variable> ------------>

| ^

|---> <subscripted variable>->|

| |

|----> <dotted variable> ---->|

| |

|----> <system variable> ---->|

For each kind of variables its context and semantic correctness will be de-
�ned. Additionally the dynamic address of a variable will be de�ned as a pair:
(reference to an object, attribute of that object).

8.2.1 Simple variable

Syntax.

(simple variable>:

----> <identifier> ----->

Let E be a variable Z.
Context. The variable Z is a WFF if the static container SC(Z, M) = R

exists. The static type of Z is determined by the declaration of Z and may be a
formal one.

Semantics.
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The variable Z is de�ned if the dynamic container O1 = DC(Z, M, O) exists.
Let the static type of Z be: (arrayof)<i>S. The dynamic type of Z is equal to (ar-
rayof)<i>S in the case where S is not formal, otherwise it is (arrayof)<i+k>T,
where the actual type corresponding to the formal one is (arrayof)<k>T. The
actual type is taken from the dynamic container DC(S, R, O1), i.e., from an
object belonging to the SL chain of the object O1. The value of Z is given by
the corresponding valuation of Z in the object O1. The address of Z is a pair:
(the reference to O1, attribute Z of O1).

8.2.2 Subscripted variable

Syntax.

<subscripted variable>:

--> <simple variable> --> ( -> <arithmetic expression> -----> ) -->

^ |

|<----------- , --------------|

Let E be an expression of the form Z(A1, ..., Ak), where Z is a simple variable
and A1, ..., Ak are arithmetic expressions.

Context.
Let (arrayof)<i>S denote a static type of Z. The expression Z(A1, ..., Ak) is

a WFF if: - Z and A1, ..., Ak are WFFs, - static types of A1, ..., Ak are integer
or real, - 1<=k<=i. The static type of E is (arrayof)<i-k>S.

Semantics.
The expression E is de�ned if: - the expression Z(A1, ..., Ak-1) is de�ned and

its value equals the reference to a non-empty array object O1 with the bounds
l and u, l<=u. - the value of Ak is de�ned and its truncation l1 satis�es:
l<=l1<=u.

The dynamic type of E is equal to the static one if S is not formal, otherwise
it is (arrayof)<i-k+j>T where the actual type corresponding to the formal one
is (arrayof)<j>T. The actual type is determined as for a simple variable (see
8.2.1.). The value of E is that of the attribute (l1) of the object O1. The address
of E is the pair: (the reference to O1, attribute (l1)).

8.2.3 Dotted variable

Syntax.

<dotted variable>:

-> <qualified object expression> -->. --> <variable> ---->

It is su�cient to consider the expression E of the form X.Y, where Y is a
simple or subscripted variable.

Context.
The expression E is a WFF if:
- X, Y are WFFs, X is the quali�ed object expression, - the static type of X

is a generalized class type, - Y is a non-closed attribute of the static type of X.
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The static type of E is the same as the static type of Y. Notice that the
static type of X cannot be a formal type.

Semantics.
The expression E is de�ned if:
- the expression X is de�ned, - the value of X is a reference to a non-empty

object O1.
The dynamic type of E is the same as the dynamic type of Y would be if Y

occurred in the object O1. The value of X.Y is that of the attribute Y of the
object O1. The address of X.Y is the address of Y would be if Y occurred in
O1.

8.2.4 System variable: result

textscSyntax.

<system variable>:

------> result ---------------------------------------->

Context and Semantics.
For every function F there is an implicitly declared variable result of type

T of the value of function F. The initial value of that variable depends on type
T (is equal to the default value of type T), the �nal value (after completion
of a function call) is also the value of function F for the given call (see 9.1.2.).
An occurrence of the variable result is matched with the smallest unit F which
contains that occurrence and which is a function.

Example.

unit Newton_symbol: function (i, k:integer): integer;

var j: integer;

begin

if i>= k and k>=0

then result:=1;

for j:=0 to k-1

do

result:=result*(i-j)div(j+1)

od

fi

end Newton_symbol;

8.3 Arithmetic expression

Syntax.

<arithmetic expressionXE "arithmetic expression"�>:

|------------------->|

| |

-----------> <sign> --------> <term> ------->

^ |
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|<--------------------------------|

<sign>:

-----> + ----->

| ^

|-> - -->|

<term>:

---------> <factor> ----------------->

^ |

| |<-------------------|

| | | | |

| | | | |

| * / div mod

| | | | |

| | | | |

|<-----------------|

<factor>:

------------------ <integer> -------------------------------->

| ^ | ^

|-<abs>-| |---> <real> ---------------------------->|

| |

|--> <constant> ------------------------->|

| |

|--> <variable> ------------------------->|

| |

|------> <function call> ---------------->|

| |

|-> ( -><arithmetic expression>-> ) ----->|

<integer>:

-----> <digit> ------>

^ |

|<------------|

<real>:

|-------->|

| |

---> <integer>--> . ---> <integer>----->E --> <sign>--> <integer> -->

| ^ | ^
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|------------------>| |---------------------------->|

(function call will be de�ned in 9.1.2.).
Context and Semantics.
The type of the value of an arithmetic expressionXE "arithmetic expres-

sion"� is always equal to its static type. The dynamic type is not to be de�ned.
The context and semantic properties of arithmetic expressions will be de�ned
inductively.

Factors.
The type of an integer is integer, the type of a real is real, their values are given
directly. Constant, variable, and function call must be WFFs (in the meaning of
8.1., 8.2 and 9.1.2.), and of type integer or real (in order to create a well-formed
factor). The factor is de�ned i� the variable and the function call are de�ned.
The context and semantic properties of the factors of the form " abs A1 ", and "
(A2) " are the same as those of arithmetic expressions A1 and A2, respectively.
The value of " abs A1 " is the absolute value of A1.

Terms.
The operators *, /, div, mod are interpreted as multiplication, division, integer
division and remaindering, respectively. The last two operators are de�ned for
integer arguments only, " A1 div A2 " is equal to the truncation of A1/A2; "
A1 mod A2 " is equal to the remainder of A1/A2. The type of a term of the
form <factor> <operator> <factor> is real if the operator is /, or at least one
of the arguments is of type real. The term " A1/A2 " is de�ned if the value of
A2 is di�erent from 0. The value is de�ned inductively if Av1 and Av2 are the
values of factor A1 and term A2 respectively, and <W> is an interpretation of
operator W, then the value of a term of the form " A1 W A2 " is Av1 <W>
Av2. If one of the arguments is of type integer and the other is of type real then
for the operators *, / the integer type value is converted into a real type one.

Arithmetic expression.
An arithmetic expression of the form <term> <sign> <term> is of type integer
if both terms are of that type and it is of type real in the opposite case. A value
is de�ned inductively: if Av1 and Av2 are the values of term A1 and arithmetic
expression A2, respectively, then the value of an expression A1+(-)A2 is Av1+(-
)Av2, the value of +(-)A1 is +(-)Av1. If one of the arguments is of type integer
and the other is of type real, then the integer type value is converted into a real
type one.

8.4 Boolean expression

Syntax.

<boolean expression>:

-------> <boolean term> ---------------->

^ |

|<---- or <---------------|
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<boolean term>:

------> <boolean factor> ---------->

^ |

|<---- and <------------|

<boolean factor>:

----> not ----> <boolean primary> ------------>

| ^

|-------->|

<boolean primary>:

--------> <boolean constant> -------------------->

| ^

|----> <constant> -------------------->|

| |

|----> <variable> -------------------->|

| |

|----> <function call> --------------->|

| |

|----> <relation> -------------------->|

| |

|--> ( --> <boolean expression> ->)--->|

<relation>:

-----> <arithmetic relation> --------------->

| ^

|-> <boolean relation> ----------->|

| |

|-> <character relation> --------->|

| |

|-> <reference relation> --------->|

| |

|-> <object relation> ------------>|

<boolean constant>:

-----> false -------->

| ^

|--> true --->|

<arithmetic relation>:
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---> <arithmetic expression> --> <arithmetic relational operator>

|

|<-----------------------|

|

|---> <arithmetic expression> ---->

<arithmetic relational operator>:

----> <equality operator> --------->

| ^

|-> <inequality operator> -->|

<equality operator>:

----------> = ---------------->

| ^

|------> =/= ------->|

<inequality operator>:

--------------------------------->|

| | | |

< > <= >=

| | | |

|------------------------------->

<character relation>:

---> <character expression> --> <equality operator> -->

|

|<-----------------------------------------|

|

|---> <character expression> ----->

<reference relation>:

---> <object expression> --> <equality operator> -->

|

|<----------------------------------------------|

|

|---> <object expression> ------>

<object relation>:
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---> <object expression> ----> is ------> <system type> ------->

| ^ | ^

|--> in -->| |--> <class type> ---->|

Context and Semantics.

The context and semantic properties of boolean expressions can be de�ned
in the same way as those of arithmetic ones. A boolean expression is of type
boolean.

Boolean primary.
The value of a boolean constant true and false is T and F, respectively. The
equality and inequality operators have the usual interpretation. Let A1, A2 be
two de�ned arithmetic expressions and let Av1, Av2 be their values. Let <W>
be an interpretation of the arithmetic relational operator W. Then the value of
arithmetic relation " A1 W A2 " is Av1 <W> Av2. If one of the expressions
is of type integer and the other is of type real then the integer type value is
converted into real type one.

Let C1, C2 be two de�ned character expressions and let Cv1, Cv2 be their
values. Then the value of the character relation " C1=C2 " (" C1=/=C2 ") is
true i� the characters Cv1, Cv2 are identical (di�erent). For string type there
are no relations, even no equality.

A reference relation " X1=X2 " (" X1=/=X2 ") is a WFF if X1 and X2 are
well-formed object expression. The static types of the expressions have to be
statically consistent. The relation is de�ned if X1 and X2 are de�ned. The value
of that relation is true i� the values of both expressions are equal to (di�erent
from) the same reference; in particular, if they are both equal to none, then
the value of " X1=X2 " is T. An object relation "X is S" is a WFF if S is a
generalized class identi�er, X is a WFF, and the static type of X is statically
consistent with S. An object relation "X in S" is a WFF if S is a generalized
class or system type identi�er, X is a WFF, and the static type of X is statically
consistent with S. The value of the relation "X is S" is T i� the value of the
expression X is the reference to an object of class S. The value of the relation
"X in S" is T i� the value of X belongs to the set |S| .

Boolean factor.
The value of a boolean factor "not B", where B is a boolean primary, is T i�
the value of B is F.

Boolean term.
Let Bv2 and Bv1 be the values of boolean factor B2 and boolean term B1, respec-
tively. Then the value of a term of the form "B1 and B2" is T i� Bv2=Bv1=T.

Boolean expression
Let Bv1 and Bv2 be the values of boolean term B1 and boolean expression B2,
respectively. Then the value of an expression of the form "B1 or B2" is F i�
Bv1=Bv2=F.

The value of the arithmetic and boolean expression is computed from left to
right with the following operator priorities: (1) parentheses (, ), abs (2) *, /,
div, mod (3) +, - (4) <, <=, >, >=, =, =/= (5) not (6) and (7) or.
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8.5 Character expression

textscSyntax.

<character expression>:

----> <character constant> --------------------->

| ^

|---> <constant> --------------->|

| |

|---> <variable> --------------->|

| |

|---> <function call> ---------->|

<character constant>:

----> ' -----> <symbol> -----> ' ------>

<symbol>:

-------> <letter> ---------------------------->

| ^

|---> <digit> --------------->|

| |

|---> <auxiliary sign> ------>|

| |

|--> <other characters> ----->|

| |

|-> (: --> <integer> --> :) ->|

Context and Semantics.
Constant, variable and function call are WFFs if they are of type character.

The standard function ord is de�ned for a character expression and gives an
integer value (dependent on implementation).

8.6 String expression

Syntax.

<string expression>:

-----> <string constant> -------->

| ^

|---> <constant> ------->|
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| |

|---> <variable> ------->|

| |

|---> <function call> -->|

<string constant>:

---> " -------> <character> ---------------------> " ----->

| |

|<-------------------------------------|

Semantics.
Constant, variable and function call are WFFs if they are of string type. The

quotation mark " in the string constant is written twice "".
Remark The string type is a constant type in the sense that the universe is

de�ned at compilation time and there are no string operations prede�ned in the
language. However, a standard function may transform a string into an array
of characters. Then the user can treat the array of character as a text type and
can de�ne any set of suitable text operations.

End of remark

8.7 Object expression

Syntax.

<qualified object expression>:

--------> <object expression>--------------------------------------->

| ^

|--> <variable>--------> qua -> <class type identifier> -->|

| ^

|--> <function call> -|

<object expression>:

----------> <object constant> --------------------->

| ^

|-----> <variable> ------------>|

| |

|---> <function call> --------->|

| |

|---> <object generator> ------>|

| |

|----> <local object> --------->|

| |

|-----> <process waiting> ----->|
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<object constant>:

-----> none -------- >

<local object>:

----> this ----> <class type> --------->

(Function call and object generator will be de�ned in 9.1.2, process waiting
will be de�ned in 11.1. Variable is described in 8.2.).

Context. The constant none is of a �ctitious type statically consistent
with any non-primitive type. To de�ne the context of a local expression let us
recall that the occurrence of the expression E is considered in the unit M. Let
E be the local object "this T", then E is a WFF if there exists a unit N such
that M decl* N and T pref* N, (i.e., there exists a unit N statically enclosing
M and containing T in its pre�x sequence). The static type of the expression
E is T. The quali�ed object expression of the form "X qua T" is a WFF if X is
a WFF and the static type of X is statically consistent with T. The static type
of this expression is T.

Semantics. The constant none is always de�ned as an empty object. Every
compound and system type is dynamically consistent with the �ctitious type of
none. The value of the local object "this T" is the nearest object of the type
T1 belonging to the SL chain of the object O such that T1 is pre�xed by T,
(recall that O contains the given occurrence of the local object). The expression
"this T" is de�ned if its value exists. The dynamic type is not to be de�ned.
The type of the value is S. The quali�ed object expression of the form "X qua
T" is de�ned if X is de�ned, its value is di�erent from none, and the dynamic
type of X as well as the type of its value are dynamically consistent with T. The
value of this expression is equal to the value of X. The dynamic type is not to
be de�ned.
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Sequential statements.

Sequential statements are patterns for the sequencing of primitive actions.
Syntax.

<sequential statement>:

--------> <primitive statement> ------------>

| ^

|-------> <compound statement> ---->|

In a similar way to that followed in the description of expressions we shall
consider context and semantic properties of statements. A statement will be
called a WFF if it is correct at compilation time, and said to be de�ned if it is
correct at run time.

9.1 Sequential primitive statements

The result of an execution of a primitive statement consists in the modi�cation
of:

- the valuation (assignment statement);

- the con�guration (allocation and deallocation statementXE "allocation
statement"�);

- the control (control statement).

By a con�guration we mean the set of all objects existing at a given state of
computation.

Syntax.

<primitive statement>:

--------> <evaluation statement> ------------->

| ^

|----> <configuration statement> ---->|

| |
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|----> <simple control statement> --->|

| |

|----> <coroutine statement> -------->|

9.1.1.

9.1.1 Evaluation statement

Syntax.

<evaluation statement>:

--------> <empty statement> ---------------------->

| ^

|----> <assignment statement> ------>|

| |

|----> <copying statement> --------->|

<empty statement>:

--------------------------->

Semantics.
An execution of an empty statement leaves the overall state of computation

not changed.
Syntax.

<assignment statement>:

------> <variable list> ---> := --> <expression> ---->

<variable list>:

----------> <variable> ------> , --------------->

| |

| |

<---------------------------------

Context.
An assignment statement of the form y1, ..., yk:=e is a WFF if:

- variables y1, ..., yk and expression E are WFFs;

- the static types T1, ..., Tk of variables y1, ..., yk are statically consistent
with the static type S of the expression E.
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Semantics.
The execution of the statement consists of three steps : prologue, body and

epilogue.
In the prologue the computation of the addresses of variables y1, ..., yk is

performed, i.e.:
- For a dotted variable of the form X.z, the value of the expression X is

computed;
- For a subscripted variable of the form Z(i1, ..., ij) the value of the expression

Z(i1, ..., ij-1) is computed. If Z is of a formal type, then the dynamic type T of
the variable Z is determined. Finally the value of the expression ij is computed.

The above actions are performed from left to right.
During the body the computation of the type and the value of expression E

is performed.
The epilogue checks if the statement is well-de�ned and assigns the values

to the attributes determined by the addresses evaluated during the prologue.
An assignment is de�ned, if: - the expressions y1, .., yk, E are de�ned; - the

dynamic types of y1, .., yk are de�ned and are dynamically consistent with the
type of the value of E.

The values are assigned from right to left, i.e., at �rst the value of E is
assigned to yk (with possible conversion to the type of yk), next the value of yk
is assigned to yk-1 (with appropriate conversion), and so on.

For example, when r is real, n is integer, then:
after r, n:=2.5 we have n=2, r=2.0, after n, r:=2.5 we have r=2.5, n=2.
Remark.
The value of the expression Z computed at prologue may point to a non-

empty object O, but it could be changed to none as a result of the deallocation
of the object O (during the execution of the statement). This will be detected
at epilogue and will result in a run-time error.

End of remark.
An object of a compound type can be simultanously referenced by a number

of variables. If X and Y are the variables of such a type, then after assignment
X:=Y, both variables reference the same object. Hence some side-e�ects may
occur: the value of an attribute of the object referenced by variable X can be
changed as a result of an access to that object by means of variable Y. In order
to avoid such e�ects, one can use a copying statement:

X:=copy(Y)
after which both variables reference identical objects but not the very same

one.
Syntax.

<copying statement>:

-> <variable list> -> := -> copy -> ( -> <object expression> -> ) ->

Context and Semantics.
The semantics of the copying statement di�ers from that of the assignment

statement in the following points:
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- The copying statement is de�ned if the value of the right side object ex-
pression E is a reference to a terminated class object (i.e., an object whose all
statements were completed, see 9.1.3). Coroutine or process objects must not
be copied.

- During the epilogue, the copy of the value of the expression E is assigned
(a copy of none is none). 9.1.2.

9.1.2 Con�guration statement

Con�guration statements correspond to the generation and deallocation of units
and arrays. Allocation of an array object is a result of array generation, alloca-
tion of a unit object is a result of a subprogram call, generation of a generalized
class object or block statement.

Syntax.

<configuration statement>:

-----> <object allocation> ------->

| ^

|--> <object deallocation> -->|

9.1.2.1.

Allocation statement

Syntax.

<object allocation>:

------> <function call> ----------------->

| ^

|--> <procedure call> -------->|

| |

|--> <object generation> ----->|

| |

|---> <block statement>------->|

| |

|--> <array generation> ------>|

<function call>:

---> <remote function identifier> ---> <actual parameter list> ---->

| ^

|--------------------------->|
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<procedure call>:

--> call --> <remote procedure identifier> -->|

|

|<-----------------------|

|

|---> < actual parameter list> ------------>

| |

|------------------------------------>|

<object generation>:

--> <qualified object expression> --> . --> new -----|

| ^

|--------------------------------------| |

|

|--------------------------------------------------|

|

|--> <class identifier>---> <actual parameter list> -------->

| ^

|---------------------------|

<remote function identifier>:

----> <qualified object expression> --> . -->|

| ^ |

|----------------------------------------| |

|

|--------------------------------------------|

|

|---> <function identifier> --->

<remote procedure identifier>:

----> <qualified object expression> --> . -->|

| ^ |

|----------------------------------------| |

|

|--------------------<-----------------------|

|

|---> <procedure identifier> --->
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<actual parameter list>:

---->(----------------> <expression> ----------------> ) ---->

^ | ^ |

| |-><remote function identifier>-------->| |

| | | |

| |-><remote procedure identifier>------->| |

| | | |

| |-><type identifier>------------------->| |

| |

|--------------- , <---------------------------|

Context.
We shall start with an allocation of a unit object O, i.e., subprogram call, ob-

ject generation and block statement. The execution of those statements causes
the generation of the new object O. Let Pa1, ..., Pak denote actual parameters,
k>=0, and let X be an object expression. The allocation of an object of unit
M is of one of the following forms:

- for function M: M(Pa1, ..., Pak) or X.M(Pa1, ..., Pak) (a function call must
occur in an expression; it is not allowed as an independent statement);

- for procedure M: call M(Pa1, ..., Pak) or call X.M(Pa1, ..., Pak);
- for class M: new M(Pa1, ..., Pak) or X.new M(Pa1, ..., Pak); (an object

generator may occur in an expression and it is also allowed as an independent
statement).

- for block statement: pref M(Pa1, ..., Pak) block...end or block... end (a
block can be considered as an unnamed unit and a generation of its object is
the result of an occurrence of that block statement).

The allocation of a unit object is a WFF if:
- a unit identi�er M is visible (in the sense of the rules used for the variables,

see 8.2.), - the actual parameters are WFFs, - the formal parameter list and the
actual parameter list are statically compatible in the sense given below.

Let us recall (5.3.5.) that a formal parameter list of a unit M is de�ned as
a concatenation of the lists of units belonging to the pre�x sequence of M.

Static compatibility of parameters.
The list of formal parameters (Pf1, ..., Pfj) is statically compatible with the

list of actual parameters (Pa1, ..., Pak) if j=k and for i=1, ..., k the following
conditions hold:

- if P� is an input/output formal parameter then Pai is a WFF of a static
type which is statically compatible with the static type of parameter P�, - if P�
is an output/inout parameter then Pai is a variable, - if P� is a formal function
(procedure) then Pai is a function (procedure) identi�er, - if P� is a formal type
then Pai is a non-primitive type identi�er.

Semantics.
The allocation of a unit object O is de�ned if: - the unit and its environment

are determined, - the list of formal parameters is dynamically compatible with



9.1. SEQUENTIAL PRIMITIVE STATEMENTS 69

that of actual parameters (in the sense provided below), - three steps of actions,
called prologue, body, and epilogue, are determined.

Note the di�erence between the unit identi�er and the unit itself. The en-
vironment is the object which becomes the syntactic father of O. In the case
of a formal subprogram, the unit identi�er may be replaced by one of many
existing units. Denote by O1 the object containing the given unit object alloca-
tion statement. The prologue computes the values for input formal parameters,
determines the addresses of output actual parameters, and determines actual
subprograms/types. The prologue is executed in the environment of the object
O1. The body transfers the control to the statements from the pre�x sequence
of the given unit. Those statements are executed in the environment of the
object O. The epilogue transmits the values of output formal parameters (in
the environment of the object O1).

Unit's environment
Consider the allocation of a named unit (i.e. it is not a block). A unit

identi�er has one of the following forms:
(a) M, (b) X.M or X.new M .
Ad (a). Let the static location of the given occurrence of M be determined

by the attribute M of the unit T. Consider three cases:
(a1) M is an attribute of T and it is neither a virtual attribute nor a formal

parameter. Then the declaration of M is determined as (at compilation time)
as the declaration of the attribute M of unit T. The environment of the unit M
is the dynamic container of identi�er M with respect to the object O1.

(a2) M is a virtual attribute of T. Then the declaration of M is determined
at run-time by the dynamic location of identi�er M with respect to the given
occurrence (see 6.1.5.). The environment is determined as in (a1).

(a3) M is a formal subprogram of T. Then the declaration of M and its
environment are taken from the dynamic container of the identi�er M. The
dynamic container is determined with respect to the object O1.

Ad (b). Let X be a well-formed object expression of type R, let M be a
not close attribute of R, and let the expression X be de�ned. Denote by O2
the non-empty object of unit R0 (R pref* R0) which is pointed to by X. The
cases (a1)-(a3) have to be considered in the same way as the above ones. The
descriptions di�er in that the environments are determined with respect to the
object O2. Note that the environment of the object becomes the syntactic father
of the object O.

Dynamic compatibility of parameters.
First let us note the di�erence between the determination of dynamic type

for the actual parameter Pa and the formal parameter Pf. The dynamic type
of Pa is determined in the environment of the object O1 (containing the given
allocation). It means that for the formal type S the actual type is taken from
the dynamic container with respect to O1. Recall that it corresponds to the
determination of the valuation of identi�er S in the SL-chain of O1 (according to
the visibility rules) and taking the text of declaration assigned to S (cf. 6.1.5.).
The dynamic type of Pf is determined in the corresponding environment. It
means that for the formal type S the actual type is taken from the corresponding
dynamic container. In other words, the valuation of identi�er S is searched for
in the SL-chain of the environment (according to the visibility rules).

The list of formal parameters is dynamically compatible with the list of
actual parameters if the following conditions hold:
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- if P� is an input formal parameter, then Pai is de�ned and the dynamic
type of P� is dynamically consistent with the type of the value of Pai, - if P�
is an output/inout formal parameter, then Pai is de�ned and the dynamic type
of Pai is statically consistent (!) with the dynamic type of P�, - if P� is a
formal function (procedure), then the lists of formal parameters of P� and that
of Pai must be of the same pattern (disregarding the descriptions of subprogram
parameters). They may di�er in the parameter identi�ers, and they may di�er
in the class types of corresponding parameters (however, the class types must
belong to the same pre�x sequence), - if P� is a formal function, then the
dynamic type of P� pre�xes the dynamic type of Pai, or the two types are
identical.

The above conditions are checked from left to right (i.e., for i=1, ..., k).
Recall that in the following description of prologue and epilogue the compu-

tations of the values and addresses for formal parameters and actual ones are
performed in the syntactic environment of the object O1.

Prologue of an object.
The prologue consists of the following steps:
(i) The frame for a new object O is allocated, the object O1 is called the

dynamic father of the object O. The sequence of dynamic fathers creates a chain
called the DL chain (DL for dynamic links);

(ii) For the input and inout formal parameter Pf, the value of the corre-
sponding actual parameter is computed and assigned to Pf;

(iii) For the output and inout formal parameter Pf, the address of the corre-
sponding actual parameter Pa is computed (in other words, the prologue of the
assignment of Pf to Pa is performed);

(iv) For the formal type parameter Pf, the corresponding actual type Pa is
determined. According to 6.1.5. the valuation of the object O assigns the text
of the determined type Pa to the identi�er Pf. Therefore as long as that object
exists the access to Pf is well-de�ned and connected with Pa;

(v) For the formal subprogram parameter, the actual subprogram is �xed (in
the same way as the determination of the allocated unit and its environment).

After the execution of the epilogue the control is transferred to the object
O. Let M1, ..., Mk=M be the pre�x sequence of M. The execution of the state-
ments from the object O begins from the �rst statement of the unit M1 (for the
description of the further progress of computation, see inner statement, 9.1.3.).
Note that those statements are executed in the syntactic environment of the
object O. When the control returns to the calling object O1, the actions of the
epilogue are performed.

Epilogue of an object.
The epilogue consists of the following steps:
(i) For the output or inout formal parameter Pf the actions of the epilogue

for the assignment Pa:=Pf are performed, where Pa is the actual parameter cor-
responding to Pf. It means that the value of Pf (computed during the execution
of the body) is assigned to Pa (this address was computed during the prologue);

(ii) If the unit is a function, then the result of the given call is determined
by the current value of the corresponding variable result,

(iii) If the unit is a generalized class, then the result of a new M is a reference
to the object O;

(iv) A terminated object (cf. 9.1.3.) of a block or a subprogram is deal-
located. However, the terminated object of a generalized class is accessible as
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long as there is a reference pointing to it (unless it is directly deallocated by
means of the kill statement).

Remark. Note that for the input formal parameter Pf of non-primitive type,
the value of the corresponding actual variable parameter Pa may be updated
(both the formal parameter and the actual one point to the same object). In
order to access the value of Pa without the possibility of its modi�cation one
can use the copying statement Pf:=copy(Pf) at the end of the unit body.

End of remark.

Array generation.

Syntax.

<array generation>:

----> array -----> <variable > -----> ( -->|

|

|<----------------------------------------------|

|

|--> <arithmetic expression> --> : --> <arithmetic expression>--> ) -->

A declaration of a variable of an array type �xes the type of the array
elements; bound pairs are �xed at the time of generation.

Context.
A statement array Y dim (l:u) is a WFF if:
- Y is a variable of the type (arrayof)<i>T, where i>0, T is a type identi�er;
- l, u are WFFs and arithmetic expressions.
The above statement is considered to be an assignment of a reference (to a

newly created object) on the variable Y.
Semantics.
The following actions are performed:
- determine the address of variable Y; - compute the values l1, u1 of expres-

sions l, u; - put l0, u0 truncations of l1, u1 respectively; - check the condition
l0<=u0; - generate an array object and assign its address to Y.

The initial values of attributes (l0), ..., (u0) depend on their type of the
form (arrayof)<i-1>T. The value of an array type variable may be changed by
means of assignment, copying, and generation statements. The generation of an
n-dimensional array consists of n steps. The �rst dimension is generated: e.g.
array Y dim (l1:u1), next the second dimension: e.g. for i:=l1 to u1 do array
Y(i) dim (li2:ui2) od and so on. Non-regular arrays can be generated in this
way. 9.1.2.2.

Deallocation statement

Syntax.

<object deallocation>:
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----> kill ----> ( ----> <object expression> ----> ) --->

Context and Semantics.
A statement kill(X) is a WFF if X is a well formed object expression of

compound type. The statement kill(none) is always WFF and it is equivalent
to the empty statement. The statement is de�ned if X points to an object O not
belonging to the SL chain or DL chain of an active object. By an active object
we mean the object containing the statement currently being executed (notice
that in the case of parallelism there may co-exist several active objects). The
execution of the statement results in the deallocation of object O, all variables
pointing to O are set to none. The deallocation of an object which belongs to
the SL chain or DL chain of an active object results in a run-time error. The
statement kill(X) where X points to a coroutine head is described in 9.1.4. The
statement kill(X) where X points to a process is described in 11.1.

Remark.
After a block or subprogram termination, the corresponding object is auto-

matically deallocated. On the other hand, the array, class, coroutine, or process
objects are not automatically deallocated. The computer memory may be over-
loaded with such objects even if they are no longer referenced. Those objects
are recovered with the help of the system program called the garbage collector.
The user can help in the execution of that system program and increase the
e�ciency of his program execution if he deallocates unnecessary objects. One
should realize, however, what are the e�ects of deallocation (in particular, a side
e�ect consisting in the modi�cation of the values of all variables which point to
the same deallocated object).

End of remark.
Example.
The deallocation of a binary tree can be performed by means of the following

recursive procedure:

unit tree_kill: procedure (n:node);

begin

if n.l=/=none then call tree_kill(n.l) fi;

if n.r=/=none then call tree_kill(n.r) fi ;

kill(n)

end tree_kill

where the class node has the form

unit node: class;

var l, r: node ;

end node;

9.1.3.

9.1.3 Simple control statement

There are two kinds of simple control statements: a textual control statement
and a dynamic control statement. In this section we shall consider the occur-
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rence of a control statement in the object O of the unit M, in the body of the
unit Mj, where M has the pre�x sequence M1, ..., Mk=M, and 1<=j<=k.

Syntax.

<simple control statement>:

-----> <textual control statement> -------->

| ^

|--> <dynamic control statement> --->|

<textual control statement>:

-------> inner ----->

| |

| |

|-----> exit ----->|

| | | |

| |<------| |

| | |

|---> repeat ----->|

Semantics.
For j=1, ..., k-1 the execution of the inner statement results in the com-

mencement of the execution of the unit Mj+1. The inner statement in the body
of the unit Mk=M is empty.

------- ------- ------- -------

| | | | | | | |

inner < inner < ........ < inner < .....

| | | | | | | |

------- ------- ------- -------

body of M1 body of M2 body of Mk-1 body of Mk

The semantics of repeat and exit statements will be de�ned jointly with the
semantics of a loop statement, see 9.2.3..

Syntax.

<dynamic control statement>:

---------> return ----------->

Semantics.
In this section we shall describe the semantics of a return statement and

a pseudo-statement end (which bound a unit declaration). An object may be
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in one of the following three states: non-generated, generated, terminated. An
object is non-generated until the control reaches the �rst return statement. From
that moment an object becomes generated. An object is terminated after the
execution of its end statement. The main program is considered to be always
generated. A generated object is considered to have no dynamic father (its DL
is none). Note that the execution of a terminated object cannot be resumed.
However, the execution of the generated object of a coroutine or a process can be
resumed and suspended. The return statement is empty if M is a coroutine and
O is generated. If M is a block, subprogram, or generalized class and O is non-
generated then O becomes generated. The control returns to the dynamic father
of O. For a coroutine or process the statement following the return statement
is a reactivation point.

Now we shall consider the execution of the �nal end. For j=2, ..., k the
execution of the �nal end results in the control transfer to the statement fol-
lowing the inner statement from the unit Mj-1. Suppose that j=1. If O is a
non-generated object of a coroutine, then O becomes generated and the control
returns to the dynamic father of O. Otherwise (O is a coroutine/process object)
the object O becomes terminated. The control transfer is the same as in the
case of detach statement. Moreover, if M is a process, then the control becomes
idle (and the corresponding processor may be released, see 11). 9.1.4.

9.1.4 Coroutine statement

Syntax.

<coroutine statement>:

------> detach ---------------------------------------------->

| ^

|-----> attach ----> ( ---> <object expression>--> ) -->|

Context and Semantics.
By a chain of coroutine N with the head Ol we shall mean the DL chain of

objects O1, ..., Ol such that: - for i=1, ..., l-1 the object Oi+1 is the dynamic fa-
ther of Oi; - Ol is the generated object of the coroutine N; - Ol is non-terminated.
Thus the chain contains non-generated objects with the exception of the head,
which is generated but non-terminated. The execution of a kill(X) statement
where X points to the head Ol of the coroutine chain results in a deallocation
of the entire chain.

The chain may be in one of the following two states: - detached - the ex-
ecution of the statements contained in this chain is suspended, the object O1
contains a distinguished point, called the reactivation point of the chain; - at-
tached - a statement from the object O1 is currently executed.

In the case of a sequential program exactly one chain is operational, i.e.,
in the attached state. Note that a coroutine head may be the main program.
Coroutine control statements change the states of coroutine chains. A reference
to the coroutine chain W1 which has recently transferred the control to the chain
W is associated with chain W. Let us denote this reference by CL (coroutine
link). This link is then used by the detach statement. Suppose that the object
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O (containing the occurrence of the coroutine control statement) belongs to the
chain W of the coroutine N with the head Ol. The statement attach(X) is a
WFF if X is a well formed object expression or the system variable main. The
statement is de�ned if X points to the head O1 of a coroutine chain W1. The
execution of the statement results in changing the state of W to a detached
one and that of W1 to an attached one. The statement determined by the
reactivation point of the chain W1 starts its execution. The CL link to the
chain W is associated with the chain W1. If O=O1 then the statement is empty.
The statement detach is de�ned except the case where the CL link of chain W
is none. The execution of the statement results in detaching the chain W and
attaching the chain W1 determined by the corresponding CL link associated
with W. The statement following the detach statement is the reactivation point
of the chain W. The execution of the chain W1 is resumed at its reactivation
point.

9.2.

9.2 Compound statements

Compound statements enable iteration (loop statements) and case analysis (con-
ditional and case statement).

Syntax.

<compound statement):

----------> <conditional statement> -------->

| ^

|-----> <case statement> ------->|

| |

|-----> <loop statement> ------->|

9.2.1.

9.2.1 Conditional statement

Syntax.

<conditional statement>:

---> if --> <boolean expression> --> then --> <statement list>

| | |

|---> <orif list> ------->| |

| | |

|---> <andif list> ------>| |

|

|

|

<-----------------------------------------------|
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| |

|------> else --> <statement list> --------> fi ---------->

<orif list>:

---- <boolean expression> ----------------->

| |

|<------- or_if <----------|

<andif list>:

---- <boolean expression> ----------------->

| |

|<------ and_if <----------|

Context and Semantics.
For the execution of an if statement of the form:

if B1 or_if B2 ... or_if Bj

then

G

else

H

fi

the boolean expressions B1, .., Bj are evaluated in succession until the �rst
one evaluates to true, then the sequence G of statements is executed. If none
of the boolean expressions evaluates to true, then the sequence H is executed.
The conditional statement with the "else" part omitted is equivalent to the
conditional statement with the empty statement following the else symbol. If
the "andif" list occurs instead of the "orif" list, then the expressions B1, ...,
Bj are evaluated in succession until the �rst one evaluates to false; then the
sequence H is executed. Otherwise the sequence G is executed. When a boolean
expression occurs instead of an "orif" or "andif" list, then its value controls the
execution of the conditional statement in the standard manner. 9.2.2.

9.2.2 Case statement

Syntax.

<case statement>:

----> case --|

|

|-----------|
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| |-------------------->|

| | |

| <---- <statement list> <--- : -----| |

| | | |

|-> <arithmetic expression> ---> when ---> ---<integer>-------->| |

| ^ | ^ | |

| | -> <constant> ->| | |

| | | |

| <----- , -------------| |

| |

|-> <character expression> ---> when ---><character constant>->:-| |

^ ^ | ^ | | |

| | |-> <constant> ->| | | |

| | | | |

| |<--------- , --------| | |

| | |

|<------ <statement list> <----------| |

| |

| |

<------------------------------------------------------------|

| |

| |

|-> others ----> <statement list> ---------> esac ---->

Context and Semantics.
A statement:

case E

when l1:G1

...

when lk:Gk

others H

esac

is a WFF if E is an arithmetic or character expression and l1, ..., lk are sequences
of di�erent constants. If the list H is empty, then the "others" part can be
omitted. The case statement selects for execution a sequence Gi where the value
of E belongs to the sequence li. The choice others covers all values (possibly
none) not given in the previous choices. The choices in a case statement must
be mutually disjoint and if the "others" part is not present they must exhaust
all the possibile values of the expression E. 9.2.3.

9.2.3 Iteration statement

Syntax.
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<iteration statement>:

-------> <loop statement> ---------------------------------------->

| ^

|---> <loop statement with condition> --------------------->|

| |

|---> <loop statement with control variable> -------------->|

<loop statement>:

---> do -----> <statement list> ----> od --->

<loop statement with condition>:

--> while --> <boolean expression> --> do --> <statement list>--> od -->

<loop statement with control variable>:

---> for ---> <simple variable> -->:= --> <arithmetic expression> -->|

|

<------------------------------------------------------------------|

| |

|--> step --> <arithmetic expression>----> to ----->|

| |

|-->downto-->|

|

<---------------------------------------------------|

|

|-> <arithmetic expression> -->do--> <statement list>--->od -->

Context and Semantics.
Let us start from the semantics of loop and exit statements. The loop

statement:

do

G

od

causes the iteration of the sequence G until an exit statement is encoutered.
Consider the occurrence of the exit statement exit ... exit(k-times) where k
>=1 . Let us denote this statement by H. Suppose that statement H occurs in l
(l>=0) nested iteration statements G1, ..., Gl, i.e., the statement G2 is nested in
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G1, G3 in G2, etc. Let M be the smallest unit enclosing that occurrence of H. If
k>l then the execution of H causes the termination of the unit body M (jump to
the �nal end). Otherwise the iteration statement Gk terminates, and either the
execution of the iteration statement Gk-1 is continued if k<l or the execution
of the outermost iteration statement G1 terminates if k=l. The keyword repeat
may occur just after the sequence of exit's. Then the iteration statement Gk is
continued (if k<=l), i.e., the control is switched not outside but to the beginning
of the loop without the execution of the statements occurring after repeat. If the
statement Gk is a loop statement with the while condition, then the consequtive
iteration starts from the condition evaluation. If it is a for statement, then the
consequtive iteration starts with the change of the controlled variable value.

Remark.
The goto statement is totally deleted from LOGLAN-82 (contrary to other

languages, like ADA where goto within a single unit is allowed). The structured
statements de�ned above were applied to many examples of known algorithms.
These exercises showed that the proposed structured statements constitute a
good balance point between a non structured goto-label statement and a clas-
sical while statement (which often requires auxiliary control boolean variables).
Notice that the above unit M body is considered to be "non-concatenated", i.e.,
in the case of the jump to end symbol, this end is taken from the body of M,
not from the body of M concatenated with its pre�x sequence. We stress that
the textual control statements do not lead outside one unit.

End of remark.
A loop statement with condition:

while B

do

G

od

is equivalent to a loop statement of the form:

do

if not B then exit fi;

G

od

A loop statements with controlled variables are of the forms:

(*) for i:=A1 step A2 to A3 do G od

(**) for i:=A1 step A2 downto A3 do G od

The controlled variable i must be of discrete type. The statement (*) is equiv-
alent to the following sequence of statements:
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Av1:=A1; Av2:=A2; Av3:=A3; i:=Av1;

while Av3>=i

do

G;

i:=i+Av2

od

The statement (**) is equivalent to the above sequence of statements with the
condition Av3>=i replaced by Av3<=i and the assignment i:=i+Av2 replaced
by i:=i-Av2. The variables Av1, Av2, Av3 are �ctitious variables introduced
only in order to de�ne the semantics. The expression step A2 may be omitted
if the value of A2 equals 1. The value of the controlled variable i should not
be modi�ed inside the loop (however, the result of such a modi�cation would
be well-de�ned). Moreover, its value is determined when loop is terminated
according to the introduced semantics.

Example 9.1. A palindrome is a word which is identical when written from left
to right and conversely. The given algorithm looks for the �rst occurrence of a
palindrome in a text and writes its length, (if found).

unit palindrome: procedure;

var i, j, k: integer,

text: arrayof character;

begin

read(j);

array text dim (1:j);

for k:=1 to j

do

read (text(k))

od;

for i:=2 to j

do

k:=1;

while text(k)=text(i-k+1)

do

k:=k+1;

if k>i-k+1

then

write ("found at i-th item");

return

fi

od

od;

write ("not found")

end palindrome;

Example 9.2. A dictionary is a data structure S with the following operations:

member(x, S) - determines whether x is a member of S,
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insert(x, S) - replaces S by the union of S ∪ {x},

delete(x, S) - replaces S by the di�erence of S \ {x}.

The elements of the set S are assumed to be of the same type T and to be ordered
by the relation less. A dictionary will be implemented by means of binary search
trees BST. The user has the access to the operations member, insert, and delete
and does not have to bother about the way of their implementation. Below we
propose how to accomplish these operations as coroutines.

unit bst: class (type t; function less(x, y:t):boolean);

hidden root, e, i, d;

var root: node, member: e, insert: i, delete: d;

unit node: class (value: t);

var l, r: node;

end node;

unit e: coroutine; (*elem- output attribute*)

close trick, q, v;

var trick, elem: boolean, q, v: node, x:t;

begin

return;

do trick, elem:=false; (* loop for member *)

q:=root;

v:=none;

while q=/=none

do

if less(x, q.value)

then v:=q; q:=q.l

else

if less(q.value, x)

then v:=q; q:=q.r

else elem:=true; exit

fi

fi

od;

inner; (* elem=true iff x belongs to S *)

detach;

od

end e;

unit help: E coroutine;

taken trick, elem, q, v, x;

begin

inner; (* trick=true iff x does not belong to S *)

if not trick then exit fi;

if v=none

then root:=q

else

if less(x, v.value)

then v.l:=q
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else v.r:=q

fi (* after insert or delete *)

fi (* attach new node q to its father v *)

end help;

unit i: help coroutine;

taken trick, elem, q, x;

begin

trick:=true;

if elem then exit fi;

q:=new node(x) (* insert is a dummy if x belongs to S *)

end i;

unit d: help coroutine;

taken elem, q;

hidden close w, u, s;

var w, u, s: node;

begin (* delete is a dummy if x does belong to S *)

if not elem then exit fi;

w:=q;

if q.r=none

then q:=q.l

else

if q.l=none

then q:=q.r

else u:=q.r;

if u.l=none

then u.l:=q.l; q:=u

else

do s:=u.l;

if s.l=none then exit fi;

u:=s

od;

s.l.:=w.l; u.l:=s.r;

s.r:=w.r; q:=s

fi

fi

fi;

kill(w)

end d;

begin

member:=new e; insert:=new i; delete:=new d;

inner;

kill(member); kill(insert); kill(delete)

end bst;

pref bst(t, less) block

taken member, insert, delete;
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var y:t;

...

begin

...

member.x:=y;

attach(member);

if member.elem then ... fi;

...

insert.x:=y;

attach(insert);

...

delete.x:=y;

attach(delete);

...

end;
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Chapter 10

Exception handling

This section de�nes the facilities for dealing with errors or other exceptional
situations that may arise during program execution. An exception is an event
that causes a suspention of normal program execution. The occurrence of an
exception is expressed by raising a signal. Executing some actions in response
to the arising of an exceptional situation, is called signal handling.

Signal names are introduced by signal speci�cations. Signals can be raised
by raise statements, or alternatively, their raising is caused by an occurrence of
a run-time error. When an exception arises, the control can be passed to a user-
pointed handler associated with the raised signal. The principles of determining
a handler that responds to the raised signals are presented in 10.3. 10.1

10.1 Signal speci�cation

SYNTAX

<signal specification>:

---> signal --> <signal name> ---> ( --> <formal par. list> --> ) -->; -->

| | ||

| |-------------------------------->||

|<---------------------- , ---------------------------|

CONTEXT
The signal speci�cation de�nes signals which can appear in raise statements

and in signal handlers within the scope of the speci�cation. The identi�ers of
system signals, i.e., signals associated with run-time errors, are not speci�ed in
the signal speci�cation. Signal identi�ers are not accessible by remote access.
They can occur, however, in a hidden, close or taken list of a unit. 10.2

10.2 Signal handlers

The response to one or more signals is speci�ed by a signal handler.
SYNTAX

85



86 CHAPTER 10. EXCEPTION HANDLING

<handlers' declaration>:

---> handlers

|

|-----------> when ---> <signal name> --> : --> <statement list> --|

| | | |

| |<------ , -------| |

| |

|--------<------------------------------------------------------|

|

|-----------> others ----> <statement list> --|

| |

|----------------------------------------> end handlers

|

|-------------->

CONTEXT
Handlers' declaration may appear at the end of the declaration part of a

unit. All identi�ers visible in the unit and the signal formal parameters may
be used in the handler statements. A handler can handle the named signals. A
handler corresponding to the choice others handles all signals not listed in the
previously speci�ed handlers, including those whose identi�ers are not visible
within the unit.

Any statement (except inner) whose occurrence in a unit is legal may occur
in the handler.

Restrictions
The formal parameter lists of signals associated with the same handler must

be identical.
Example

Example 10.1. handlers

when emptytree: T:=new treelem; return;

others write(" signal not handled"); raise Error;

end handlers

10.3.

10.3 Signal raising

SYNTAX

----> raise ---> <signal name> --> ( --> <actual par. list> --> ) ----->

| |

|----------------------------------->|

CONTEXT
The signal name in the raise statement ought to be visible in the unit in

which the raise statement appears. The formal and actual parameter lists of
the signal must be compatible.

Example ��-
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Example 10.2. raise empty(exprstack); raise end_of_�le (input);

SEMANTICS
When a signal is raised, the normal process execution is suspended and the

control is passed to a signal handler. The actual parameters are transmitted to
the handler, as in the case of a procedure. However, the crucial point of excep-
tion handling is the way in which such a handler is searched for and activated.
Below we present the principles of handler determination.

Let us assume that signal f is raised in object Ok. This object and its
corresponding DL-chain may be illustrated as follows:

------------ ------------ ------------

| | | | | |

| | |handlers | | |

| |<---...........<---|when f |<---........<---|raise f |

| | | | | |

| | | | | |

------------ ------------ ------------

O1 Oi Ok

where O1 is the object of a coroutine or a process.
The objects in the DL-chain of Ok are successively checked whether they

contain a handler for signal f or a handler corresponding to the choice others.
The object Ok is checked �rst, next the object Ok-1 is checked and so on. This
search stops when the �rst object Oi containing the handler for f or the handler
for others is found. If such a handler is not found in this DL-chain, then the
system trap handler is executed and the process terminates. For the situation
presented in the �gure, the handler from object Oi is executed, provided that
none of the objetcs Oi+1, ..., Ok contains a handler for signal f or the handler
for others.

In a concatenated object, i.e., in an object corresponding to a unit with a
non-empty pre�x, the handlers declared in the pre�xing unit are covered by the
handlers declared in the pre�xed unit if they have the same identi�ers. Thus
the signal raised during the execution of the pre�x statements may be handled
by a handler declared in the pre�xed unit. The handler corresponding to the
choice others responds to all the signals not listed in the handlers declared in
the units from the pre�x sequence. The handler for the choice others is taken
from the innermost unit (with respect to pre�xing).

Example

Example 10.3. block

unit A: procedure;

begin

...

raise f

...

end A;

unit B: procedure;

handlers

when f: .....; (* <----------- handler H1 *)
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end handlers

begin

...

call A;

...

raise f;

...

end B;

signal f;

handlers

when f: .....; (* <----------- handler H2 *)

end handlers;

begin

...

raise f;

...

call B;

...

end

If signal f is raised in the block satement, handler H2 will be executed. If
signal f is raised in procedure B or in procedure A, handler H1 will be executed.

block

signal f;

unit A:class;

signal g;

handers

when g: .....; (* <---------- handler G1 *)

end handlers;

begin

...

raise f;

...

raise g;

...

end A;

unit B:A class;

handlers

when f: .....; (* <---------- handler F1 *)

when g: .....; (* <---------- hadller G2 *)

end handlers;

begin

...

raise f;

...

raise g;

...

end B;

begin
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...

end;

If signal f is raised in an object of class B, handler F1 will be executed. If signal
g is raised in an object of class B, handler G2 will be executed even if the signal
is raised in the statements of class A. 10.4.

10.4 Handler execution

A handler execution terminates if one of the special control statements is exe-
cuted.

SYNTAX

<handler termination>:

------> return ----->|

| |

--->|---> wind --------------->

| |

|---> terminate ---->|

CONTEXT
The statements wind and terminate may appear only within a handler dec-

laration. If none of them occurs in a handler statement list, the statement
terminate is assumed to be the last statement in such a list. The execution of
the statements wind and terminate causes an abnormal termination of the cor-
responding objects from the DL-chain (see below). In that case, the "last-will"
statements are executed before the termination of the objects.

SYNTAX

<last-will statements>:

-----> last_will ----> : ---> <statement list> ----------->

CONTEXT
Any unit body may be terminated with a sequence of statements labelled

by last_will. They are not executed during normal program execution. The
statement inner must not occur within the "last-will" statements.

SEMANTICS
Let us assume that a signal f raised in an object Ok is handled by a handler

H from an object Oi:

O1 Oi-1 Oi Oi+1 Ok

----- ----- ----- ----- -----

| | <---...<---| |<---| |<----| |<---........<---| |

----- DL ----- DL ----- DL ----- DL -----

| |

| SL |
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----- |

| | H-------------------------------->|

-----

The statement return in a handler has a similar e�ect to that of the statement
return in a procedure. The handler object is deallocated and the control is
passed to the statement just following the corresponding raise.

The execution of the statement wind causes the termination and the deallo-
cation of the objects H, Ok, ..., Oi+1. Before the termination of each of them,
the "last-will" statements, if any, are executed. They complete the object ex-
ecution. In the pre�xed object the "last-will" statements of each pre�x are
successively executed, starting from the innermost and ending on the outermost
pre�x. When the termination and deallocation of these objects is completed,
the control is passed to object Oi, where the computation is continued in a
normal way. Note that the wind statement in the case of k=i is equivalent to
return.

The statement terminate causes the termination and the deallocation of the
objects H, Ok, ..., Oi+1, Oi. They are completed as in the case of wind, i.e.,
the "last-will" statements are executed as well. The control is passed to Oi-1,
if such an object exists. If Oi-1 does not exists, i.e., Oi is the head of the DL-
chain, then this head is terminated (cf. the semantics of the end statement of
coroutine and process).

Remark
If any control statement (raise, detach, attach, etc.) is executed within

the "last-will" statements and the control returns to the interrupted object,
the execution of the "last-will" statements as well as the termination of the
remaining objects in the DL-chain will be continued.

End of remark 10.5.

10.5 System signals

Some of the signals, called system signals, are prede�ned in the language. They
are raised automatically when a run-time error or another exceptional system
situation appears. System signals have no parameters. They are not declared
in the signal speci�cation, but the user may declare handlers for them. The
execution of the statement return is not allowed in the handler responding to
such a signal (note that sometimes the statement wind is equivallent to return).

The following signals are prede�ned in the language:

acc_error A remote access to a non-existing object or an error in the expres-
sion ...x qua A (x does not exist or the type of the object pointed to by x
is not pre�xed by the type A).

mem_error There is no free space for the allocation of a new object.

num_error A numerical error, such as for instance integer over�ow, �oating-
point over�ow, division by zero etc.

log_error Any kind of the LOGLAN Running System error (except access
error) like e.g., an attempt to pass the control in a way inconsistent with
the LOGLAN-82 rules, an attempt to kill an active object, etc.
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con_error The value of an index expression exceeds the range of array indices
or the array bounds are incorrect.

sys_error Any kind of system error like e.g., input-output error, parity error,
etc.

Some other errors may also be introduced as system errors but are not prede�ned
in the language.
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11.



Chapter 11

Processes

Attention. This chapter need to be rewritten since the notion of process as
implemented in the distributed version of Loglan82 di�ers from the �rst version;
see User's guide and micro-manual.

Let us consider a snap-shot of a program's computation. This snap-shot
is called a con�guration. Up till now a con�guration has consisted of a �nite
number of objects creating a number of coroutine chains. The main program is
the only chain with the head of process type. Moreover, exactly one object has
been considered "active" - i.e., its statements have been executed by a phys-
ical processor. By a physical processor we mean here an actual processor as
well as the portion of time of a central unit. A con�guration with many ac-
tive objects illustrates the computation of a program with parallel statements.
Concurrent computation to some extent generalizes coroutines, i.e., a con�g-
uration may contain many coroutine chains with heads of coroutine type and
many process chains with heads of process type. The fundamental notion is
that of a process. A process may be treated as a sequential program - only one
statement of a process is being executed at a time. A parallel program consists
of a number of processes. In LOGLAN-82 a process is a system type. A process
object may be generated by means of the new statement. The generated process
object is suspended with the execution of the return statement. This process
may be resumed by means of the resume statement. After resumption, process
statements are executed by a new processor, concurrently with the other active
processes. During its computations, the process may suspend its actions (but
not the actions of other processes) by means of the stop statement, then it may
be resumed again, and so on. Observe that the attach and detach statements
switch the processor from one object to another, while the resume and stop
statements acquire and release a processor respectively. Resumption of a corou-
tine chain is connected with the control transfer from the active coroutine chain.
Resumption of a process chain acquires new processor for that chain. Similarly,
suspension of a coroutine chain gives the control back to another chain, while
suspension of a process chain releases the processor. Note that a process object
is more complex than a coroutine object. So coroutine operations are more
e�cient with respect to time and space.

In order to deal with communication among processes (e.g., by messages)
as well as their competition in acquiring a resource (such as a shared variable)
one should have the ability to de�ne some synchronizing operations. Those
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operations arise from the following constrains:
- timing, i.e., mutual exclusion of actions; - scheduling i.e., stating which of

the waiting processes is to be resumed as the �rst one.
For this purpose some synchronizing facilities are provided. One may think of

many such facilities, from low level ones, such as semaphores to high level ones,
such as monitors. The decision which one of the synchronization methods should
be chosen and incorporated into the language is weighty. The primitive tools are
di�cult to use, but they are e�cient. The high-level constructs are safer, but
they often limit parallelism (because of the strong synchronizing constraints).
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Chapter 12

File processing

13.1.

12.1 External and internal �les

External �les are named after character strings and denote peripheral devices
or data sets. The logical and the physical structure of an external �le depend
on the given computer and its �le system, and so, for the users of LOGLAN-82,
external �les are accessible via internal �les only.

An internal �le is an object of the prede�ned class type �le. When an
internal �le is generated, it may be associated with an appropriate external �le.
Sometimes the user wish to generate an internal �le not associated with any
speci�ed external one. Such a �le is called a local �le and its life-time is not
longer than the life-time of the program where it has been generated.

A �le is always treated as an unbounded sequence of bytes. A �le can be
read or written, and can be set to a required position. Each transmission from
or on a �le starts at the byte pointed out by the so-called current �le position
advanced by the number of transmitted bytes. File size is de�ned as the greatest
number of a byte transmitted on the �le.

There are some primitive facilities in the language which enable the user to
read or write a speci�ed number of bytes, to change the current �le position, to
obtain the �le size, etc. All these facilities are in some sense low-level, since they
operate on bytes. The user is able, however, to declare a class for �le processing
with high-level operations.

An example of a system class which de�nes a set of input-output operations
applicable to �les containing elements of a single type is shown in 13.6. More-
over this is not the only way to de�ne high-level �le processing. The user can
declare, for instance, a class which de�nes operations applicable to �les contain-
ing elements of mixed types, a class which de�nes operations on a �le of arrays
of various lengths, etc. 13.2.

12.2 File generation and deallocation

Before any operation on a �le can be carried out, an internal �le must be gener-
ated. If the user wishes to communicate with an external �le, then the generated
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internal �le must be associated with that external one. When the generation of
an internal �le is in e�ect, the �le is said to be open.

SYNTAX

<file declaration>:

-----> <variable list> ----> : file -------------->

<file generation>:

--> open

|

|

(

|

<object expression> ---> , ---> <string> ----> ) ------->

| |

|-------------------->|

SEMANTICS
Variables of �le type are declared as any other variables of class type. An

object of �le type (internal �le) has no attributes visible to the programmer. File
generation di�ers from class generation. It is performed by an open statement.
If the second argument appears, then a new internal �le associated with an
external one (identi�ed by the string) is generated. The reference to such an
internal �le is set to the variable of type �le occurring as the �rst argument. If
there is only one argument, then a new local �le is generated and the reference
to the corresponding internal �le is set to the variable of type �le occurring as
the argument of the operation. For instance:

open(X, "teletype")

generates a new internal �le associated with the external �le "teletype".
Similarly

open(Y)

generates a new local �le referenced by Y.
Thus the operation new is not applicable to �les. Moreover, remote access

to internal �les is not permissible (no attributes visible to the user). Except �le
generation, remote access and pre�xing, �le type can be applied as any other
class type. In particular, expressions of �le type may be compared, assignments
on variables of type �le are allowed, the user can declare a function of type �le,
etc.

Remark
External �le processing is not prede�ned in the language. The operations

on external �les, such as �le creation, �le deletion, �le protection and so on,
depend on the given �le system. They may be introduced into the language as
standard functions or procedures in the individual implementation.

End of remark
After processing has been completed on a �le, it can be closed and the

corresponding internal �le may be deallocated. These actions are performed by
the kill statement, where the argument points to the corresponding internal �le.
13.3.



12.3. BINARY INPUT-OUTPUT 99

12.3 Binary input-output

SYNTAX

< binary input-output operations>:

---> put ---> (---> <object expression>-> , ---> <expression list> --> ) ---->

---> get ---> (---> <object expression>-> , ---> <expression list> --> ) ---->

SEMANTICS ���
Operation put transmits a sequence of bytes from memory to an open �le

(de�ned by the �rst parameter) at the current �le position. This sequence of
bytes is de�ned by the list of expressions. For any list element, going from left
to right, the value of the expression is computed. If this value is primitive,
then the transmitted bytes correspond exactly to the internal representation
of the value. If the value is a reference to an object, then the transmitted
bytes cover all non-system attributes of the referenced object. If this value is
none, then no transmission is performed. Operation get transmits a sequence
of bytes from an open �le (de�ned by the �rst parameter) to the memory. If a
list element is an object expression, then the transmitted bytes cover all non-
system attributes of the referenced object (hence, if the value of this expression
is none, then no transmission is performed). Otherwise, list element must be
a variable of primitive type, and then the transmitted bytes cover exactly its
internal representation. The sequence of transmitted bytes starts at the current
�le position.

For instance, let x be a real, i an integer and Y a reference variable to an
object of type A:

unit A:class(j:integer);

var u, v, w:real;

end A;

Then the statement

put(F, x, i, x+i, "nothing", Y)

transmits to �le F the internal representation of the values of x, i, x+i, the
internal representation of the text "nothing" (i.e., the sequence of characters)
and the internal representation of the attributes j, u, v, w from the object
referenced by Y. 13.4.

12.4 Other prede�ned operations

SYNTAX

<size operator>:

|-----> <type> ----------->|

| |
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------> size ---> ( -| |---> ) -------->

| |

|----> < expression> ----->|

<eof operator>:

------> eof -----> ( ---> <object expression> ----> ) ------------------>

<position operator>:

----> position ---> ( ---> <object expression> -----> ) --------------->

<seek operation>:

--> seek --> ( --> <object expression> --> , --> <arithmetic expression> --> ) -->

SEMANTICS
The size operator of integer type gives the number of bytes of the internal

representation of an argument. If the argument is an expression of primitive
type, then the returned value may be computed at compilation time and equals
the number of bytes of the internal representation of that primitive type. If
the argument is an expression of class or array type, then the returned value
gives the number of bytes of the object referenced by the argument (except
system-attributes). If the object none is referenced, then the returned value
is 0. Another kind of argument of size operator is type. It may be either an
explicitly written type or a formal type. If the argument is a primitive type or
a class type, then its length in bytes computed at compilation time is returned.
If the argument is an array type, then its size cannot be established and so the
expression is incorrect. If the argument is a formal type, the returned value
is de�ned similarly but computed at run time. Thus when the actual type is
array the run time error is raised. In all these cases size operator informs the
user about the length in bytes of the internal representation of the argument
(if possible). In particular, the argument may be a �le and then the length in
bytes of the corresponding external or local �le is returned.

The argument of the boolean operator eof must be a �le. It returns the value
true i� the current position of the �le exceeds or equals its size. The argument of
the integer operator position must also be a �le. It returns the current position
of the �le. The �rst argument of the seek operation must be a �le. Then the
current position of this �le is set to the value de�ned by the second argument
of the operation. 13.5.

12.5 Text input-output

Besides binary input-output LOGLAN-82 provides text input-output operations
also. The operations read and write are available for input and output in human
readable form. Namely, operation read decodes a sequence of bytes into the
internal representation of the corresponding value before the transmission is
performed. Similarly operation write encodes the internal representation of a
value into the corresponding sequence of bytes before transmission is performed.

SYNTAX.
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<text input-output statement>:

|--------------------------->|

| |

--> read --> ( --> <object expression> ---> , --> <variable list> --> ) ---->

|------------------------------------>|

| |

->writeln --> ( --> <object expression> --> ) ------------------------->

|

|

->write --> ( -------------->|

| |

<object expression>-> , -> <expression> ----> <format> ---> ) -------->

^ |

|<--------- , ------------|

<format>:

------------------------------------------------------------------->

| ^ ^

|-> : -> <arithmetic expression>-|- : -> <arithmetic expression> -|

SEMANTICS.
An input statement read(F, y1, ..., yk) is correct if F is a �le and y1, ..., yk

are variables of integer, real, or character type. File F is treated as a sequence
of symbols. The execution of that statement causes the input data represented
as the corresponding sequence of symbols from �le F to be read, decoded and
assigned to y1, ..., yk respectively. The input statement is de�ned if the as-
signments are de�ned (going from left to right). An output statement write(F,
E:A1) is correct if F is a �le, E is an expression of a primitive type, and A1 is an
arithmetic expression of integer type. Consider �rst the case where expression E
is of integer type. The value of expression A1 determines the number of symbols
to be outputed on �le F. If the speci�ed number of symbols is greater (less) than
the number of symbols required for the representation of the value of expression
E, then the value of E is preceded by the appropriate number of blanks (then
the format indicates a standard one (dependent on an individual implementa-
tion). If expression E is of real type, then the output statement may be of the
form write(F, E:A1:A2), here A1 and A2 are arithmetic expressions of integer
type. The meaning of the expression A1 is hat described above, the value of the
expression A2 determines the number of digits following the decimal point. In
case of an output statement of the form write(F, E:A1), where E is of real type,
the exponent part is always present. The absence of format indicates a standard
one (dependent on an individual implementation). An output statement of the
form write(F, E) where E is an expression of character type causes the external
representation of E to be outputed on �le F. If E is an expression of string type,
then its external representation is outputed on �le F. In this ase format A1 may
appear and de�nes the maximal number of symbols which may be outputed,
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i.e., if the length of a string exceeds the de�ned format, then the last symbols
are dropped. In the statement write(F, E:A1:A2) format A2 is computed �rst
(if present), format A1 is computed next (if resent), and �nally the value of
E is computed and outputed according to the de�ned formats. The execution
of an output statement with a list results in the successive evaluations of the
expressions A2, A1, E, and in the output of the computed value. Statement
writeln outputs the end of line symbol after output is completed. If writeln has
only the �le parameter, then the end of the line symbol is outputed on �le F.
If no �le is speci�ed, a default standard input or standard output �le is used.
At the beginning of program execution, these �les are open and associated with
two implementation de�ned external �les. 13.6.

12.6 Example of high-level �le processing

A class de�ning high-level �le processing is presented below. The user can
pre�x the main block of his program by such a class, and then, the high-level
�le operations are provided automatically.

unit input_output class;

hidden uni_file;

unit uni_file :class(type T);

hidden element_size;

var F:file, element_size:integer;

unit set_position:procedure(i:integer);

begin

call seek(F, i*element_size)

end set_position;

unit file_position:function:integer;

begin

result:=position(F) div element_size

end file_position;

unit end_of_file:function:boolean;

begin

result:=eof(F)

end end_of_file;

unit file_size:function:integer;

begin

result:=size(F) div element_size

end file_size;

unit read_element:procedure(output x:T);

begin

get(F, x)

end read_element;

unit write_element:procedure(x:T);

begin

put(F, x)

end write_element;

begin

element_size:=size(T)

end uni_file;
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unit inout_file:uni_file class(S:string);

hidden F;

begin

open(F, S)

end inout_file;

unit in_file:inout_file class;

hidden write_element;

end in_file;

unit out_file:inout_file class;

hidden read_element;

end out_file;

unit local_file:uni_file class;

hiddden F;

begin

open(F)

end local_file;

unit close_file:procedure(E:uni_file);

begin

kill(E.F); kill(E)

end close_file;

end input_output;



104 CHAPTER 12. FILE PROCESSING



Bibliography

[1] W. Bartol and D.Szczepa«ska. Data struture for simulation in loglan. Tech-
nical Report 373, IPI PAN, 1979.

[2] W. Bartol, A. Kreczmar, A. Litwiniuk, and H. Oktaba. Semantics and
implementation of pre�xing at many levels. In A. Salwicki, editor, Proc.
Logic of Programs and Their Applications, volume 148 of LNCS, pages 45�
80. Springer Verlag, 1983.

[3] O. J. Dahl, B. Myhrhaug, and K. Nygaard. Common base language (sim-
ula67). Technical Report S-22, NCC, Oslo, 1970.

[4] G. Mirkowska and A. Salwicki. Problems and theories inspired by the loglan
project. In Algorithmic Logic, pages 298�347. PWN & D.Reidel, 1987.

[5] W. N. The programming language pascal. Acta Informatica, 1:35�63, 1971.

[6] A. Salwicki, W. Bartol, H. Oktaba, and T. Müldner. Loglan 77 - de�nicja
j�ezyka programownia. Technical Report 20, Instytut Maszyn Matematy-
cznych MERA, Warszawa, 1977.

105


	Preface
	Thirty years later
	Why Loglan?

	Introduction
	Basic characteristics
	Control structure
	Block structure
	Procedures and functions
	Classes
	Inheritance alias Prefixing
	Object deallocator
	Arrays
	Parameters
	Variable parameters
	Procedure and function parameters

	Coroutines
	Processes
	Other important features

	Lexical and textual structure
	Types
	Primitive types
	System types
	Compound types and objects
	Array type
	Class type

	Formal types

	Declarations
	Constant declaration
	Variable declaration
	Unit declaration
	Class declaration (introduction)
	Subprogram declaration (introduction)
	Block
	Inheritance or Prefixing
	Formal parameters
	Unit body


	Visibility rules
	Unit attributes
	Hidden attributes
	Taken attributes
	Legal and illegal identifiers
	Close attributes

	Static location
	Objects
	Virtual attributes
	Valuation of virtuals

	Dynamic location

	Consistency of types
	Expressions
	Constant
	Variable
	Simple variable
	Subscripted variable
	Dotted variable
	System variable: result

	Arithmetic expression
	Boolean expression
	Character expression
	String expression
	Object expression

	Sequential statements.
	Sequential primitive statements
	Evaluation statement
	Configuration statement
	Simple control statement
	Coroutine statement

	Compound statements
	Conditional statement
	Case statement
	Iteration statement


	Exception handling
	Signal specification
	Signal handlers
	Signal raising
	Handler execution
	System signals

	Processes
	File processing
	External and internal files
	File generation and deallocation
	Binary input-output
	Other predefined operations
	Text input-output
	Example of high-level file processing


