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Abstract

LOGLAN is a pregramming language proper for hier’rchical data types.

LOGLAN is an extension of SIMULA-67 and especially allows pre-—
fixing of modules by classes at many levels. This language con-

struct causes semantics specification and implementation problems.

In order to study these problems the programming language Mini-
LOGLAN is introduced which is a smallest extension of ALGOL-~like
languages that allows prefixing. Based on the notion of original
prefix elimination an algebraic pure static scope semantics of
Mini-LOGLAN-programs is given, By means of complement modules
and their unigue existence a new principle of associating lists
of display register numbers to modules is introduced. The

number of necessary display registers is bounded by the height
of the nesting tree of program modules. The proposed scheme of
addressing does not cause display register reloadings while
computing in one prefix chain. The designed run time system
implementing pure static scoping admits a more efficient imple-
mentation of many level prefixing than the existing implementa-
tion of LOGLAN with its quasi-static scoping does.

Keywords
LOGLAN, SIMULA, class, many level prefixing, hierarchical data

types, static scoping, algebraic semantics, complement mcdules,
implementation, run time system, display registers.
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0. Introduction

There are many situations in programming which need an appropriate

software tool. Let us guote some cases.

1. Abstract data types. Following Hoare [Ho72] one can find

his advice of factorization a convenient and useful principle.
Let us recall what the orinciple says: Whenever possible split
any reasonable "closed'piece of software inte two modules: An
abstract program accampanied by a module implementing the data
type (i.e. representation of data and operations on them). The
advantages of the factorization are easily seen. One can use
the implementing module for several abstract programs and/or
one can retain the abstract program and change the implementing
module in order to gain better efficiency. When we think of
separate compilation of modules, the principle of factorization
seems to be a good advice. However, there are only a few languages
supporting this style of pregramming.

2. Enforcing certain rules or axioms. The best example is the

protocol of mutual exclusion of entry procedures of a monitor.
3. Description of families of data structures.

3.1. It is frequently so that we treat a declaration of a data
type as a description of the set of objects which can potentially
be constructed and memorized in a computer. In many situations
there is a need to develop a hierarchy of (potential) sets

of objects. BE.g. in the automatization of a bank we must define

a hierarchy of various types of records.

3.2, Similarly one can think of hierarchies cf abstract data
types. Suppcse we have defined a problem oriented language as a
data structure, an algebra A extended in various ways by
structures B,C,... In this way one can arrive at a tree-like
structure of problem oriented languages, ¢f. simulation class
in LOGLAN. '




3.3. In programming we meet often a need to define and implement
dynamic systems in which objects can also play an active role

(realized either as coroutines or processes).

4. Factorization of algorithms. Sometimes two or more algorithms
have common initial parts {cf. insert, member, delete in binary
search trees). In such situations it is natural teo extract the
common part in order to avoid repetitions of text. Obviously one
can achieve the desired result with the help <f procedures, but
prefixing all the procedures by a common prefix would be also
interesting. B
Regarding the situations 1.-4. we see that in almest every case
we can achieve the desired gcal by means of prefixing.Prefixing
which can alsc be explained as a rule of composition of modules
has been invented by 0.J.Dahl, B,Myhrhaug and K.Nygaard [Da70]
and introcduced in SIMULA-67 for the first time. In order to
understand prefixing one has to be acquainted with the notion
of class (again SIMULA-67 was the first language which incor-

porated classes}.

Prefixing is a two argument operation on modules of programs.
The prefix should be a class, the prefixed module can be of
any kind: class, procedure, functien or block. Roughly speaking
the result of prefixing is the module obtained by concatenation
af the declarative parts of two modules and by enclosing the
statement part of the prefixed module by the prologue and epi-
logue coming from the prefixing module. The details will be
. explained later. What is more difficult to accept at a first
encountering with prefixing is that the result is not a visible
module. In some sense we operate in a free algebra of modules
with the prefixing operation, i.e. the module

<name> : <prefix identifier> <prefixed module>

represents the result of prefixing.

This form of program construction has an unexpectedly broad

spectrum of applications. In fact, we can not say that all
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possible advantages of prefixing are known already.

The reader should not be misled by a first impression: The
concatenation rule can be explained in terms of textual cpera-
tions, but the realization should not be done by textual opera-
tions.Let us recall the analogy between the copy rulé”for proce-
dures and implementations of procedures in computer

The history of prefixing can be traced back to SIMULA-67. This
attractive software tool has been overlooked for years and the
community of software engineers had poor conscience of the

possibilities offered by prefixing.

Before we shall pass to further history let us mention a few
drawbacks of SIMULA's concept of prefixing. In SIMULA there are
two system classes which serve as problem oriented languages:
SIMSET and SIMULATION which is prefixed by SIMSET. There is no
tool for enlarging the set of system classes however. SIMULA

has also a restriction: Both arguments of prefixing operation
must be brothers or cousins in the tree of nesting structure of
program modules (same level of prefixing)}, they canncot be in a
nephew-uncle relation (multi-level prefixing). Due to this limi-
tation there is no chance to extend the library of system classes.
Also separate compilation of medules is difficult and of limited
application due to the same reason. LOGLAN a programming language
designed and implemented at the Institute of Informatics, Univer-—
sity of Warsaw, abandons this limitation. It has turned out
however that

1. it is not clear how to understand the prefixing operation if
the restriction is abandoned,

2. it is difficult to find an efficient and correct implementation
of prefixing by a computer system {compiler plus runtime system).
S.Krogdahl [Kr79] has discussed problems concerning many level
prefixing and its implementation. There have been long studies

and discussions in the Warsaw group. A first sclution has been
proposed in 1979 and realized in 1981 by a team led by A.Kreczmar.
The results were interesting and of commercial value.




In 1983 H.Langmaack has observed that the implemented semantics
of LOGLAN in certajn sitwuations does not behave according to the
rule of static scoping and that this drawback can be overcome by
a new principle of associating display register numbers to
modules. His talk at the Zaborow Summer Schoecl on LOGLAN 1983
has caused breoader interest. Now we present a version which

contains contributions of several persons.

Part 7. begins with a presentation of Mini-LOGLAN. This is a
smallest extension of the concepts of ALGOIr or PASCAL-like
languages which admits prefixing. Its abridged form enables

to concentrate on main problems of prefixing. The important
notions of prefix chain and binding between applied and defining
occurrences of identifiers are introduced. Based on the notion

of original prefix elimination an algebraic semantics of programs

with prefixing is given.

Part 2. of the paper is divided into five chapters. Chapter 2,1
introduces the important notion of complement module and the
Main Lemma on unique existence of complement modules is stated
and proved. In Chapter 2.2 a new principle of associating lists
of display register numbers to modules is proposed which is a
crucial point in efficient pure static scope compiler construc-
tion for LOGLAN. The number of necessary display registers is
bounded by the height of the module tree of a program and
nevertheless the proposed scheme of addressing does not cause
display register relcadings while computing in one prefix chain.
These features essentially improve the efficiency of generated
code and run time system as compared with the existing LOGLAN
compiler which implements quasi-static scoping. Pure static
scoping is not only intellectually more pleasing than other
semantics propeosals, it admits even a more efficient implemen-—
tation. Chapters 2.3 and 2.4 contain the design of run time
storage and generated code; run time system subroutines are
described in Appendix G. Chapter 2.5 shows different run time

systems which need less storage place.




1. Semantics specification

1.1 A contextfree - like grammar for Mini-LOGLAN

In order to enable a proper treating of semantics specification and
implementation of programming languages with prefixing we should like
to present in Appendix A the language Mini-LOGLAN which is a smallest
extension of ALGOL- or PASCAL-like languages which allows prefixing.
The grammar for Mini-LOGLAN is not complete but contains all relevant

parts to talk about prefixing.

Modules are blocks, procedures and classes and they can be prefixed by
classes (which have no local formal parameters in Mini-LOGLAN) . Procedures
need not necessarily be prefixed; their prefixing can be simulated by
prefixing of their bodies written as blocks. A class initialization

new ¢
can be simulated by a simple prefixed block
n: & block begin end n
with an empty declaration and statement list. The main part of the state-
ment list I of a class body contains exactly one simple control state-
ment inner with its prologue I, and epilogue Lyt

L= E1 inner 22.

The main part of a program piece is that part outside all inner proce--

dure or class modules.

The grammar shows indications where non-standard, non—-system identi-
fiers occur in a defining manner, Further defining identifier occur-
rences are variable identifiers in variable declarations and formal
parameter identifiers in formal parameter lists. All other non-—
standard, non-system identifier occurrences are called applied.

1.2 Basic Definitions

A syntactical Mini-LOGLAN-program (program for short) = is a finite string
of lexical entities generated by the Mini-LOGLAN-grammar with

<pregram>» as its axiom. LexXical entities are identifiers (including
system identifiers = woxrd delimiters = word symbols and standard
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identifiers),numbers, strings and delimiters. Every program = has a
length (#!>0. s is called a substring of = iff = = xsy. The couple
(i,s) is called an occurrence of a substring in = {or shorter: a

S

substring in =) 1ff 5 = sy and i = {xi+1. We write also “s and even
s for (i,s) as soon as no misunderstandings are possible. We shall

mainly talk about structured substrings in =; these are substrings

in r generated by the (unigue because the grammar is unambigous)
structure tree of w. The generating subtrees of structured sub-

strings in the structure tree of 7 are uniquely determined. Two
structured substrings are either disjeint or contained in each other.
An occurrence 1 in a program n is an integer with 1sis|a]|. We are

especially interested in identifier occurrences lg in m (or identifiers

in n) where £ 1s a non-system, non-standard identifier and lE is a
substring in 5. Unless especially mentioned we shall understand the

word "identifier" in this restricted sense.

Positions of defining cccurrences of identifiers in a program have

been indicated in the grammar, all other occurrences are applied
ones. A module occurrence iM in a program = starts with block, class

or proc and finishes with a matching end-symbol; we speak about
block, class or procedure modules respectively. Modules % in

form a tree; they have nesting levels vy z1; the largest module in
3 M
a program is a block module 1M1 and has level 1. If an occurrence i

J
or a structured substring is is in 1M1, j1si<j1+|M1!, then it has an

environment module env(i) resp. envi(’s), namely the smallest module

M in which i occurs, jSi<j+|M|. The associated local identifier list
locidl(jM) of a module in 7 is the orde;ed list of all Qefining
identifier occurrences ig with env(i£)=jM. Ordering in this list
means that 1151 is left of 1252 iff i1<i2.

1.3 BRBipding Function and Prefix Chains

The kinding function bdfct(i,£) of an identifier § with respect to
occurrence i and the binding function bdfctpref(i,&,lh) of an

identifier £ with respect to occurrence i in a prefix chain starting

~
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with class identifier occurrence "n in 7 are mutually recursivelw
defined:

bdfet (i, £) =4
if i is outside the largest module M, in 7
then if v is a block named by an identifier equal to the
argument £
then ¢
else undefined fi 3
else if E occurs in locidl{env(i))
then the rightmost entry jE in locidl(env (i)}
else if env(i)=JM has a prefix identifier =y
then bdfctpref(j—T,E,j—1n}
else bdfet(j-1,8)£i £i fi

bdfctpref(i,irlﬂ)=Df
if bdfct(l,n) is a defining class identifier occurrence kn
with its class module mM,m=k+3 or m=k+2 depending on
whether ™1 is prefixed or not
then if £ occurs in locidl(mm)_
then the rightmost entry It in locidl (Mm
else if ™ has a prefix identifier m—1€
then bdfctpref (i,£,™ 7y
else bdfct(i,g) f£i fi
else undefined fi

Tf bdEct(i,£) is J£ and if i an@ j are inside the largest module M,
in m then the level of env(jﬁ} is obviously s the level of env({i).

The binding function of an identifier occurrence iE in m is
bafet (“g)=_, bafctii,£)

and the prefix module of a module iM in w is
pref(im}=D

if M Eas a prefix identifier i;1n
then 1f bdfct{i-1,n) is a defining class identifier
accurrence kn with its class module m‘M,m=k+3 or m=k+2
then ™M -
else undefined fi
else undefined fi




For pref (M)=M" we write also M ---->M',

The prefix chain of M is the seguence

: ) .
pref (*M) <-- pref1(lM)<-—— prefo(lﬁ)
which is of length 150 iff pref ' (M) is defined but preft (fm)

is not defined. The medule levels from right to left are not increa-
sing, obviously.

We dencte the smallest strict environmental module of a medule M by

strenv (M). If M is named by an identifier iE in front of M then
strenv (M} = env(lE)
or both are undefined (in case M = M) . )

Let M be a module occurrénce of level UM and let

M‘I"_M2(—"":—M «— M =M

with

Mi"1= strenv(Mi)

be the chain of environmental (suriounding) modules of M. The total

prefix chain of M is the list
o} i o}
pref” (M,)pref (My}... pref (M5)

: T, =
M (o]
M. ) ... pref (M ).

VM M

pref

M1 has nc prefix module because a possible prefix identifier would
not be bound to a defining class identifier occurrence. If we replace
every module M' in the total prefix chain by its local identifier list
locidl(M') and prefix the resulting list by the possible defining
jdentifier occurrence1£ in front of the whole program 7 then we

get the so called total identifier list totidl(M].

Let us assume that all prefix chains in v are finite. Then we may
characterize the binding function bdfct{i,E) with the help of the
notion ;otal jdentifier list: Let i be an cccurrence in the largest
module MM, in m with i,si<i +|M,|. Then bdfct(i,£) is defined to be

Jn if and only if there is a rightmost identifier entry h; in
totidl{env(i}) with Z=n=f and h=j.
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i, £ and bdfct(i,E)=JE determine especially a miniwal module

minmod{i,E) with aidnmed (2, £
q
env (i) )
such that 35 occurs in the local identifier list of a module env(]E)

in the prefix chain of minmod (i,E): ;
* B minmod {i,&)-%3 env(lg)

al

env (i)
& closed program m is one where every applied identifier ig in T is
bound to its associated defining occurrence jE=bdfct(i§) and Wheré*“/_
all prefix chains of modules in 7 are finite. If all applications
in a closed program "make sense" then we talk about a compilable
or proper program. A closed program T mav be named by a block identifier
15 but 7 has no orefix.
A program m is called to be distinguished iff different defining
occurrences of identifiers iE#jn in 7 are dencted by different
identifiers E#n and free identifiers are different from hound
ones; the latter condition is always satisfied in a closed program.
Bound renamings of identifiers in 7 can always generate a so called

congruent distinguished program Ta-

Aprendix B shows a program exampls wy with the fellowing environmental

and prefix structure:

-
-

I ) A A
T o7 pafet
¢

There are defining occurrences of x in the local identifier lists of
module M and A. There are applied occurrences of x in the main parts
of module A, B and C as shown in the diagram. The binding functions
of these three occurrences all point into module A, no one into M,
because A is the prefix of module 1 and 3. Especially. minmod of x
in A is class A, of x in B is block 1, and e¢f x in C is blcck 3.
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1.4 Original Prefix Elimination

We shall base the semantics of programs with prefixing on the idea of
prefix elimination which makes prefix chains shorter. We call this

process original prefix elimination because we shall later discuss

a different elimination method.

Let m be a closed program. Let in 7 a class declaration
(1) n:f  class 4 begin T end 7
or a block
{2) n:k block A begin I end n
be given, prefixed by £ which identifies a class _
(3) L:C'class A' begin Z% inner Eé engd E.
We have assumed that this class is again prefixed by E' what must

not necessarily be the case.

Prefix elimination replaces the class (1) or block (2) by a class (1')

or block (2'}) in the following way:

(1") n:E' class A' A begin E.'I z Eé end n

or

(2') n: &' block A' A begin Z% I Eé end n .

If £' is not existent in (3} then £' is simply not existent in (1')
and (2").

Eliminaticon of prefixes of procedures is done inan analogous way. We
see especially that replaced modules remain modules of the same

kind, namely classes, blocks or procedures.

Lemma 7: If 7 is a closed program then this prefix elimination yields

a new closed program '

Tr——— 7'
pref elim

if a) 7 is distinguished oxr
b) the prefixed class, block or procedure n is cutside any
prefixed class, block or procedure or

c) class £ has noc prefix,
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If m is a proper program then the prefix elimination yields a new
proper program ' if

2) w is distinguished.

1.5 Discussion of Original Prefix Elimination

As an illustration of Lemma 1 Appendix C shcows an example of a— —
program 7, which is
a) not distinguished and where
b} the prefixed block n=% is inside a prefixed black A
and where

c) class E£=Y has a prefix X.

7,15 proper, especially closed

2
) /M\
e > B\
////z R\\ //7 N
z X Y=-me-- >x
Mpr e iy A ~

but prefix Y elimination leads to a program ﬂi which is not proper,

zz——-\—vx Y—Z—i——.—\—‘»x

bdfct uvndefined

because the applied identifier occurrence u in block Z has no assc—

ciated defining occurrence u.
The example from Appendix C shows that the elimination of prefices

leading to ALGOL-like programs must be done with due care.
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If we rename class X in bleck A in Ty into class X' then
after prefix ¥ elimination u in block Z in wé is bound to

var u in class X in class B what is reasonable:

How influentidl bound renamings for the prefix elimination process
are this is demonstrated by Appendix D. We apply prefix elimination
to exampie 5 of Appendix B and successfully eliminate the prefixes A,
B and C. n;' has no prefixes and vields an output

(1) 2.0, 4.0, 4.0
If we would have made L distinguished by a bound renaming then w?
would yield an output

(2) 2.0, 2.0, 2.0

If we make not only the starting program T but also the intermediate

results n{ and nq distinguished then L delivers

{3) 2.0, 2.0, 3.0

The last proceeding (3) follows the ALGOL-like or pure static scope

ideéa whereas "no renaming" (1) is often referred to as dynamic
scoping. (2) represents the rationale for the first implementation

of LOGLAN [ro83 ] which in case of ALGOL- or SIMULA 67-like programs
as"n2 [Na63 , Da70 ] works with static scoping and in case of pro-
grams with many level prefixing like T adds on "some kind" of dynamic
scoping. We call this scoping guasi-static. The new implementation

of LOGLAN will follow the pure static scope strategy which is not only

intellectually more pleasing but offers even a more efficient imple-—
mentation as we shall see later in Chapters 2.3 and 2.4.
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The original prefix elimination process cannot eliminate all pre-

fixes. Program Ty in Appendix E is an example of so called recursive

pr=fixing, i.e. ma has an infinite formal execution lattice E1T , See

next chapter, although there are no procedures declared in = .3

1

™

i e,
Bound renamings of identifiers have no influence on the identifier
binding and the elimination process applied to LET

Recursive prefixing is a phenomenon not possible in SIMULA 67-like
programs because any module and its prefixes are required to have

the same nesting level there.

Resumée of this discussion. Original prefix elimination should only
Be applied to a program v if prior to every elimination step the
programs have been made distinguished by bound renamings (a weaker
notion of distinguity would also work, but we should not like to
formulate this here).

~
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1.6 Algebraic Semantics of Programs with Prefixing

We should like to define the semantics of Mini-LOGLAN-programs in an
algebraic style [ gugi . We view this style as an abstraction from
operational style as presented e.g. in the ALGOL 60-report [ Nag3 ].
There are no difficulties to apply the algebraic method to ALGOL-1lik
languages even with a full procedure and function concept [La73 ],

and now we extend this method to programs with prefixing.

Let a proper preogram T be given. First we form the associated

formal execution lattice E":

We define a generating relation

! el

between certain proper programs n' and " . Let a distinguished
pxogram m' be given. Then we generate a program " by looking for
one of the fellowing three types of statements in n':

- A correct procedure statement

call m(aT,...,an)

in the main part of 7' (main program of m') outside all prefixed
blocks.

Here we apply the copy rule known already from the ALGOL 60-report
Correctness guarantees that the generated program 7" is also
proper 1). If procedure v is prefixed by £ then the copy rule

produces a so called generated block in 7" also prefixed by &.

- A class initialization statement
new 1
in the main program of 7' outside all prefixed blocks.

Here the copy rule for classes is applied which acts in an ana-
logous way as the copy rule for procedures where the control
statement inner in the main part of class p is to be replaced
. by the empty statement. If class n is prefixed by £ then the copy
rule produces a generated block alsc prefixed by § , and the gene-

n In a theory of copy rule application it is advantageous

not to demand that in a proper program all procedure
statements are correct; they have to be only "partially
correct".

the

e
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rated program w" is proper.

- A maximal prefixed block
E:n block A begin & end g
in the main program of w'.
Here we apply original prefix elimination and produce a gsnerated

block £ in the newly generated program 7" which is proper due to

Lemma 1.

Now we consider the eguivalence classes [7] of congruent {boundly 5
renamed) proper programs and define the extended generating relation

[F*] — [®"]

between classes 1ff there are representatives
n'e[T'] and w" €[7"]

with
m' o "

what implies that 7' must be distinguished.

The formal execution lattice E:_r cof a proper program m is defined

tc be

Bpmpe((m' 1 Ind"— [n1},

the set of all eguivalence classes generated by [7] and x

Lemma 2: (E“, —= } is a distributive lattice with [7}] as its least

element.

A distributive lattice is always isomorphic with a sublattice of

the power set lattice (R T, &) of a set T. In our special

situation T can be chosen to be the set T1T of all those eguivalence
'

classes [-n']eE1T where the generated blocks occurring in rw' are

all nested in each other.

Lemma 3: (T, +%) is a tree & (B, +) and (E_, ) is isomorphic
with the sublattipe (fjﬂ, £)& (92"1'“, € ) of all finite initial trees
Ig Tﬂ . If class [7n'] € ETr and initial tree I'e :Lr are asso-
ciated due to this isomorphism then the tree of all generated

\

N

.
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blocks occurring in ﬁ'1) is isomorphic with I'. Eﬂ is finite if and
only if T11 is finite. Tﬁ is the so called formal execution tree of .

Now we reduce all programs @' in E“: We erase all procedure and class
declarations and replace all remaining prefixed blocks and all re-
maining procedure and class initialization statements by the error

statement error. Congruent programs remain congruent by this pro-

cess.
The semantics Eerr is the totally undefined state transformation
and the semantics E“, of a reduced program wéed is a well

re
definable state transformation because ﬁéed is a block structured
program without any procedures or classes. The state transformations

) cf all programs n' in E1T are continuations of each other

‘.'T'
red

simply because two different classes [t'] and [7"] in En have a

common supremum [ w' ]

[t ]
Y
[(m'] [m™]
\m/

in Eﬂ . 5S¢ the unicn

J =

[n']EEn

et

.'Tl
red

is a well defined state transformation. This one we define to be the
semantics 2“ of the proper program 7. All programs 7’ in ETr are
semantically equivalent

Eﬂ,— Eﬂ
again simply becausz two classes in ETr have a common supremum

in Eﬁ.

13 For technical reasons it is advantageous to call the

largest block of any program 7' in E_ also a generated
block. So program 7 in E1T where noc generating step
has been applied has exactly one occurring generated

block and this one element tree is isomorphic with the one

element initial tree {[7]} & T

S
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1.7 Prefix Elimination by Transformation into Procedures

As long as we deal only with SIMULA 67-like programs (within Mini-
LOGLAN) with prefixing on the same level only then successive
original prefix elimination leads te programs which have no longer
any class initialization, prefixed block or prefixed procedure.

So all remaining classes and their prefixes have become redundant

and the resulting programs may be called ALGOL 6C-1ike ones the seman—

tics of which is well known. This proceeding offers another way

to define the semantics of programs with prefixing, but it does not
work for all Mini-LOGLAN-programs because in Appendix E we have
seen an example L with recursive prefixing.

But there is a different prefix elimination process by transforming
classes and prefixed blocks into procedures. Let 7 be a proper
distinguished program. We are allowed to assume that there are no

class initial ization statements noxr prefixed procedures in w.
Let a non-prefixed class declaration

n : class & begin E] inner 22 end n

in 7 be given which defines a module M in 7. Let

i i
Yess TE

be the local identifier list locidl(jM). inner indicates the only

n

inner-statement in the main part of statement list E.Then the module

above is transformed to
T = Eroc(nf); & begin I1 call nf(51,...,5n) 22 end n

where Ng is a new formal procedure identifier with an appropriate
specification (which we have deleted). The specification of Ng
is induced by the declarations of 51,...,En in a well known way.

Now we consider a prefixed class declaration

n : £ class A begin 21 inner Ez end n

in T which defines a module M in T with its finite prefix chain
prefl—1(jM)<$——_._<k-- prefo(]M),l>1,

and its local identifier lists

\
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locidl(prefO(JM)J

fina]
-
.
3
™
it

locidl (pref ™ 1 (Imy). .. locidl(pref' (Im)).

.r
-

o

]

Then the above module is tranformed to

n : Eroc(nf);
ng * PIOC(L r---,G )5

A
begin -
I, call nffc1""’cm'£1""’£n) Ly
end ng;
begin
call n
&1 g)
end n

where Ng and ng are new procedure identifiers with appropriate speci-
fications (which we have deleted). The specifications of g and ;1,
.,gm are induced by the declarations of 21,... and Ei""'g

tn n’

A prefixed block is treated similarly: Let

n : & block A begin ¥ end n

be such a block in 7 which defines a module M in =. This block

is transformed to

n : block
ng E ErOC(C-lr---ng);
A
begin
r
end ng:
begin
call
a E(ng)
end n.

The symbols have the same meanings as hefore.
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Nowwe should like to sketch a proof why the given Mini-LOGLAN-program m-
and its transformed ALGOL~like program are semantically eguivalent

in the sense of the preceding chapter 1.6
Let us look at a non-prefixed class

{1y £ : class &' Dbegin Zi inner 52 end £

which is a prefix of a block
(2) mn : £ block A begin I end 7.

Let

1 n,
Bigy imee = “n
be the local identifier list of class £. The translated class and

block look as follows

(3) E&: proc(E.):
A'
begin
[.i call Ef(C-!r---rCn) £2I

end £

(4) n : block
gt BXOC{Tqr v G,)7
4
begin
L
end n_;
=== g
begin
cal
call E(ng)
end n.

Now we compare original prefix elimination in (1), (2) and copy
rule applicaticns in (3}, (4). Prefix elimination gives
n : block

begin
I% z 25
end n
and copy rule applicaticns give



- 20 -

first step:
n : block

begin
block
Al
begin
z{ call ng(c1,...,;n) zé
end
end n
second step:

n : block

begin
{x«) : block
&I
begin
I
Eq
{¥) : block
A
begin
E
end (=)
v
"2
engd (=«)

end n.
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If we assume distinguity for n and separation for class £ and
block n then both copy rule applications do not cause scope binding
exrrors. If we assume distinguity for m and if block n is contained
in class £ then both copy rule applications might cause binding
errors in the sense of static scoping. If we do not want them then
global parameters of block (%) may not peint into 2' of block (#*s).
Appropriate renamings must be done. Procedure ng ie redundant finally.

Resumée: In case of distinguity of m and separation of class £ and
block n both processes, prefix elimination and transforming .rule

plus copy rule applications, lead to essentially equivalent////
programs. All other cases .

a block n prefixed by a prefixed class £

a class n prefixed by a non-prefixed class £

a class n prefixed by a prefixed class &
lead to analogous results. We say "essential egquivalence": We have
full equivalence if the control statement inner in {1) &oes not
occur inside a loop in Ei innexr Eé. In order to cope also with
this situation the transformation process has to be a little

more complicated.

Theorem 1: A Mini-LOGLAN-program and its effectively transformed
ALGOL-1like program (all classes and prefixes eliminated) are seman-

tically egquivalent.

Appendix F shows the transformed programs Ty and Tq of Appendix B
and E.

2 Implemenfation

Designing an efficient implementation for LOGLAN with many level
prefixing and pure static scope semantics is a severe problem,

much severer than for ALGOL 60 or SIMULA 67. The starting idea is
Dijkstra's[Di60 ], namely to enter activation records in a run time

stack when modules are activated, to cancel them when medules are
terminated and to use compile time determinable display (index)
registers and offsets (relative addresses) for fast access to contents

of non-formal variables. Like for SIMULA 67 incarnation (instantia-

tions) of modules in one prefix chain shall be grouped as a so called
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cbject into one activation record and no display register reloading
shall be needed when computing in and running through the main

parts of meodules in a prefix chain . As an illustration look at

the run time stack content (pure static scoping) of program Ty in
nppendix B with its environmental and prefix structure in chapter 1.3

just before class C is terminated:

linkage bliock M

fixed storage M i

linkage block 1

A X 2.0 printed twice

fixed storages

linkage block 3

fixed storages
3 y: i.o printed

linkage class C

fixed storages

In SIMULA 67 as in ALGOL 60 or PASCAL it suffices to associate any
module M of level Yo with a list of display registers of numbers

1r2!---lvM
with a display register numbered by the level Y AR EEY )

and to associate any applied occurrence of a variable £
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But this proceeding does no longer work for many level prefixing.
Krogdahl [ Kr79 ] discusses this for pure static scoping; he recom-
mends in general to make relcadings of display registers when
running through a prefix chain and to look for optimizations at
compile time which will often be applicable.

The first implementation of LOGLAN uses a 1-1-association of modules
and display registers what ends up with a total of 6 registers

for e But the implemented semantics is not pure static scope ///
only quasi-static scepe, $ee Chapter 1.5 and Appendix D. ;

We demonstrate in this paper that pure static scope semantics can get
along with a number of display registers bounded by the maximum
module level in a program such that no reloadings inside a prefix
chaln are necessary. So pure static scope semantics is not only

the most pleasing one, it admits even a more efficient implemen-—

tation than other proposals do.

Before we present more formally the general solution let
us look how it works for the example from Appendix B.

For Ty we shall have the following lists of display register numbers:

1,2 1m—m—=—==3 A 1,2

1,2,4,3

Please remark that these lists are not monotonous. Further remark
that the contents of the applied occurrence of variable x in clasg B
(x is defined in class A) are accessed with the help of display
register 2 because minmod (x in B) is block 1 with level 2 which

@M_‘qnv s
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points to register 2 in the list for B and of variable x in class C
are accessed with the help of display register 4 because minmod (x in C)
is block 3 with level 3 which points to register 4 in the
list for C. We see: The machine instructions for different applied
occurrences of the same variable X in one prefix chain C--=>B may
show up different index register modifications. But pay attention:
These compile time phenomena do not lead to run time inefficiencies.
Many level prefixing is as efficiently implementable as SIMULZ 67
with its same level prefixing.

2.1 Complement modules

Let the following diagram in a proper program m be given -.

M"

|

M —— M

where M'=pref(M) and M"=strenv (M'z_

Then M' is named by an identifier In (defining occurrence) and M is
prefixed by in (applied occurrence). Especially in is outside M

and env(jnk=M". 50 we have the minimal module M™ =minmod(i,n) with

M _f_> M
"1
env(in)

M ———> M

M™ is the smallest module fulfilling the diagram

mur —Zy o
{*x) +

M ~—3>»M'

and we call M" the complement module compl (M,M' ,M").




Now let a diagram
M
(%} *

M ——5M!
*

be given. What iz the complement module comp(M,M',M"} in this case? /
//’
The diagram is a :::i -chain between M and M" and we consider the
family of all such chains. This family is finite because 7 is a
proper program and we have no repetitions of modules in such chains.
If we define that —> precedes ---> then we have a lexicographical

total ordering of precedence among all Sl

> -chains.

Now let us replace any subchain
¥ -- ¥ —H"

by

M L> compl ('Mu,ﬁ' ,ﬁ" ) —3—7 M
\_—_—v__f
ﬁur

which leads to a strictly preceding _ . -chain between M and M".
Finiteness of the family guarantees

Main Lemma: Successive replacing ends up with a uniquely determined
least preceding chain which is of the form

M2y um X

M" is called the complement module compl(M,M',M"). Especially
compl (M,M,M")=M", compl{M,M" ,M"}=M angd if M'$M" then compl(M,M‘,M")*M.

Intuitively we may say we have paved diagram {*) with pavestones
of the type (xx) and have ended up with a paved diagram

M _i‘_) M
M -==r M’
*

In general 'M™ is not the smallest module fulfilling this diagram
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whenn M, M' and M" are given. Appenéix H showsg a program example 7

with an environmental and prefix structure:

/M\
(S > B
i/
i
f
[
'I &
i B
- \
i
i
Fi
”C
//
”~
I’/
/”’
E

The complement of E, C, A is A:

what can be found out by paving, whereas D is the minimal environment
fulfilling

E]

+
H—>0

N —3n P

-—

when E, C and A are given.
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Let module M' be in the prefix chain of module M
M =T-p M.
We may consider the environmental chain

1 P - ] o ] =pm!
Mie— Mje— ... G— My L ¢— My =M

M M
with its level list

1T 5, 2 4 e v, -1,

M! UMr )

—

where Mi

environmental chain of M, M' is defined by

is the largest module in w: The so called complement

+ + +
Mi=M, ¢ My¢— &— M, <&M =M
Mr le
with
— 1
gy = 24
% !
i 1
i, >
+ T
/]
+
*
M, o == SR M!
vM.—1 > vM,—1
m
+ T
Ma o - IR RE S Y
\JM| \)M|

where the single diagrams are complemented diagrams. The level list
of the complement envircnmental chain
v = v

f L !'I M
M2 MvM,-1 Vi

is strictly monotonous and is called the complement level list

of M, M'.
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5 7 Association of lists of display register numbers to modules

Every module M of level vM21 has to bhe associated with Vi

distinct display register numbers
deT},...,dMivM)

with 15dM(j)sv for j=1,...,v

[

Y M e} dM is a permutation of the numbers

Vi This association shall fulfill the fellowing

Condition: Let M' be in the prefix chain of M
M -Eomr.

Then the display register numbers 4,, (j), j=1,...,vM. are to be

the same as the display register numbers dM(UM-)’j=T""’vM" of the
complement level list of M, M'. Especiallv ]dM.(vM.)=dM(vN )=

= L
—dM(vM). M

Is such an association dM of lists of display register numbers to
modules M possible? We define dM by induction over the lexico-—
graphical total ordering of couples (vM,lM) of level Yy and prefix
chain length lM.

Induction beginning (uM;lﬁ)=(1.1}:
dM(1)=Df 1

is the only choice possible,

Induction step (vM,lM)+(1.1l:
First case 1M=1: Then UM2>1 and there is an M' with
M-—>M',

Umr=vM—1 and {vM"lM'
may be assumed to be defined.

) precedes (vM,lM) lexicographically. So dM'

a. ., (i} for i=1,...,V

M! M!

uM for i=vM

Second case 1M>1: Then there is an M' with

M ———M',
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uM,gvM,lM,=lM.-1 and (“M"lM‘) precedes (VM‘IM) lexicographically.
So dM' may be assumed to be defined.

dM,(j) if i is the 3=th
entrv Vi, in the
complemeﬂt level list
of M, M'

dM(i)=Df<

v, ] if i is the j-th
numberz1 not
occurring in the

complement level list of M,M’

by

In case of ALGOL 60- or SIMULA 67-like programs with its same level
prefixing we get the display register numbers association known from
the literature. We easily prove by induction over the length of
~—>3 -ghains

Lemma 4: The above mentioned condition is fulfilled and the com-—
plement level list of M, M' can be described by

-1 . .
UszdM o dM,(j), j=1,...,UM,,

whers d;T is the inverse permutation of the numbersi;1,...,vm.

For the programs TorTy and Ty ©f the Appendices €, E and F we have
the following association:

ﬂz(SIMULA 67-1ike)

1,2 AF&\\\ — Bﬂ\l;f
1,2,3 & 1,2,3 X_ Y ————=23 > X 1,2,3




ET 1,2,3,5,4

For program Ty in Appendix B we have seen the association already in
the introduction to part 2.

2.3 Design of the run time system for programs with many

level prefixing

Let m be a distinguished proper program. Every module M has a certain
fixed storage amount

fst (M) 20

determined by the declarationsof all variables Jx  with env (I x) =M.
fst (M) is known at compile time. When M is activated then an activation
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record of the whole prefix chain of M

M=prefO(M)——J>pref1(M)__9 j““?prefl_1(M)

of length 1»0 is entered into the run time stack with a fixed storage

amount

fstact (M) =K+£st (prefi™ | (M))+. .. +fst(pref (M))+Est (M) 0.

X is a number > O known at compile time; Kis the storage amount for
the linkage of an activation record. Sc fstact(M) is known at compile

time.

Let 1x be a defining occurrence of a variable with env{Ix)=M. The
compiler reserves a storage cell in the fixed storage of M. This cell
has a compile time known relative address or offset in the storage

for the prefix chain of M. Sc
fstact {M) >reladdr (x)afstact(M)-fst(M).

Let “x be an applied occurrence of a variazble in the main part of
module MT=eanv( k) and let bdfct( x)=’x and minmod (i,x)=M:

- ¥
M ——2>M

M*

Iet €.0. *x be the right hand side of an assignment statement

sz e v=m7
Then we would like to compile this into a load instruction (assemblar
language)

i

Lpa d %, reladdr(Ix)

which is read

"load accumulator from a cell

with address reladdr(jx) which

is modified {increased) by the
content of index (display) register

i
of number d % 9

In a higher level assembler language thils instruction would look as

follows
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1 ;
cee = WA X ¢ reladdr (%x) ;...

¥ is a linear array representing the main storage of memory cells
and 2% isalinear array representing the series of index or display
registers.

ix
What display register number @ do we take? We take

i
X o
Q@ F =pp dyxlvg)

We demonstrate this definition for the compilation of the assignment
statement
Xi=y;
in class B of program n,:
W {A[2]+ reladdr (x) |:=WA*[2]+ reladdr(y)];
and of

yi=x;

in class C:

T [A*[ 4]+ reladdr(y) }:=®[2"14]+ reladdr(x)];

Please remember: Display registers are to be loaded or reloaded only
if a bhlock £ is entered or terminated, a procedure ¢ is called or

terminated or a class n is initialialized bv new n or terminated.

No reloadings shall happen when running through the main parts of the

prefix chain of a medule.

An activation record begins with K cells for linking with the
following relative addresses and contents:

Relative address ©, mnemotechnically denoted =RA: Return address

in the compiled program, where control has to go after

regular termination.

Relative address 1 = DLD: Dynamic level of the dynamic predecessor
of this activation record, i.e. the address of the return

address cell of the immediately preceding activation record
of this activation record.
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Relative address 2 = ID: Identifier of the activated block or proce-
dure or initialized class.

Relative address 3 = DLS: N cells for the dynamic levels of the
static chain of this activation record. Nzl is the maximal

nesting level v, of all modules M in a program T.

M
If the activated module M has a level uM21 then the first Vi
cells have relevant contents; the display registers ~4111,...,

47[UM1 are loaded resp. reloaded when this activation record
is resp. becomes again the topmost entry of the run time stack
and module M is activated resp. reactivated. The contents of
the other N—uM cells are undefined.

Relative address N+3:=LG: Length of this activation record (relevant
only for programs with global jumps).

So K is the number N+4 which is known at compile time.

The compiled program acts upon a run time stack in the main storage
whidh is considered as an array

var #H : array [0:=] of something; .

The series of display registers forms an array

Egg‘yy: array [1:=] of [0:=]; .

The momentary dynamic level which shows tc the return address cell
of the momentary topmost activation record entry in the run time

stack is held in a simple variable
var MDL: [O:=];

The momentary free storage level is held in a simple variable

var FSL:[0:=];

Further auxiliary variables
var AUX, AUX1 : [0:=];
are used for procedure calls.




- 34 -

2.4 Compilation of essential program constructs

Let a distinguished proper program 7n be given such that w.r.o.g.

every block has a block identifier.

I. A program v i3 a block
n : block

begin

E
end n
and is ceompiled this way
call initializatien;
compiled A
compiled I

call finish program;

II. A non-prefixed block different from the whole program w

n : block
A
begin
L
end n
with block module Mn is compiled this way1
call blockentering(n):

)

Start 1 of Mn:
compiled A
compiled %
call finish;

End of Mn:

1) More efficient cocde will be generated if non-prefixed hlocks n
are treated like statements. They can be treated like special
modules Mq without associated nesting level Yy - Compilation is
simply: n

compiled A

compiled I.
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IITI. A prefixed block
n : £ block
A
begin
I
end n
with block module Mn is compiled this way: Let £ denote a class
with class module ME' The translator reserves a variable xg in the
fixed storage of ME:
call prefixed bleock entering(n);
Start 1 of Mn:
m@[&r[dMn(th)1+reladdr(x5)] := Start 2 of Mn;

goto Start 1 of ME;
Start 2 of Mn:
compiled A
Start 3 of Mn:
mﬂ[ﬂr[dMn(an)]+reladdr(x£)] = Start 4 of M ;

goto Start 3 of ME;'
Start 4 of Mn:
compiled I
" goto After inner of ME;
Ené of Mn:
Remember: xg in bleck n is to be treated as an applied occurrence
with its defining occurrence in class £. So minmod(x£)=Mn and the
) which is equal to

display register to be compiled is 4 (\)M

M
L1 n
dM (uM ) due to Lemma 4. So it makes no difference whether we write

(v, ) or d, (v, ).
dmn M. MM



=
o]

y non-prefized class

n : class
fis
begin
21 inner 22
wivh class module Mn is compiled this way:
Tr= translator reserves a variable xn in the fixed storage of Mn:
Start 1 of Mn:
Start 2 of Mn:
compiled A
geto Jﬂ[ﬂr[dMntvmn)]+reladdr(xn)]:

Start 3 of Mn:
Start 4 of M
compiled 5]

goto hﬂnridmn(vM }]+reladdr(xn)];

n

After inner of _Mn:'
compiled 22
call finish;

End of Mﬂ:

V. A prefixed class

n: £ class
A
begin
S e
5 inner Zz
end 17
with class module Mn is compiled this way:
S5tart 1 of Mn
qunr[dmn(uMn)]+re1addr(xs)] := Start 2 of Mﬂ;
. goto Start 1 of Mg;
Start 2 of Mn:
compiled 4
gcto 7ﬁ[4’TdM vy )]+reladdr(xn)};
e n
Start 3 of Mq:
+ = ;
Kﬂ{aerMn(UM )] reladdr(xg)3 := Start 4 of Mn,

n
goto Start 3 of ME;
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Start 4 of Mh:
compiled 21
goto Eﬂ[&deMn(UMn)]+reladdr(xn)1;

After inner of Mn:

compiled 22

gote After inner of ME;
End of Mn:

Vi. A non-prefixed procedure declaraticn
v 1 proc (51,...,£n):

begin
z
end w
with its procedure module Mw is compiled this way:
Starting address of procedure g:
compiled A
compiled L
call finish;
End of Mw:

VIiI. A prefixed procedure declaration
v : £ pProc (51,...,gn);
&
begin
z
end ©

with its procedure module M, is compiled this way:
Starting address of procedure ¥:
Wit lg (v, )]+reladdr(x )] := start 2 of M ;
Mo UM, F w

[7

goto Start 1 of ME:
Start 2 of Mw:
compiled A
Start 3 of Mw:
Hﬂ[af[dmm(“mp)]+reladdr{x£)] := Start 4 of M :

oto Start of M _:
goto Seart 3 of M,
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Start 4 of Mw:
compiled I
goto After inner of M_;

3
Znd of Mq:

&

VITII. A non-formal procedure statement

call w(u1,...,an);
occurring in the main part of module M® with module identifier ¥
is compiled this way { we assume that no actual parameter oy in-
voces an implicit module activaticn )

compilation of oy

?E[FSL+reladdr{E1)] := actual information about @y

compilation of oL

aM[FSL+reladdr(En)] := actual information about a

compilation of call o
51""'€n are the formal parameters of procedure @ corresponding
to a1,...,mn. Their storage cells are in the fixed storage of ¢
and their relative addresses are known at compile time.

Let 1o be the applied occurrence of ¢ immediately behind call.
Let M=minmod(i,w} be the minimal module with M€&——M*. If
dﬁ=dM*§[1:vﬁ] and the module M=M_ to be entered is not prefixed

then compilation of call v is
call simple non-formal procedure(:)};
Return address of procedure call:
otherwise
call non~formal procedure(x,v);
Return address cof procedure call:
In ;ase the non-formal procedure statement
call olag, ... 000
is only partially correct, but not correct then the statement
is compiled into
error;
See the discussion about proper programs in Chapter 1.6.
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IX. Let oy be an actual parameter occurring in the main part of

module M° and let Ei be the corresponding formal parameter.
What compiled code does compute the actual information about ui?
We have to differ between five cases IX.a to IX.e.

IX.a. Let ay be a non-formal procedure identifier. Tet M be

minmod () with He = M*., The actual information about @; is a couple
(#*) (a,,content of 4T[dM*{uE)]).
This information is computed hy the code

a; @ dM*(Vﬁ)

where @ is a "machine operation” which couples the procedure identi-
fier o, with the content of display register 4r[dM*(uﬁJI numbered

! -
by QM*(vM)-

IX.b. Let oy be a formal procedure identifier. The actual infor-

mation about a couple like that above (x) is the content of
M2 dy, (vg) |+reladdr (e)) ],
and this is the code which computes the information {( a load

instruction with index register modification }.

IX.c. Let ay be an expressicn { e.g. of type real ! and Ei be
a formal input parameter ( e.g. alsc of type real in order to

avoid type transfers ). The actual information about ay is a
real number computed by the compiled code of a -

IX.d. Let oy be a non~formal simple variable ( e.g. of type real )}

and Ei be a formal output variable ( necessarily also of type
real due to'partial correctness ). The actual information about
oy is an absolute address, namely the sum

! 47TdM*(UE)]+reladdr(ai).
and this is the code which computes the information { a load and

an add instruction ).
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IX.e. Let g be a formal output variable { e.g. of type real ) and
be a formal output variable ( necessarily also of type real ).

['RA |

The actual information about 8y is an absolute address, namely

the content of

1WL4?TdM*(vﬁ)]+reladdr(ui)]
and this is the code which computes the information ( a load
instruction with index register modification, compare IX.b. ).

H. A class _initialization statement

new n;
occurring in the main part of module ¥ with module identifier X
is compiled this way:

compilation of init n

Start 1 of new:
mﬂ[afidMn(uMnJj+reladdr(xn)] := Start 2 of new;

goto Start 1 of Mn;

Start 2 of new:

Start 3 of new:
R?[nf[dMn(an)]+re1addr(xn)I := after inner of Mn;
goto Start 3 of Mn;

Start 4 of new:

Return address of class initialization:

The compiler reserves a variable xn in the fixed storage of

the class module Mn.

Compilation of init n is dcne similar to call » in VIII. and gives
call simple class(n);

respectively
call class(x,n); .
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XI. A formal procedure statement

call ¢(u1,...,un); .
occurring in the main part of module M with its module identifier
¥ is compiled this way ( we assume that no actual parameter oy
invoces an implicit module activation ):

call prepare formal procedure(x,y);

compilation of o,

hY[AUX1+reladdr(£1)} := actual information about gy i

call check actual parameter{l);

compilation of ¢y
‘hT[AUx1+reladdr(£n}] := actual information about o
call check actual parameter{n):
Eﬂll formal procedure;

Return address of formal procedure call:

51,...,En are the fictiticous fermal parameters of the formal

procedure Y corresponding to Qgpeve O Their relative addresses
are K~1+1,...,K=14n, i.e. ¥ is treated as if Y} Had no prefix.
Only in case Ei is a formal procedure

call check actual parameter(i};

needs to be compiled.

After this specification of code generation in section I. to XI.
the subroutines

initialigation,

blockentering(n),

finish,

prefixed blockentering(n),

simple ndn-formal procedure({es),

non—-formal precedure(y,op),

simple class{n),

class{x,n).,

prepare formal procedure(y,u),

¢heck actual parameter{i),

formal procedure
must be described. This will be done in Appendix G. A dstailed
proof of the correctness of this implementation will be given
in a further publication.
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Theocrem 2: A prover Mini-LOGLAN-preogram 7 and its compiled program

have the same state transformation rsp. input/output functiocn

as their semantics.

2.5. A run time system with short linkages

The run time system presented in chapter 2.3 and Appendix G

is time efficient but space consuming because each linkage
demands Nz1 cells to store dynamic levels of static chains.

We want to make the linkages shorter. We reserve only one cell

with relative address 3=DLS for the immediate static predecessor

which is the content of the old ¥{[dynamic level+DLS-1+uM—1]

in case of the activated medule M is *M1. The new relative
address for the activation record length is 43LG and the new
linkage length is K=5., If we successively go down the immediate
static predecessors then we get the pseudo static chain of an

activation record which the static chain is a part of.

The main problem for the reorganized run time system is to
determine the static chain and the proper display registers
lcading when an activation record of a certain dynamic ievel dl

is created or reactivated:

display registers loading : subroutine (dl:dynamic level):;
begin
if di=0
then AT1] := 0
else call display registers loading {(fN{d1+DLS]1) ;
Let o be the module identifier in cell FA[Al+ID].
Let M'=strenv(Mw) with Mm———aM' and Vi =V =T

We dc the simultaneous assignmant ¢
- Ay (1] Sy, (1]
]
r - i e !

A?-dM (vM 1) “"dM'(vM')'
w ®

Ay (v, )] di
® ®

£i
end display registers reloading
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Let us explain what the simultaneous assignment actually does:
Let n be the module identifier in JM [#[dl+DLS]+ID]. The pre-
ceding display registers reloading has given us the static chain
of M{[dl+DLs] in the form

J(dM (1)1
n

4*[dM g =13 1
n n

Aldy vy )]
n n
M' ig in the prefix chain of M_: M —i%»M' with v ,5v,, .
n n M Mn

=1 - " . 1
dM;DGM'I{1'UM'] represents the complement level list of Mn'M .

The static chain of M' is a subchain of the static chain above,

namely

ATy “Hﬁl" Qe (1)) 1=a?d,, (1)]

for i=1,...,vM,. If we add dl then we have the static chain of
Mo resp. dl which is stored in

g, (17]

M
(5]

Alay (vy =111
[I:] [C)

AT[de(uMwJ] .
Essential changes for the reorganized run time system are neces-
sary only for the subroutines finish and formal procedure. The
simultaneous assignment in finish 1s replaced by

display registers reloading(MDL); i
in formal procedure by

Y¥[FSL4DLS| := AUX:

display registers reloading (FSL) ; 5

It is easy to transform the recursive subroutine display registers
reloading into a more efficient iterative one. Activation records
created by

call bleckentering,

call simple non-formal procedure or

call simple class
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should be specially marked. When such activation of a module M
is finished and module M'=strenv(M} is not in the prefix chain
of any module M with VT vy then display registers reloading (MDL)
needs not to go down Lo dynamic level © but only to M [FSL+DLS].

Subroutine display register reloading in some sense passes the
genesis of an activation record. We now present a subroutine which
helps to reconstruct the history of an activation record step by
step. The subroutine is written as a functicn DLSP in a LOGLAN-like
style which computes the dynamic level of the immediate static pre—

decesser of an activation record with dynamic level di and with

¥{ldl + ID]= ©» with respect to a module identifier £ with
M_ -T> M_. If &= o then DLSP(dl,f}= M[d1+DLS].
=

DLSP: function (dl: dynamic level, £ : module identifier): dynamic level

var £': module identifier; i: integer;

begin
result:= J¥ [addr+DLS];
E':= id where Mid25trenv(m*ﬂidl+ﬂﬁ);

for i:=2 toc v -y
-— = ?{a1+1D] Compl(M}ﬂ[dl+ID}’ME’StrenV{ME))

99 result:= DLSP(result,f');

Ele= id' where Mid.= strenv{Mg.)
od
end DLSP

Lemma: Let dl be the dynamic level of an activation record with
o=¢ [d1+ID! and Uy »1. Let £ be a mcdule identifier such that
Hp
M B #Mr . Then DLSP(dl,E£)=dl’' such that there exists a k&0

: K
with pref {M{%idl'+ID
i.e dl' is the immediate static predecessor of @l w.r.t. £

Let |dl! dencte the length of the pseudo static chain of the acti-
vation record with dynamic level dl. If [d1'=2 then for every £ with

M -2 ME Vi =2 holds. "R [d1+DLS] is the dynamic leve) of the

activation record of module M1 with Vg, = 1 and is returned as value
-1

of DLSP(41l,f) since M1=compl(Mw, ME' M1).

])=compl(Mm, Mg' strenv(ME)),
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Let |dl{>2 and assume that for every dl" with |d1"|<|dl| in the pseudo
static chain of dl the lemma already holds.

If p=f then k=0 and anfam[dl+DLs]+ID]=compl(Mm,ME,strenv(ME))=5tranﬂME).

¥ildai+DLs]) is returned as value of DLSP({dl,f) because the for-loop

will not be executed.

1f u= v, v ; =1
. . M
Df M¢ compl("ilp £ strenv( E))

then strenv(Mw)zcompl(Mw, ME' strenv(ME}), i.e. there is a k=D with
strenv(ME)=pref {strenv(Mw)). Thus M{[d1+DLS} is the dynamic level

of the immediate static predecessor of addr w.r.t. £ as well as w.r.t.
and is returned as value of DLSP(dl,f) hecause the for-loop will

not be executed.

Vz2: Considering the nesting tree of modules we have the following

situation:
compl(M , M_, strenv(M_))=- -3 strenvim )
@ g 13 2
: T
T *
R ey > Mg

We have to compute the v static predecessor of di w.r.t. "the path
from Mlp to comﬁimw. Mg, strenv(ME))":

The first one is the immediate static predecessor of dl w.r.t. ¢,

thus it has the dynamic level PL[d1+DLS]. Now for every of the v-1
iterations of the for-loop we call DLSP with a dynamic level 4i"

of ar activation record such that |d1"}{<|dl|. The ¥-th static prede-
cessor is also the immediate static predecessor of dl w.r.t £ and is
returned as value of DLSP{dl,£).
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Again essential changes for the runtime system are necessary only for

the subroutine finish and formal procedure.

The simultaneocus assignment in finish is replaced by

,J"LdM (\JM ) ] :=MDL;
n 0
£:=TH[MDL + ID];
or iisvy -1 downto 2
d

T 18y (1) 1:=DLSP (47 [d, (1+1)1,g):
f n

£:= £' where M_, =strenv(M,)
5 g

od;

in formal procedure by
XlPsL + DLS]:= Aux;

A7 fa (uM ) 1:=FSL;

M
@ ®
£:=MIFsL + ID];
for i:= Yy -1 downto 2
@D
do

AFld, (i):=DLSP W4, (i+1)1,6);
(0] Q

£E:=E where ME' =5trenv(M£)

od;

To load the required display registers only one call of subroutine
display register loading is necessary whereas the user of DLSP must
know how often it must be called. In both cases one has to go to the
end of the pseudo static chain. Subroutine display register loading
does operaticns on the display registers, i.e. intermediate results
are held in them, when going back to the beginning of the pseudo
static chain. DLSP holds its intermediate results in local variables.
Operations on display registers must be done outside of DISP when

going to the end of the pseudo static chain.

ST e TR MLt e
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Appendix A: A contextfree-like grammar for Mini LOGLAN.

<program>: :=<block>
<blocky::=

{<block idf.>:1%tcprefix class 1df.5°7 plock <body-<block idf.:O!
redundant applied redundant applied
defining occurrence cceurrence, equal
cccurrence to the matching

defining identifier

<body>::=<declaration list> begin <statement list> end
<declsyation>r:= <variable declaration>

| <e¢lass éeclaration>

| <procedure declaration>
<variable declaration>::= var <specification list>
<class declaration>::=

<class idf.>: <prefix class idf.>01 class <bodv> <class idf.>0T

r I I
defining applied redundant applied
ccocurrence occurrence occurrence, equal to
the matching defining identifier
<procedure declaration>::=

<procedure idf.>:<prefix class idf.>O1Eroc<formal parameter list>)

<body> <procedure iag.>97

defining applied redundant applied occurrence,
occurrence occurrence equal to the matching defining
<statement>::= <empty statement> identifierx

| <error statements
| <assignment statement:

| call <procedure idf> cactual parameter listx9]

applied occurrence
! new <class idf.»
I inner
| <block>
| <compound statements:

The superscripto1 is an indication that the superscripted entity may

be there or not.



Appendix B: Program example 7,
M: block
var x: real;

A: class
var ¥: real;

begin
1=3;
inner
end A;
begin
1: A block
var y: real;
b: class /
begin
x:=y; print(x):
innex
end B;
begin
yi=2;
bdfct 2: new B
3: A block
var y: real;
C:3 class
begin
l———y:=x; print{y}:
inner
end ¢;
yi=4;
4: new C
end 3
end 1
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Appendix C: Program Exampie Tyt
M: block
B: class
Y: X class

begin

ur= 3;

var u: real;

begin
inner
end B;
begin
A: B block
X: class
begin
end X;
begin Z: X block
Z: ¥ block/ begin
begin prefix ¥

end 7

u:= 3;
elimination end Z

end A
end M

u is a free
identifier
occurrence.

1f we would have
renamed class ¥ in
block A into class X'
then u would be

bound to var u

in class X in class B
what is reasonable.




Appendix D:
Elimination cof prefixes A in Ty yields n;
M: block
var ¥: real;
{(+ o«lass A deleted =)

begin
1: biock
var x: real;
var y: real;
B: class
begin
¥:=y; print(x);
inner
end B;
begin
x:=3;
vi=2;
2: new B;
3: block
var x: real;
var y: real;
wdfect| C:B class
] begin
| yi=x; print(y);
inner
end C;
begin
x:=3; y:=4;
4: new C
end 3
end 1
end M

Although in m all applied occurrences of x have the same defining

occurrence they have different ones in ﬂ%. This is so because

théy have different minimal modules (minmod) in Ty and this has

an influence when prefixes A in 7, are eliminated.
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Elimination of prefix B and new B in ﬂa

M: block
var x: real;
begin
1: block

var x: real;

U Yar y: real;

L3 —

~~{ # class B deleted
)

-~

Ebegin
: x:=3; y:=2;
2: block
begin
X:=y; print(x); //

end 2; ¥
3: block 5
var %:
T
var X:
@ % class//

1; 7
rea s

real;’

begin /

x:=y€ print {x) ;

M vy:=x; print(y};
inner

end C;
begin

4: new C
end 3
end 1

end M

Binding in case of dynamic scoping

yields wq:

*)

{(without any renaming) is

shown

by arrows like — . Binding when only the source program T4 is

made distinguished (x in mainpart of block M and y in block 3 are

renamed to x and ;) is shown by a correcting arrow --2». Binding

in case of pure static scoping

especially all % in block 3 in “i

a correcting arrow =--7.

[all programs are made distinguished,

are renamed to x!') is shown by
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o

Eliminaticn of new C in rq yvields nj':

y:=2;
2: block
begin

X:=y; print(x); ~

end 2;
3: block 2

var %:real; s
o ¥ar 4

var y: real; /
LS

o
: o
2.5
o E
Q
3

print(x);

y:=x: print(y):

Output of the program:

Dynamic scoping (—»): 2.0, 4.0, 4.0
Quasi-static scoping (--=>}: 2.0, 2.0,
Pure static scoping (--%): 2.0, 2.0,

E T S L L e B L



Appendix E: Program example Ty

M: block
var y:real;
A:class
var x:real;
B:class
begin
Ri=y:
inner
end B;
begin
1: new B;
inner,
N:A klock
var y:real;

C:B ¢lass

begin
yimx;
inner
end C;
begin
2: new C
end N
end Ay
begin
: new A
end M
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Elimination of new & in Ty yields n%:

M: block
AM
begin
3:block
var x: real;
B: class
begin
fig
X:=y;
inner
end B;
begin
1: new B; ;
[¥: A block

var y:real;

~

C:B class

~

¥iN
0
[
=]

ya=x;
inner
end ¢;
begin
2: new C
end N
e_ndk3
end M
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Elimination of new B and prefix A in ﬂi yields ﬂg:

M: block
AM
begin
3: block
85
begin
1: block
begin
X:=y7
end 1; ;
N: block
var x: real;
B- class
begin
X:=y; inner
end B;
var v: real;
C: B class
begin
y:=x; inner
end ¢;
begin
1: new B;
2; new C;
™ W: A block
var y: real:
C:B class
ZN ' T begin
y:=x; inner
end C;
begin
2: new C
[ enaw
end N
end 3
end M

Repetj‘;ion of EN in 115 and 115 shows that prefix elimination will

naver come to an end, the formal execution lattice E_ is infinite.
-
3




Appendix F : Transformation of ﬁ1 yields ﬂ?
M : block
var x : real:

A : proc (Af:proc(output realll;

var x : real;
begin
X := 3;
call Ag(x)
end A;
begin
1 : block
1g : proc (output x:real};
var y : real;
B : proc (Bg:proc);
begin
x = y; print({x);
call BE

Zg : proc;
begin end Zg:
begin
call B(Zg)
end 2;
L3
end 1 ;
begin
call A(1 )
enat

end M

where I, is the following block :




3 : bleock
3g : proc { output X:real);

var y : real;
C : proc (Cf:proc);
C_ : proc;
g | Broe

begin
¥y := X; print{y);

call Cf
d C_:
en g
begin
call B(C )
- g
end C;

begin

49 I Proc;
begin end 4g;
begin
call C{4_)
—_— g
end 4
d 3 ;
en g
begin
11 a(3
ca ( g)
end 3



Transformation of g yields ﬁg
var y real;
A proc(Af:proc(output real;proc)ij;

var X : real;
B : proc (B :proc);
begin
X = vy}
call By
end B
begin
T : block
1g : Proc;
begin end 1g;
begin
call B(1g)
end 1;
call Af(x,B);
b

N
end A;

begin
3 : block
3_ : proc (output x:real;proc Biproc}};
begin end 3g;
begin
call A(3g)
end 3
end M

where ZN is the following block




N : block
N output x:real;B:proc(proc));
g EEOC( P P

var y : real;

C : proc (Cf:groc);

Cg : proc;

begin
§ im0
call C

engd C_;
— g

£

begin
call B(Cj)
end C;
begin
2 : bhlock
Zg : pIoc;
begin end 2g;
begin
call C(2.)
end 2
end N_;
begin
call A(N_)
end N
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Appendix C: Run time system subroutines

initialization : subroutine;
begin
MDL := O;
I iMDL+RA] := undefined:
TM(MDL+DLD] := undefined;
®MDL+ID] ;= identifier of the largest block of the program

which also identifies the program;
W MDL+DLE-1+1] = 4F (1] = O;

FSL := WIMDL+LG] := fstact(largest module M, of the program)

1
end initjalization

blockentering : subreoutine (n:blockidentifier):

begin
L[ FSL+RA] := program address for continuation when block n
has regularly terminated, the address End of Mn
is determined over the actual blockidentifier n;
WY FSL+DLD] := MDL;
HEFSL+ID] = n;
We do the simultanecous assignment
= 3
P FSL+DLS-1+1] ,»‘?[c‘lm (1] \
n
THIFSL+DLS=1+v, -1}/ Aldy vy -13]
n “n n
THIFSL+DLS-1+v, ] := A%(d, (v, )] := rFSL;
A n n n
T PSL+LGT ;= fstact(MnJ;
MDL := FSL;
FSL := FSL+fstaCt(Mn)

end blockentering




finish : subroutine;
begin
FSL := MDL;
MDL := JH{MDL+DLD];
The module identifier n in cell X[MDL+ID] determines the prefix
chain into which we return.
We do the simultaneous assignment
a’
g, {(1)] L[ MDL+DLS=1+1]
.n "
%{[dmn (\JMH) ] W[MDL+DLS—1+\;MT1]
goto P FSL+RA]
end finish

prefixed blockentering : subroutine {n:blockidentifier);
begin
M [FSL+RA] := program address for continuation when block n

has regularly terminated, the address End of Mn
is determined over the actual blockidentifier n;
TH[FSL+DLD) := MDL;
nl[PSL+ID] := n;

Let strenv(Mn)=M' with Mn———>M' and vM,=vM -1,
We do the simultaneocus assignment g
W[ FSL+DLS-1+1] AHa, (1)) \ A8, (1)]
W FSL+DLG-1+2] Aa,"(2)} AMdy . (2))
n
M[F5L+9Ls—1+uMn—11 dr[dMn (uMn—n] Aldy vy )]
W FSL+DLS-1+v, ] ATdy vy, )] FSL
n n n
Y[ FSL4LG] := fstact(M_);
MDL := FSL;

F5L := FSL+fstaCt(Mn)
end prefixed blockentering

The subroutine blockentering can be replaced by the subroutine
prefixed block entering; but blockentering is more efficient
pecause in case of a non-prefixed block n we have

dM' = dMq|[1:uM,]
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simple non-formal procedure : subroutine (y:procedure identifier):

begin
M[PSL+RA] := Return address of procedure call which is trans-
mitted by the suvbroutine call;

W FSL+DLD] := MDL:

HIFSL+ID] = o;

Let strenv(Mw)=M' with Mm—->ld‘ and V1TV -1.

We do the simultanecus assighment 2

/MIFSL+DLS—1+1] Ay, (1) ]
m[FSL+DLS—1+\JMw—1] ,J[dM, (V) ]

3H[FSL+DLS—1+UM$] = Af{de(uMw)] 1= FSL;

We[FSL+LG] := fstact(Mm);

MDL := FSL;

FSL := FSL+fStact(Mw);

goto Starting address of procedure o
end simple non-formal procedure

non-formal procedure : subroutine (yx:module identifier,
w:procedure identifier);

begin
TN FSL+RA] := Return adéress of procedure call which is trans-
mitted by the subroutine call;
$#[PSL+DLD] := MDL;
M FSL+ID] := u;

Let strenv{M }=M' with M —» M' and v, ,=v,, -i.
© [0 M Iyl

We do the simultanecus assignment ©

o 2 - 5
M d*"i\,., (131 TU FSL+DLS-1+1] WHayo dzlody, (1)1
e}

, . _ ’
,.,[dM (Mg =13 M FSL+DLS Thvy =1 i[dModﬁadM,(uM,)]

@ o} o] [
P o de (uMo) ] MF5L+DL5-1+\;M ] FSL

& @

i




THIFSL+LG] := fstact(Mw):

MDL := FSL;

FSL := FSL+fstact (M@] H

goto Starting address of procedure o

end noen-~formal procedure

M and ® are defined as in section 2.4,VIIT. where non-formal
procedure statements are compiled. The subroutine simple nen-
formal procedure can be replaced by non-formal procedure; but
the first one is more efficient because we have dﬁ=aM*]I1:uﬁ]
and 4,,=d, |[1:UM,] since M is not prefixed.

i)

simple class : subroutine (n: class identifier});
begin
T[FSL+RA] := Return address of class initialization which is
transmitted by the subroutlne call;
T FSL+DLD] := MDL:

M PSL+ID] := n;
Let strenv(Mn)=M' with Mn——stm' and VM,=UM =T.
We do the simultaneous assignment N
TH[FSTADLS-1+1] Ay (D] )
aﬂF5L+an-1+uMn-1] aﬂdM,(vM.)J
‘77([FSL+DLs—1+uM ] := ar[dﬂ (vy V] := FsL;
n n n

THFSLALG] := fstact(Mn);
MDL := FSL;
FSL := FSL+fstact(Mn)

end simple class

i, Ty
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class : subroutine (v:module identifier,n:class identifier) ;

begin
M FSL+RA] := Return address of class initialization which is
transmitted by the subroutine call;
MNIFSL+DLD] := MDL;
FFFSL+ID] := n;
We do the simultaneous assignment
Aa, (1) P FSL+DLS—1+1] a0 dz’ed, (1]
n
,J[dM (Vy -131] ' 7}([FSL+DLs—1+vM =11 A}[dM*odgodM. (uM,)]
n n n
Ay (vy )] PHFSLADLS - 1+v,, ] FSL
n n n
THIFSL+LG] := fstact(Mn);
MDL := FS5L;
FSL := FSL+fstaCt(Mn)
end class
prepare formal procedure : subroutine (x:module identifier,

y: formal procedure identifier);
begin
PUFSL+DLD) := MDL;
Let U be a formal parameter of a procedure with its module M.
Let ¥ be the identifier of module M.
THIFSL+ID] := first component(ﬁx[ﬂr[dM*(vﬁ)]+reladdr(¢)]);

AUX := second component(rﬂfdf[dm*(vﬁ)]+re1addr(w)]):

Let % be the non-formal procedure identifier in 2W{FSL+ID].
THIFSLALG]) := fstact(Mm};
AUXT = FSL+fStact(Mw}“f5t(Mw}-K

end prepare formal procedure




G~6

check actual parameter : subroutine (i:parameter number) ;
begin
The specification of the actual procedure identifier in the
first component of WH[AUX1+K-1+i] is checked against the
specification of the i-th formal parameter of that procedure
the identifier of which is in THIFSL+ID]. In case of incor-
rectness computation is erroneously aborted

end check actual parameter

formal procedure : subroutine;
begin
WO FSLARA] := Return address of formal procedure call which is
transmitted by the subroutine call;
The non-formal procedure identifier ¢ in WY{FSL+IG] has a
defining occurrence jw with M'=env(jw) and M'=streﬁv(Mm),

Mw——1>M', v, —1.

M
[}

\JM|=

The module identifier n in W AUX+ID] identifies a module Mn

with Vi —1=UM.SUM -
2] n
We do the simultaneous assignment
Ala, (1] FSL+DLS~1+1] W AUX+DLS-1+dy o d, , (1) ]
(i n

J{dM vy -1} ) Tf([FSL+DLS—1+\!M -1] TI‘GAUX+DLS-1+d:11ad
] © i n
A de (vaJ 1 P ESLADLS- 1 WMw] FSL

M.(vM.)] !

MDL := FSL;

FSL := FSE+M[MPL+LG];

goto Starting address of procedure o
end formal procedure

o
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Appendix H: Program Example Ty

begin
B: block
C: class
begin
x:=0;
inner
end C;
begin
p: A block
begin
E: C block
begin
X:=0
end E
end D
end B;
inner
end A;
begin
1: A block
begin
end 1
end M
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