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Abstract. The present paper contains investigations concerning the semantie
correctness of programs. Presented methods of analysis of programs are appropriate
for every domain of computation. Algorithmie logic extended by classical gquanti-
fiers i3 & fundamental mathematical tool used in the paper. Interrelations between
proporties of programs and properties of descriptions of programs are studied
(a description of a program is a mathematical model of the notion of a documen-
" tation of a program).

Introduction

The property of semantic correctness of programs is one of the basic
notions considered in the theory of programming. After designing a pro-
gram the question arises whether it meets the programmer’s objectives.
The objectives which the program is supposed to realize are usually
defined by means of two formulas: the input formula and the output
formula. A program K is said to be semantically correct with respect to an input
formula ¢ and an output formula g provided, for every input satisfying a,
the program K halts and the output satisfies §.

For example, let us consider the following program:

M: begin
gi1=;
t:=0;
while 2=y do
begin
gi=g—y;
4 = 4+1

end
and its realization in the system of integers.

[e3]
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This program finds the quotient and the remainder of the division
of a natural number x by a natural number ¥ = 0. Speaking more pre- -
cisely, the program 3 is correct with respect to the input formula (z = 0a
Ay > 0) and the output formula (x =i-yLt2na 2<ynaiz=0)

Contemporary mathematical machines are able to check only the
syntactic correetness of programs. Admittedly, a full mechanieal veri-
Tication of program correctness is not possible, Namely, Kreczmar [14],
[15] has shown that the problem of correctness is recursively ennmerable
for the class of all models, it is recursively enumerable for the field of
real numbers and it is in the class I7,— X, of the arithmetical hierarchy
for the ordered field of real numbers and for the standard model of arith-
metic,

In up to date practice programs are checked for some simple input
data, for which the solution of the problem is known. If the test happens
to be positive for a program, it is considered to be correct and is passed
to exploitation. However, after some time one finds an input data for
which the results are incorrect. Therefore the question, what one should
require from a programmer designing a program in order to aeqguire the
certitnde of correctness of the program, is of great importance (for an
exposition of these problems see [27]).

One of the possibilities consists in demanding that the programmer
supplies the proof of correctness in the appropriate, formalized, algorithmic
theory. The task of the machine would he reduced to the examination
whether the proof contains any errors.

Another demand, which is casier to fulfil, is the one for supplying
the complete net of subtasks for distingnished segments of the program,
the so-called description or documentation of the program. This approach
to program verification is called floyd’s method [8]. Attempts of mechanical
verification of programs based on Floyd’s method have been presented
in [7], [12] and [13]. .

The description of programs corresponds to the modular method of
their designing. The process of designing a program begins with the
elaboration of its logical structure. This consists in splitting the overall
task into a net of subtasks in such a way that, having programs accom-
plishing the subtasks, by an appropriate putting them together we can
obtain a program corrcet with respeet to the overall task. This net of
subtasks will be called a deseription. The programs accomplishing the
subtasks will be called modules of the main program. The configuration
of all modules will be called the modular structure of the program.

As in the case of the whole program, the task of each module will
be defined by means of two formulas: its input and output formulas.

Coming back to the previous example, we can distinguish in the pro-
gram M four modules.
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M, — the main program M

My —(2:=2;
t:=10)
M, — while z = y do
begin
Zr=z—y;
ti=4{-+1
end

My —(2:= T—y;

2:=4¢-+1)

As a description explaining the subtasks of the modules we can take
the following assignments:

to M, {z=0Ay>0) -oand (g =iytaaz<<yaiz0),
to M, (22 0Ay > 0) - and (¥ 2 0Ay > 0Az = zai = 0),
to M, (2 0Ay > 0Az = xni =0) and (x = i-y-Fazaz < yaiz=0),
to M., (# =i y+eaz<yaiz0) and (¢ =i-y+zaiz0).

The main purpose of the present paper consists in an analysis of the
notions of modular structure and that of description of a program on the
ground of algorithmic logic.

It turns out that many different approaches to the theory of pro-
gramming, as those in [8], [10] and [17], can be embedded and completed
in a uniform way by means of algorithmic logic.

We shall use algorithmic logic with classical quantifiers, the so-called
extended algorithmic logic (see [2], [4], [15]), in contrast with algorithmic
logic without classical quantifiers (see [22], [24]). The presence of classical
quantifiers has been caused by two reasons. First, the construction of
the strongest consequent (introduced in [8] and [9]) reguires an appli-
cation of classical quantifiers. We shall prove that neither classical quanti-
fiers nor the strongest consequent can be defined without eclassical quanti-
fiers. Next, the defining tasks of programs often require the nse of classical
quantifiers. In the sequel we shall often omit the adjective “extended”
in the full name “extended algorithmic logic™. '

The whole work consists of two parts: this paper and [6]. The latter
position will be referred to as Part II.

This paper is devoted to presenting basic definitions and facts con-
cerning algorithmic logic. After introductory definitions of a language
of algorithmie logic and its semantics, the definability of the general
iteration quantifier by means of remaining connectives is shown in §2.
Next the notion of algorithmic logic is defined and basic facts of algor-
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ithmie logic are proved: the theorem on the isomorphism of realizations,
the theorem on the Lindenbaum algebra of an algorithmic theory, the
theorem on extensionality, the lomma -on simplified form of formulas,
the completeness theorem and the deduction theorem. Tt turns out that
every algorithmie formula can be reduced to a formmula in the prenex
normal form (§8).

Now we present briefly the contents of Part II. In Chapter I, §1 and
§2 we study the properties of the strongest consequent and its iteration.
§3 contains a precise definition of the notions of correctness and partial
correctness of programs and a lemma on reduecing the question of partial
correctness to some property of the strongest consequent of the input
formula.

Chapter II is concerned with the modular structure of programs.
We start with precise definitions of the modular structure and a description
of programs and with the important notion of compatibility between
the modular structure and a description of programs. Like for programs,
the notions of correctness and partial correctness (with respect to a deserip-
tion), are defined for the modular structure of programs. It turns out
that every modular structure compatible with a description is partially
correct with respect to that description (§2). This fact was earlier proved
by Manna [16] for “go to” programs, by de Bakker [1] for programs
with non-functional, parameter-free procedures and by Mazurkiewicz
[19] for processes. In the set of all descriptions compatible with the
modular structure of a program onc can infroduce the quasi-ordering of
inclusion of descriptions, just as for formulas.

In algorithmic logic, for a given program one can define maximal
descriptions reflecting all computations beginning with the initial state
{ending with the final state) satisfying a given formula (§3). We obtain
necessary and sufficient conditions for the modular structure to be par-
tially correct (correct) with respeet to a description. In §5 it is proved
that every assignment of input and output formulas to a program can
be extended to a description, the extension preserving correctness (o
partial correetness). This faet is then employed to the construction of
a complete system of proving partial correctness. A similar system, but

not complete, has been given by Hoare [10]. In §6 we estimate the undeeci--

dability of properties of the modular structure with regard to the pro-
perties of programs. It turns ount that the correctness of modular structures
with respect to descriptions composed solely of open formulas is mutually
recursively reducible to the correctness of programs with respect to open
formulas. Having 2 program K and two formulas « and £, we can effee-
tively find an equivalent program M and its description D such that K
is correct with respect to a and # if and only if the modular structure
of M is correct with respect to D. In contrast with the correctness prop-
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erty, the partial correctness of modular struetures with respect to descrip-
tions. composed solely of open formulas is mutually recursively reducible fo

" the validity of open formulas. Hence, supplying a program with a descrip-
tion simplifies an examination only in the case of partial correctness.
However, in order to fully verify the program, we additionally have
. to check the stop property of the program. The last section is concerned
- with representations of the properties of programs in the second order
logic, Similar results for correctness and partial correctness of “go to”
programs have been obtained by Manna [16]. As a corollary we obtain,
_ the partial Herbrand theorem for some types of algorithmic formulas.

I would like to thank Professor H. Rasiowa, Dr A. Salwicki, and
Dr A. Kreczmar for their aid during the preparation of this paper.
Notation

-N the set of all natural numbers,

a® the composition of » copies of an expression a,
a:b the expressions ¢ and b are equal,

€ the empty expression,

Lu.b. least upper bound,

g.Lb. greatest lower bound,

iff ' if and only if,

D, - the domain of a partial function f.

EXTENDED ALGORITHMIC LOGIC o

1. Algorithmic language and its realizations _.
The definitions of a formalized algorithmic language and of its realiz-
ation are similar to those in [23], [24], [22] and [14].
The alphabet of a formalized algorithmic langnage consists of the
following sets: '
V; an enumerable sequence of individual variables. The indi-
 vidual variables will be denoted by the letters m,:y, 2
- t,u, with indices if necessary. ' ‘
Ve, " “an enumerable sequence of propositional variables. The
propositional variables will be denoted by the letters
P,4q,7, with indices if necessary.

{@n}m ~ a family of at most enumerable sets of functors. Functors
will be denoted by the letter ¢, with indices if necessary.
The elements of the set &, will be ecalled n-argument
Junclors.

{Poleewr  a family of at most enumerable sots of predicates. Predi-
. ' cates will be denoted by the letters v and p, with indices

)
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+if necessary. The elements of the set ¥, will be called
n-argument predicates. We assume that; the set ¥, contains

/- a distinguished predicate ,denotefd by “=" and called

the equalily sign.
0,1, 1,v,n, =, 3,V,u,n,*,x,0}
the set of loglcal and program connectives.

{,hE,) 1}
the set of auxilliary symbols.

~ We assume that all these sets are pairwise disjoint.

_ The language .# of the extended algorithmic logic consists of an
alphabet as described above and of the following sets of Well formed
eXpPresgions:

T the set of classical terms. Terms will be denoted by the letters v
and u, with indices if necessary;

F, the set of open formulas; _

F, the set of formulas of the first order predicate calculus;

8  the set of substitutions, i.e. expressions of the form [#/w, ... x,w,]
where-x,, ..., &, are variables, w,, ..., w, are expressions and, more-
over, for each i = 1,...,n,; is an individual variable iff w,; is
a term and z; is a propositional variable iff w; is an open formula.
Substitutions will be denoted by the letter s, with indices if necess-
ary;

FS the set of programs defined as the least set of expressions satisfying
the following conditions:

(FS,) every substitution is @ progmm n FS;

AFS,) if v i8 an open formula, K and M arve programs, then the expressions
o[K M), v[yK M) and »[yK] are programs in FS.

Programs will be denoted by the letters K, L, M and P, with indices

if necessary. '

F " the set of formulas defined as the least set of expressions samsfymor
the following conditions:

(F,). all the propositional variables and the signs 0 and 1 are formulas;
(Fy) if n=0,p 18 an n-argument predicate and Ty, ..., T, are terms,
then o(ty, ..., 7,) 8 6 formula;
( a) if @ and § are fmmulas, then Ta, (av B}, (anB), (a :>;3 are
formulas;
(Fo) if a 8 a formula a/nd z is an individual variable, then (Jxa)
and (Vza) are formulas;
Y of K is a program and @ i3.a fommla, then Ka, |_) Ka and (| Ka
" are formulas.

~



Investigv-atiom of properties of programs 99

Formulas will be denoted by the letters a, 8,7, 4, &, b, ¢, d with indices
if necessary. ‘

Let J be a non-empty set and let B, = {(By, 1, v, A, = be a two-
“element ‘Boolean algebra. The zero of B, will be denoted by A and the
unit by' V. Let W be the set of all valuations of the variables in the sets
J and B,, i.e. let W = J¥#xBJ". i -
 Tfwisin W, « is an individual variable and j is an object of the universe
J, then oF denotes the following valuation:.

~

j if ‘z=‘la:,
(%) if z#a

By a realization of the algorithmic language % in the sets J and B,
we mean a mapping B such that: po T

if ¢ is an n-argument functor, then pg-i8 an n-argument operation
in J,i.e., gg: J"=>J;
 if p is an n-argument predicate, then yy is an n-argument characteristic
function of a relation in J, i.e., pp: J"—>Bg;

if 7 is a term, then 75 W—J (see [23]);

if ¢ is an open formula or a formula of the first order predicate cal- -
culus, then ep: W—B, (see-[23]);

if s is a substitution then s;: W->W (see [22]);

the Tealization of an arbitrary program K is defined by induction
on the length of K. Namely, if partial functions K, and My from W
into W are realizations of programs K and M, respectively, then

Mp(Ep@) if wveDg, and Kp(v)eDayp,

vi(z) =

" olE Ma(v) = undefined otherwise;
o e ‘ Kp(v) if ',UEDKR and yp(v) =Y,
v [yE M]p(v) = Mg(®) if 0Dy, and yp(v) = A,
v undefined  otherwise; '
K (v) if {here exists a natural i such that K (v) is
K In(0) = ‘ defined, yn(K%(v)) = A and for each j,

: 0<j<i: J’R(K’}a('ﬂ_)) =V,
{ undefined otherwise.

S0 o[K M] is equivalent to the algolic compound statement begin K; M
end, v [yK M] is equivalent to the conditional statement if y then K
else M and finally *[yK] is equivalent to the while statement while
y do K. - o ,
The realization of a formula e in F is a mapping az: W—Bg and it
- is defined by induction on the length of a in the following way: ‘
!
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(Fiz) if p is a propositional variable, then

CPr(Y) =0(p), 1z(v) =V and Oy4(v) = A ,
(F,5) if ¢ I8 an nm-argument predicate and T1y -+-, T, &re terms, then

ety -y 2)r(®) = ep(Ta®), ..., 7,0 (0); |
(Fag) if @ and B are formulas, then
(av B)a(v) = ap(v)v B (v),
(@rf)n(0) = ap(v)nfr(v), (a = f)p(v) = ap(v) = fp(v) and
(TTe)p(v) = Tag(v);

(Fyg) if « i3 a formula and # is an individual variable, then

(za)p(v) = Lu.b. ap(¥f) and  (Vae)g(v) = glb. ox(v);
jed jeJ
(¥sz) if « is a formula and X is 3 program, then
Kg(v if D
(Ka)p(v) = aR( e )) - Velgn,
1 - A if Q)¢-DKR;

(U Ea)p(v) = 1.;11}b. (K a)g(v),
(M Hajg(v) = g;l-b- (Kia)R(”)°

teN

v 2, Basic denotations

In the sequel we assume that % denotes a fixed algorithmic language.
We consider only realizations of this ‘language. '

Let w be a term or an open formula and let s — [@y/w, ... @, /w,] be
a substitution. The expression obtained from by simultaneously replacing
all occurrences of the variables z, by the expressions w,, for ¢ = 1, ey M,
will be denoted by sw. In the notation used in [23], p. 152, we have '

sw = w(w, fw,, oy B fi).

If a and § are formulas, then. by « < 8 we shall denote the formula

(@ = B)a (g = o).

By 'V{(w) we shall denote the set of all variables oceurring in an
expression w. :
If s, = [z/w,... 5, /w,] and 82 = [#:1/4 1... Yy /A,,] are substitutions,
then by 5,08, we shall denote the composition of these substitutions, i.e.,.
$108y = [Y1/817, ... ym/slj'mmillwil a:‘iq/wiql

where ;5 -y ¥y, aTe all the variables in the sequence Dy ..., &, different
from any variable y,,...,,,. '
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" By kga we sﬁaﬂ denote the validity of 2 formula « in a2 class of realiz-
ations #. In particular, F ¢ will denote that o is valid in the class of all

realizations, i.e. that « is a tautology.
Let Z be a class of realizations. By <4, <, =4 and = we shall under-

stand the following binary relations in F':
a<gf I Fpla =p),
axp iff Fk(e=>f),
a =gf I Fyla<p),
a=p i F(a=p).

Observe that the relations <g, < are quasi-orderings in ¥ and =g, = are
equivalence relations in #. )
4 Let x = (#y,...,@,) and ¥ = (#1,...,%,) be sequences of different
variables. We shall say that x and y are compatible provided, for each
-¢=1,...,n, z, belongs to V, itf y, does and x, belongs to V, if y, does.
Let :n, y ooy Ty e all different individual vana,bles in x and let @; , ...
, &;, be a,ll dﬁerent propositional variables in x. For compatible sequences
x a,nd y we shall use the following abbreviations:
x =y for the formula '

(wil =Y h oo ATy, = yik"\wfl':'yj]’\ s A{Eja.@pyjs);
dxa for the formula

Jm; ey 2 v [z fe, ... 2 [e,]a;
i *k e==(E),.00,55) {0,135 Nt L

and VYxa for the formula
‘ © Ve

(2 feg ... 2; [g;]a.
e apeetyeays LT

We shall say that y is a copy of x provided x and y are compatible
and- disjoint. .

For example, the expression 3(w, y, )*[p = (@, 3, )= (2, &, )y /o (¥ )]]
o{z, ¥, #, 1) is an abbreviation of the following formula

23y ([p/01x]p = (2 = 2ay =trp <= ) [yloW)]| elz, ¥, 2, t)v
vipllxlp = (@ = 2ay =trp < Q) [yle)] ez, ¥, 2, 1).

The following lemma shows that the admitting of the universal iter-
ation quantifier is not necessary and every formula in F can be trans-
formed to an equivalent one without the quantifier ().

LEMMA 2.1. Let K be a program and let a be a formula. Then

NEe = K].AVY(* [x #yK]l = (a(y)AK(y}l)),

51""’$'

where
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-

(1) X = (ml, iy ) 18 the sequence of all differeni variables occurring
in Ka, ' ' " ;

(2) ¥y = (91, .-, ¥a) @5 @ copy of x.
" Proof: Let R be a realization and let v be a valuation. In virbue of
the definition of a realization, the following facts arve consccutively equiv-
alent to one another: ;

() {NEa)g(v) = V; : -
(i) for all # in N, (H"a)p(v) = V;
(iii) (K1)z(v) =V and for every n in N

 (rEx =) = feA K D)Re) =V;
(iv) (KD)p(v) = V and for every n in N

n—1

(Vy((l(ra(x —Y)A /\ I\_J(x ;éy) = (a(y)A K(y ) )))R(fu) =V;

(v) (KlAVy(*[x £y K11 = (a(y)A K (y) }))Rw) =V.

So we. have proved Lemmsa 2.1. m =
Tt is convenient to treat the connectives V¥, (), A and = as secondury,

introduced as abbreviation signs of the language. Fvidently they are

defined by means of the remaining, “primitive” connectives. Namely,

anB as  T]{TlavT1f8);
a=f8 as Tlavf,

Yea as  1{z(Ta),
YKz as in Lemma 2.1,

3. Theorem on the isomorphism of realizations

Like in the first order predicate calculus [23] and in the algorithmic
logic without classical quantifiers [22], the theorem on the isomorphism
also holds in the extended algorithmic logic.

THEOREM 3.1 (on isomorphism of realizations). Let J and J' be non-empty
sets. Let 'R and R’ be realizations in J and J', respectively, and let f be a map-
ping satisfying the following conditions:

(1) ‘ fi I d
(2) for every m-argument funclor ¢ amd every i,y ..oy im i J,
f(‘PR(jl) :jm)) = ‘pﬁ'(f(jl):- Jf(Jm));

(3) for efve?"y m-arqument predicate o and every jy, ..., §, 0 J,

or(Jrs ++ vy Jm) = QR'-(f(jl)r cey f(jm))'
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Let v be a paludtion in the sets J and By. By fv we shall denole the
following valuation in the sets J' and By: 5
flot@) if @ is an individual variable,

o{x) if & is a propositional variable;

(7)) = {

 Then for any formula a and any valuation v in the sets J and B, the fol-
lowing equality: holds: :

@ - ap(®) = ap (/o).

Proof: Tt is easy to show (see [23], p. 219 and p. 233, and [22], pp. 45-50)
that for every term =, every open formula v, program IC and valuation
» in the sets J and B, the following equalities hold: -

(i) f(T'R('U)) = (V) - ' ‘

(1) yp(®) =y (fo); ’

(iii) f{Eg(v)) = Kp(fo)-

Equality (iii) should be read as follows: if ome side of the equation
is defined, then so is the other and they are equal.

The proof of equality (4) proceeds by induction on the length of for-
mulas. We shall consider only three cases of induction steps. Let (4) hold
for a formula « and let « be an individual variable. By definition,

: @) (o) = Lub. ap((f)F)-
Sinee f maps the set J onto the set J ", we obtain

Lu.b. up ((fv)}) = Lu.Db. aR-((fv)}"(j)), = Lu.b. ap (fvf).
Fed’ jed jef i
Hence by the induction hypothesis (4)
Lub. ap(fof) = Lub. ap(¥f) = (Fxa)p(v).
jed jed

. So equality (4) holds also for the formula Jzo.
Let (4) hold for a formula e and let I be a program. Applying the
induction hypotbesis and equality (iii} we get consecutively '

‘aR(KR(v)') it veDyy  |awlfEp() i veDiy,

(Ka)p(v) = :
(Xels! ,) otherwise A . otherwise

_| o= (KR.(f'u)) if' freDgp.,
A otherwise
‘8o (Ea)g(v) = (Ka)p(fv)-

By usual induction we obtain that for every natuval » in ¥

(E™a)y(v) = (K" a)p(fv).

= (Ka)p(fo}.
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Hence

(UI{a)R(v) = lub. (E"a)p(v) = Lub. (K a)p (fv) = (UEa)g(fr). m

- neN neiN
4. Algorithmic formalized theories

In this section we define an algorithmic formalized theory based on
the set F of formulas. Next, we Prove a theorem on the Lindenbaum
algebra for an algorithmic theory (4.2) and a theorem on extensionality
(4.3), very often applicable in the sequel. '

By Ax we denote the set of logical axioms consisting of all formulas

-in F of the form (T,)—(T,,), (e1)—(e5) (these schemata are taken from [23])

“and (A0)-(A11), where

(1) (@ = B8) = {(B =) = (a« >y))),
(Ty) (a = (avB))

(T) - (B = (av B)),

(@) (@ =) = (B =) > ((avp) =),

(Ts) ((anB) = a),
- (Te) ((anp) = B,
(T) (v =) = (( > = (y = (arp))),

(Ts) ((a = (B =) '= ((arp) = »)),
(To) (((arB) =9) = (a = (8 = »))), .
(T10) (@A Ta) = g), :

(T2) ({@ = (anTa)) = Ta),

(T12) (avla);-

(31) (:L‘ = m),

(e2) ((z =y) = (y =),

(&) (@ =9 = (7 =2 =@ = 9)),

(e3) for every natural number m and every m-argument functor ¢
(((371 = yl)A e A (mm = ym)) = ((P(wlj reny mm) = 'P(ylr ym)))!
(e5) for every natural number m and every predicate p

(((ml = Y)A ... A(wm = ym)) = (9(3"15 -'-3mm)¢ 9(?!1; Tty ym)));

(40) (1r70),

(A_l) (sy <> sy) where y is an open formula,
(A2) (s(3$a)¢(_f_ly (s( [m/y]a)])) where y is an individual variable not
. 4

oceurTing tn sa,
(A3) (81082 @<= (5, (s, ))),
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(Ad) - (K(avf) < (Kav EB)),
(45) (E(anf) < (KarKf),
(AB) (s 1o Tsa),
(A7) (o[K Mle< (E(Ma))), .
(A8) (v [yE Mla<= ((yrKa)v{ lya Ma))) where y is an open formula,
(AD) (*[yK]a¢ J 1[;}1{[ ]] (Tva a)) where y is an open formula,
(A10) (P Ko< (Pav P UK (Ka))),
(A11) ([w/z]e = dza).

We admit the following rules of inference:

a,a=>p8

(MP) P .
a = §
) e KB’
" (Ex) [z/yle = B where y is an individual variable occurring neither
dza = g in a nor in B,
(It) {'P'Kl o = ﬁ}i:l\*_

PUEq = 8
In the above schemata of axioms and in the rules of inference we
assume that:

e, 8,y are formulas in P,

By Y2y D1y eenyBpy Y1y -ovs Yy are individual variables;

-8, 8,, 8, are substitutions;

K, M are programs in FS;

P is a program or the empty word and 7 is a term.

Let A be a subset of F. By C(4) we denote the set of all theorems
deducible from the set AUAx by means of the rules (MP), (K), (Ex)
and (It). The system 7 = {%, C, A} will be called an algorithmic theory
- {compare with [23], p. 151).

In the sequel we shall nse the following rule of inference reminding
the classical substitution rule

(Sub) -,
Sa

where a is a formula and s is a substitution. This rule is secondary with
respect to the admitted axioms and rules of inference. Namely, if « 'is
in C(4), then the formula (1 = a) is in ¢'(4). Using the ruie (K), we get
that (s1 = s¢) is a theorem in €(4). Now, according to the schemata
(A0) and (A1), 1 is also in C{4); and hence sa belongs to §(d).

We recall that a realization R is- said to be a model for a theory
T = {&,0, A} provided every formula in 4 is valid in B. A realization
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R is called ordinary if the sigh’ = of equality is realized as the identity
relation. "

If an ordinary realization £ is a model for a theory , then we say’
- that R is an ordinary model for 9

Lmynia 4.1, Let 7 = {Z,C A} be an algorithmic theory. Theorems
in C(A) are valid in every or d’mmy model for the theory I

Proof: Let E be an ordinary model for the theory .9 in the sets J and B,.
We shall prove that axioms (A2), (A3), (A1l) are valid in B and the rule
(Ex) is consistent in R. The remaining axioms and rules .of inference
have been examined in [22] and [23].

Let v be a valuation.

(A2i: Let us assume that s is a substitution, « is 2 formula, z is an
‘individual variable and y is an individual variable not oceurring in the
formula s«. Observe that for any variable z and any j in J,

s (0)E(E) = ls.f‘(”)(z) . Eeh

j if z2=u,

and 5
sp(v)(z) i 2 #A@and 2z #Y,

J if z=zo0rz£y.

[/y]g (SR (’U}’)) () =

Since the variable y does not occur in the formula «, then

aR(SR(v);:) = aR([fE/?/]R(SR(”;!)))-
Hence we obtain
(s Joa) () = Lub. ap(sp(o)f) = Lwb. ap(l#/y]e (se (o))

jed jed .
=1-11;rb (s{zjy]a)z(e}) = (Fy(s[z/y]a)r(v)
J€
(A3): Let s; = [m jw, ... 2,/w,] and s; = [¥.1/% .. 1/,,,,05,1] be arbitrary

substitutions. By definition, 8,08, = [¥:1/8:4, a/m/sll’m iy Wiy -e %, w,-q]
where #; , ..., x; are all the variables in the c;equence Ty enny s" different '
from ¥,,...,¥,. It has been proved in [22], p. 25, that tor any open
formula or term w, (sw)gp(v) = (sw) (). Using this equality, we obtaln
con@.ecutlvelv that for every variable =z,

inlltl] B 5y 5F O = Ly B
$ir(812(0)) (@) = , _ N
~ s5;r(v)(®)  otherwise,.

((8:4)g(v) if @ =1y, for some i =1,...,m,

= ’wikﬂ(’”) it =, for some £ =1,...,4q,

L v(z) otherwise,

= ((slosz)R('”)) (z)..
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So, for .all formulas a, (s,(s:0))r(®) = a,f(sm(sm('v))) = ap{($,082)(¥))
= ((slosz)a]ﬂ('v)‘ - : ) » T i
,  (All): Let e be a formula and let z be an individual variable. By the
' definition of a realization, we infer that for every term 7, '

T

([z/~] n‘)R(’f") = an(”fﬂ(u)) §R 1-‘;1-}3- agp(v]) = (za)y (v).

(Ex): Let a, § be formulas in ¥ and let x be an individual variable.

Let y be an individual variable occwrring neither in e nor in 8. On account
of this, for every valuation v and every j in J we have o

ap(¥) = ([@fyla)z()) and  Br(¥) = Fr(v).

. Hence, if for every valuation ¢, {fzfy)ar(v’) < Bp(v’), then, writing
v = ¥, we infer that ' :

(Fna)e(e) = Lub. ag(o) = 1ub. ([ofylaln(ef) <LED- Be(®)) = Ful)-

i" 8o we have proved that if ([z/y]a = ) is valid in R then also (Jza = )
is valid in R. =~

Applying the induction on the length of a proof we get that every
"theorem in C{A) is valid in B and this completes the proof of Lemma
T 41 0w )
Let 9 ={¥,C, A} be an algorithmic theory. By the equivalence
relation of the theory  we mean the following binary relation on J: e ~ i}
iff (a< §) is in C(4). Let ||al| denote the equivalence class containing the
formula a. Let =3 denote the following bipary relation on Fj~: [all 3 1l
iff (a = #) isin ._C(A)'. The following lemma is closely reiated to Lemma 1.1
" in [23], p- 280. .

TLExais 4.2, The Lindenbaum algebra (F|~, 3) of the theory T s
@ Boolean algebra. For every formulas a, B and every program K the follow-
ing facts hold: '

(1) lal =V iff «is in C(4),. S
2) |Tlel # A iff "la s not in c(d)y) L
3) if lall = 181, then \Kail = KB,

(4) [lamall = Lu.b.j [#f{r]all for every individual variable «,
1¢T

(B) MU Kaj = Lu.b.| ME'al where M is a program or the empty
word. by

Proof: The proof of agsertions (1) and (2) is the same as in [23], §10,

c¢h. VI, and therefore is omitted here. The assertion (3) results from the

rule (K). To prove (4), let us observe that in virtue of the scheme (A11}

of the axioms, the class || 3zl is greater than any class [|[/7] ¢l for 7 in .

Now, take an upper bound [l for the set {\[#[z]al}.cr. IN particular, for



108 . | " L. Banaohowski

any varigble y occurring neither in e nor in B, [zfy]al 3 18I, i.e.,
([#/y]a = B) belongs to O(A). Applying the rule (Ex) we get that (Jve = §)
is in-C{4). So ||3za| 3 |8 and therefore the class || Jzq] is the least upper
" bound for {||{z/r]al},.r- The proof of the assertion (5) applies the scheme
(A9) of the axioms and the rule (It) and was carried out in [22], p. 98. =
Let a, B, v, d be formulas. By Replace} we shall denote the least
binary relation satisfying the following conditions:
~ (1) Replacej{a, «) holds.
(2) If
(21) B has the form g,y8,,
(22) the occurrence of the formula y in f indicated above, is not
-, @ part of any program in 8,
(23) Replacel(a, 8) holds,
then Replacej{a, 8,8,) aiso holds.
Lemma 4.2 implies the following fact frequently used in the sequel.

. LEMMA 4.3 (Theorem on extensionality). For every algorithmic theory I
= {&, C, A} and every formulas a, f,v, and 8, if y ~  and Replace}(a, 8)
holds, then e =~ f.

Proof: The proof proceeds by induection on the length of 8. In virtue
of Lemma 4.2 we have

(i) if ¢ ~ § and a' ~ ' then ava' ~ fvp and TJe =~ 7|f;

(ii) if a ~ § then Ka ~ Kf for every program H;

(iii) if @ ~ g and =z is an individual variable, then by (ii), for every
term z, [x/r]a ~ [z/7]# and hence Jze ~ Jap;

{iv) if @ ~ fand K is a program, then in accordance with (ii), K'a ~ K'8
forall lin N and hence | ) Ku ~ | Kf. = ‘

5. The simplified form of a formula

In order to-prove the completeness of the extended algovithmic logic
we need the notion of the simplified form of a formula. Roughly speaking,
this simplification consists in getting rid of progranis as much as possible.

A formula ¢ is said to be in the simplified form if it is either an open
formula or it has one of the forms (a,v as), “la, (I2ay), {3 | Ka,), where
a; and a, are formulas in the simplified form, s is a substitution or the empty
word, K is a program, and z is an individua,l variable.

LeMMA 5.1. For every formula a there exists a formula o’ in the szmplszd
form such that (a<>a’) is in C(O),

Proof: We shall define by induction an operation of reducing a formula -
e to its simplified form «’. This ¢peration can be treated as an extension .
of the operation of the simultaneous replacement (see p. 5).
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DEFINITION 5.2. We assume that 81, 85 are substitutions, s is a substi-
tution or the empty word, «, 8 are formulas, K, M are programs, y is an
open formula and # is an individual variable.

If o is an open formula, then:

(c0) (812): 5, a,
(cl) a
Moreever, we pub:
(c2) (s1(s;0))': ((slosz)a),
(e3} (s(avB))': ((sa)'v(sB)) if {avp) is not an open formula,
- (ed) (sTa): _|(3a) if 7]le is not an open formula,
{eby (wa)’: Jwa’,
(e6) (s;dza)’: Fy(s,0[x/y]a)’ where y is the first individual variable in
the sequence ¥V, not appearing in s, a,
(e7) (so[KEM]a): (sKMa), .
(e8) (sx[yKM]a) : (((s'y)'f\ (sKa)'}v ((s—l'y)'/\(sMa)']),
(c9) (sx[yEla):sx[yE[ I(«'A"Ty),
(010) (s U Ka)': s Ke'.
© Examrrrs. Let o be a 2-argument predicate, ¢ a 1-argument functor

and z, y individual variables. Liet z be the first variable in the sequence

V, equal neither to 2 nor to y.

) (]Ee U 2le@)]elz, 9))
= z(([zlyloe/e]) U [e/e()]e(zy))’
= Fe([2/21U[z/p(2)] e (=, ¥)),
2)  (o|lzlp)]x [o(ay) [z/p (@)1 [y fp ()] Ine (@, ¥))
= (@l )] [o(@, ¥) [z/p @]y fo ()] I2e (2, )’
= {{tzfe @)]e(@, )} A llp@)][2/lp(2)]Twe (@, y)) v
v((tzlo @)1 e(@, )} Al (1)1 [y o (¥)] 3o (@, )] ) |
—(ele v} ([lo e @) Foe (@, ) )v (Tele@)v)A ([ylp )] 3z (@9)) )
— ((elr@)9)r Ie(lelp (p@))] o tolelo(@, )} )v
¥ (Telo@w)aZ(tylp@)lo /e, 9))))
= ((elemy)rTeelz, ) v (Te(p(3)y) A Tee (2o 1)

Let us observe that every formula in ¥ can be umvoca,]ly represented
in the form se where .
(1) s is the empty word or a substitution,

(2) if s is the empty word then a does not begin with any substitution.
‘This fact guarantees that Definition 5.2 covers all possible forms of
formulas. Moreover, in every particular inductive step either the total
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number of substitutions a,nd connectives decre'mses or the algorithm stops.
So the algorlt.hm 5.2 defines a total function.

We have to prove that for every formula «

(i) (a<> ') belongs to C(F).” - \

The proof proceeds by induction on ‘the number # of direct steps of
the algorithm 5.2. If # = 0, this is evident.

Suppose that (1) holds for some % steps and let ¢ be a formula which
requires n+1 steps of the algorithm. On account of the choice of the
logical axioms (Al)-(A9), pp. 104-105 and of Theorem 4.3 on exten-
smnahty, our indunection hypothems implies that (1) holds also for «a.

To illustrate this way of reasoning we shall carry out the induetion
step in the case (c8). .

Let a be of the form s~ [y K M}8. First assume that s is a substitution.
In virtue of schema (A8) of axioms and of Theorem 4.3, '

(1) sv[yEM1B < s{(ynEp)v(TIya MB))eC(D).

According to schemata (A4) and (A5) and to Theorem 4.3, it follows-
that : .

@ o (sxPEMIB<{(syAsKB)Y (sTIyAsHB))eC (D).

By (60) and schema (A1) we obtain that

(3) [sy<>(syyY) and (sT1y<(s71y)) belong to C(D)
and, according to the induction hypothesis, |

(4) (sKB < (sKB)) and (s Mg < (sMB)) belong to C(D).
: Applvmg the theorem on extensmnallty bnce more, we get that

(5) (((syAsKﬁ)v(s'_lyAsMﬁ )} < ({(sy) At sKﬁ)) (s A (s MBY )))EC(Q‘

Hence,u by (2) and by (e8), it follows finally that (a <> a’) is in C(@).
Now let s be the empty word. Observe that:
the hssertion (1) follows from schema (A8) without use of the rule K,
the.sentences (1) and (2) are identica;l:
the point (el) of Definition 5.2 implies the fact (3),
the continuation of the proof remains without change. m

6. Colhpleteness theorem
THEOREM 6.1 (Completeness theorem). For every algorithmic the'o'ry
= {&,C, A} the following conditions are equwalem
(1) e is_a theorem in C(4), :
(2 ) a is valid in every ordinary model for the theory 7.
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Proof: The implication (1)->(2) is contained in Lemma 4.1. In order
‘to show that assertion (2) mpﬁes (1), it is sufficlent to prove the following
lemma;:

LEMMA 6.2. For,qveﬁjy formula a which is not a theorem in C(4), there
exists an ordinary model for 7, in which the formula “la is saiisfiable.

Proof: Let us assume that a does not belong to €(4). In virtue of
Lemma 4.2, assertion (2), ||"tall # A.

Let (Q) be the following set of infinite joins:

s U KBl = 1. u. b. lsK*Bll,

(@) s ERT _lnb IILw/ﬂﬁll
% 5

e e

individnal varla)bles, x and terms T.

- Let a be the equivalence relation of the theory . In virtue of Iemma
of Rasiowa and Sikorski ([23], p. 87), there exists a @-homomorphism
b from F/~ onto B, = {A, V} such that k[7]el=V. We recall that.
the canonical realization determined by the @-homomorphism % is the
realization R’ in the set T of terms defined as follows: for every n-argu-
ment functor ¢ and terms v, ..., 7,

(pR;J(Tl? L) rn) == 90(1"17 ety T'.n)

and for every n-argument predicate ¢ and terms ,,...,7,

930(717 veey Ty) = Rllo(Ty, .-y 7).
Now we need the following auxilliary lemma:

LevmMa 6.3. For every term T, formula 8, and valuation v in T omd B,
the following equalities hold:

(6.3.1) ?pal?) = 97,
(6.3.2) ' B0(0) = RIBIl,

where B = [Ty /Wy, ..., T, jw,] ts @ substitution satisfying the following
conditions: ' -
A1) for each 4 = 1

vz, i =z, i8-an individual var mble,
w, =11 i = 8 @ propositional variable and viz) =V,
0 if is a propositional variable and v(z;)) = A;

{2} all the varigbles occurring in v and B are included in the. sequence
Y. 7 s : \ -
Proof of 6.3: Equality (6.3.1) is proved in [23], p. 235. The proof of
(6.3.2) is" divided into.the proofs of the following three sublemmas;
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(1) ﬁRo(ﬂ) (88) 5o (9); ‘
(1) B (i) = h|fll under the assumption that B i in the sunphﬁed
form,
(IIT) ﬁRo (%) = & liﬁll for an arbitrary formula 8, where i is the following
. valuation: :

’

i(2) = z if @ is an individual variable,
) hjE| it zis a prOpositiona,l variable.

Equation (I) results from the observation that v o(2;) = v(z;) for all
. variables w; appearing in the formula g.

In vu'tue of Lemma 5.1, equation (II) implies (IIX). In fact, every
formula 8 is equivalent to its sr.mphfled form 8’ in every algorithmie theory.
Hence |8l = ||3’]l and, according to Lemma 4.1, ﬁR{,(@) = ﬁRa (%).

Statement (II) will be proved by transfmlte induction- on the ordma.l
ma{f)
number y(f) defined for a formula # as follows: (B = ) o™ 'np,(f)+

n=0

4+ ne(f) where ne(f) is the number of occurrences of proposmona;l connect-
ives and the existential quantifier in 8, np, (#) is the number of oceurrences
of progra.ms K such that K containg exactly » stars and (J K 1s a subex-
- presgion of B, ms(f) is either the greatest natural number “such that
np, () # 0 or, if such » does not exist, then ms(f) =

Let () = 0.

If B: p is a propositional variable, then P o{t) = 9(p) = hllpll.

If 4:1 then lRo(i) =V = hil.

If g: 0 then OR[,(@') = A = L|0].

If g: o(ryy..., 7,), Where g is an n-argument predicate and =, ..., 7,
are terms, then applying (6.3.1) we get that

e(Try ony To)polt) = QRD(TIRO(?:)! ) T,,Ro(q;)) = Cpo(T1s -5 T)
= hllg(zy, -0y Tl

\ : .
Now suppose that equation (IT) is valid for all formulas 6 such that
%(0) < x(B). Using the induction hypothesis and the fact that % is a homo-
morphism, we obtain in the cases §: ﬁlv 8. and #: 718, that

{(B1v Ba) o () = ﬁIRO( A% ﬁzRo = h|B:liv RlBall = RlIByv Ball

and

(M fs) ol _|ﬁ3Ro 1) = T1hlIBslt = RI718ll-

The next case we consider is that where g is of the form 3z8,. Observe
that for every term v, y(([#/r]8.)') < x(3xp). Now we can apply the -
induction hypothesis, getting for every term = that

([2/711) 4 (8) = RI[@/7]B)'l
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\ On account of Lemma 5.1 this implies that for every term 7

([@/z181) 0 (8) = Bl /71Al

and hence
l.u&'b. ([2/r]1B1}(3) = l.u&‘b. Eli[z{z] B4l
But (FzBy) o (3) = lub ([@/2]B1) 0 (%) and so, in virtue of Lemma 4.2,

assertion (4) and of the fact that  is a @-homomorphism, we get ki3 a8,
= hl-ﬂ-ﬂ})- Iz /x1Ball = Lwb. ki[z/z1B)l. Thus, (Fwpy),e (@) = blFpill.
T red

The induction step in the case f: ¢ () Kf, is similar, First, we must
observe that for all natural numbers I y((sK'f,)) < x{s U KBy} Next we
_apply the induction hypothesis and Lemma 5.1, getting (sK? ﬁl)Rn('.-, .
= h|sK*B,| for all natural {. Using these equalities, Lemma 4.2, assertion .
(8), and the fact that % is a ¢-homomorphism, we obtain consecutively

(SUKﬁl)R{:(@) = lu b. (3K1ﬁ1 = Lu.b. HSKEﬁ1|| .

leN

R(lub. [sE'Byl) = hlisUKR.

leN

Now we return to the proof of Lem.m& 6.2. The canonical realization
E° is a model for the theory 7. In fact, let # be a theorem in 0(4) and let
v be a valuation in T and B,. Let v be the substitution defined for § and
» in Lemma 6.3. By the rule (Sub) on p. 105, the formula 28 is in C'(4).
In virtue of assertion (1) of Lemma 4.2, 08| = V. Hence by (6.3.2) we
obtain that ., (v) = k|98l = V. So, if § is in C(4), then § is valid in R
Moreover, observe that (Tla)o(d) = Rl el = V.

Until this point we have proved that R° is a model for the theory

- 7 and (7]a)g(é) = V. This model need not be an ordinary one. The -

continuation of the proof of Lemma 6.2 is similar to the considerations
on pp. 290-292 in [23]. Namely, since the formulas of the form (e))—(eg)s
p. 104, are theorems, then the relation =y is a congruence of R’. Dividing
R® by this congruence we obtain an ordinary realization E’. Since the
realizations R° and R’ satisfy the assumptions of Theorem 3.1 on the
isomorphism, then applying this theorem we get that R’ is a model for
g and (T]e)g(¢') =V, where ¢’ is the image of the valuation ¢ under
the canonical homomorph1sm betweey, B’ and R’

Like in the classical logm, the completeness theorem implies the fol-
lowing corollaries:

(i) A formula a is a theorem in C(D) iff a s fuahd in all ordimary
realizations.

8 — Fundamenta Informaticae I.1
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(ii) An algorithmic theory & = {£, 0, A} is consistend iff 7 has an
ordinary model iff T has either a finite or an enumerable ordinary model.
Since we are interested only in ordinary realizations, from now on
we shall use the word “realization” in the sense “ordinary realization”.

7. Deduction theorem and the theorem on the existential quantifier

Like in the classical logic, the deduction theorem also holds in the
extended algorithmic logic. :

THEOREM 7.1. If 4 is a set of formulas, g is a formula, and a is a closed
Jormula, then (a = B) is a theorem . C(A) iff B is a theorem in 04 u{a}).

The easy proof based on the completeness theorem and on the defini-
tion of a realization is omitted (see [23], p. 313).

By FSF we denote thé set of all formulas in #-which do not contajn
any elassical quantifiers. ' _

The algorithmic logic has been usually founded upon the set FSF
of formulas (see [22], [24]). The following theorem shows that the extension
by classical quantifiers is essential.

THEOREM 7.2. The exvistential Quantifiea' 3 is not definable by means of
formulas from the set FSF. o

Proof: Tt is suificient to take the relational system % = (J, P, =5,
where J = {1,2,3) and P is the binary relation defined as follows:
P(j,k)iff j =1 and & = 2. Tet P be the binary predicate whose realiz-
ation Py in the system 9 is the relation P,

Let v be a valuation in the sets J and B,. For ¢ =1,2,3, by »* we
shall denote the following valuation: ‘

v (5) = q if ® is an individual variable,
Co(@) ifaisa propositional variable.

Let us observe that:

(1) (P@y)u(») = A for ¢=1,2,3,
(2) B=ya(®»)=v for g¢=1,2, 3,
(3) Ta(v) =2(r) for ¢ =1,2,3 and a propositional variable #.

Hence we obtain that for every open formula a, the value ag (%) does
not depend on the choice of g. Now observe that for every substitution
§1in 8, sy(v?)(z) = g for ¢ =1,2,3 and for  being an individual variable,
and that the value su{v9)(») does not depend on g for any propositional
variable ». Reasoning by induection on the length of a program K in B8,
we obtain that the halting of X in the system 9 for the valuations of the
form v? does not depend on the value of ¢; and moreover, if Ky(v™) is
defined for some g, — 1,2,3, then Hy(v9(z) = g for ¢ =1,2,3 and
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for » being an individual variable, and, K4(v7)(r) does not depend on
g for any propositional variable 7.

Now we shall prove that for every formula « in FSF':

(4) for every valuation v, the value aq (V%) s constant and does not depend

.On q.

The proof of (4) proceeds by induction on the length of a. On account of
equalities (1), (2), and (3), the asserfion (4) holds for all elementary for-
_mulas. We shall consider only the induetion steps concerning the for-
mation rule (Fy) in the definition of the set F of formulas in §1.

Let condition (4) hold for some formula o and let K be an arbitrary
program. Then for each ¢;, ¢ = 1,2,3 the valuation Kq(o™) is defined
iff Ko(v™) is defined and if they are defined then Ko(v") = (Ky(@™)"
and

an(Ex(0") = aul{Ex(v™)") = ax(Kul(0™)-

So (Ka)u(v") = (Ka)g(v").
Now, applying the induction on the natural number 4, we can deduce
that for all i, (Kfa)y{v™) = (K'a)(v™). Hence

(U Ka)g(e") = {U Kajy(®®) and (N Ka)y (@) = () Ka)y (™).

Now we return to the proof of 7.2. Suppose that for the formula
JyP(z y) there exists a formula « in FSF equivalent in %U. Then
Fy Pz, y))al®) =V, (3y P(w, 9))a(v?) = A, but on account of (4),
we have aq(?') = ay(v?). Thus, Theorem 7.2 is proved. & ‘

8. Normal form theorems

Every program of the form o [K x [y M ]], where K and M are loop-iree
programs, 1s called a program in the normal form.

THEOREM 8.1 (on the normal form of programs; [151, [22]). For every FS-
program K , there exists a program M in the normal form such that K and M
are sirongly eqwivalent on the set ((V{UV,,)—(V(M)—V (K))) of variables,
i.e. for every realization R and for every valuation v, the valuation Kp(v)
is defined iff Myp(v) is defined and if they are defined, then for all variables
2¢V(M)-V(K) we have Kp(v) (@) = My (v)(@). ' -

The variables V(M)-V (X) are auxilliary ones. They can always be
chosen so as not to occur in the formmlas under congsideration. '

A formula is in the prenex normal form provided it is of the form
G.9, ... 9, a, where

(1) « is an open formula,

(2) for each ¢ =1, ..., n,€; is of one of the forms: Jux, Va, si JK or
s{\ K, where z is an individual variable, s is a substitution or the empty
word and X is a loop-free program.
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The main result of thi§ section is this:

THEOREM 8.2 (on the normal form of formulas). For every formula o
in I, there exists a formula B in the prener normal form such that a = g
(which is equivalent to the fact that (a < BeC(@)).

Proof: In the first step we transform the formula « to its simplified
form a’. In the next step we remove all remaining stars. They can appear
in programs K in the context (K4, We use the following fact:

Levnta 8.3. Let M: o [11[1*[7;11[2]] be a program in the normal form
equivalent to a program X and such that (V)= V(E)nV(a) = G. Then

(1) U Kea EGV(MI U x[yM, ﬂ’fﬂ(—”’/\a))'-

Proof: In virtue of the definition of the realization, | | Ko = | Ma.
Hence, on account of Lemma 5.1, the equivalence (1) is equivalent to the
following one: '

2 U Ma =av, (J [y M, (" yna).

Now let R be a realization and v a valuation. Let us consider the following
equality:

(3) O [Myx [y M5 (0) = s [y My M3 (M (o).

The transformations defined by the left-hand side and the right-hand
side of the above equality can be illustrated by means of the following
flow-diagrams: '

v M, ¥

o[My* [pAh]fw'(3)

. L N ) N i

v—{ My s

- In-order to prove equivalence (2), it is sufficient to observe the following
facts: '
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(4) for e'very naturel i > 1, if o [M 1 ¥y M s;]] R(v) is defined, then there
exists a natural number n such thal equality (3) holds;
(5) for every matural n, if 'VR(V [y M, M,]% ( ('v))) A then there exists

a natural number i > 1 such that equality J (3) Rholds. m

Now we come back to the proof of Theorem 8.2. On account of Lemma
8.3, we can transform each formula to an equivalent loop-free formula.
The classical quantifiers can be pulled ahead the propositional connectives
like in the first order logic. In the case of 1ter&tlon quantifiers we apply
the following lemma:

Lemma 8.4. Let s be e substitution, K a loop-free program and a, for-
mulas in F. Let @y, ..., , be all the variables in the expressions s, K, a,
and B. Let yy, ..., Y, be a copy of the sequence @y, ..., «, (see §2).

Then ‘

1 - : T8\ Ka =8| JK( T a),
@ sl J Ka = s( Y E(0),
(3) - s Eavh = ([42/% - - Yn/2J08) N E{av ([#2/Ys - 2, /4,18Y) s
4)  sUKavp = ([92/%: .- Yulz108) UK (av ([@5/ys - 2, /9,8))

Proof The proofs of the above equivalences apply only some simple
facts concerning the notion of a realization. We shall prove here assertions
(2) and (3). Let R be a realization and v a valuation. By virtue of the fact
that K is 2 loop -free. program, it follows that

(5) i KL (v) is defined for every natural i
Hence
(sl Kaa(o) = Tlul b. aR(KR(st)))
= g;.slr.qb. (Ma)a(Hk(sz(0) = (N E(Ta)r(v).

Thus the equivalence (2) is proved.
Observe that, on account of the choice of the variables ¥y, ..., ¥y,
for every natural ¢ we have

B (sa{[51/% - al2]u ()@

L(sr () (2) it z =, for some ¢ =1,...,%,
=1 [W1f®y --- Y12, Ip(0)(2) if 2 =y, for some ¢ =1, ..., n,
v{2) otherwise.

Hence, according to the assumptions on the variables, it follows that

O an TR{gs{[y 121 -« Yuloalz(0)))) = an(Ia(sz () .
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and
(0 (@l Gy Ehlsn( /o - yulm,Jn0)))) = Br(®).

Now, applying the fact (5) and equalities (6) and (7), we get consecutively
that

(41 Kav B)x(v) = gLb. ag(Th (s (0))v Bx(0)

= g'l'b' (GV [a"l/yl .. ‘mn/yn]ﬁ)l?. (KIR(SR([IyIIml e Yy /mﬂ.]R(v))))

ieN

= (([y:l/wl . yn/mn]os)mK(av [mllyl toe $;L/yu]ﬁ))R(1}) "

Hence, by Lemma 5.1, follows the equivalence (3). m

ExavmpLE. Let K, M be loop-free programs, s,,s, substitutions and
a, B, y, 0 open formulas. Let x = (2, ..., #,) be all the variables occurring
in the above expressions. Let y, z, and t be mutually disjoint copies of
the sequence 2. Below we shall transform the formula (ofs;*[yK]]a
,=>o[sz*[6M]] ﬁ) to an equivalent formula in the prenex normal form.

Namely:

(ofs *[yKT]e = o[sz*[éM]]ﬂ)
= (s Ux[rEL J(arTTy) =8, Ux[oH] J(BAT19)
= (6, 2[yE[ Y(Tlavy) vyl 2[SM[ T](BrT18))
= ([y/xlos) x[yE[ J(Tavyv(x/yloss) Ux[sH[ 1](BA719)
= ([y/xJos)) x|yK[ J([z/x tiylo([x/yloss)
| U [ 821 1|((BAT18) (Ix/z y/e)(Tlany))).
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