© . ANNALES SOCIETATIS MATHEMATIOAE POLONAE
" Series IV: FUNDAMENTA INFORMATICAE I (1977), 195-230

Programmability in fields

ANTONI KRECZMAR

Institute of Informatics, University of Warsaw

Received May 15, 1976

AMS Categories: 63A05

Abstract. In the present paper we investigate algorithmic properties of fields.
We prove that axioms of formally real fields for the field R of reals and axioms of
fields of characteristic zero for the field € of complex numbers, give the complete
characterization of algorithmioc properties. By Kfoury's theorem programs which
define total functions over B or C are effectively equivalent to loop-free programs.
Examples of programmable and nonprogrammable functions and relations over R
and € are given. In the case of ordered reals the axioms of Archimedean ordered fields
completely characterize algorithmic properties. We show how to use the equivalent
version of Archimed’s axiom (the exhaustiom rule) in order to prove formally the

correctness of some iterative numerical algorithms.)

' Key words: programe and programmability, algerithmic properties, program-
mability in fields, axioms for algorithmic properties of reals, ordered reals and complex
numbers.

Introduction

Algorithm . in its primitive but already universal sense is as old as
mathematics, Since the very beginning people aspired to automatize
almost all mathematical tasks, From arithmetic of integers throughout
geometry and algebra till the differential and infegral calculi this natural

. tendeney has had a considerable influence on the development of math-
ematics. .

The theory of algorithms arose much later than logic and foundations
of mathematics. At first it was a fragment of recursion theory. Algorithms
considered there were up to isomorphism algorithms over natural nombers.
Moreover, the investigations in recursion theory concentrated on the
effectiveness and noneffectiveness of mathematical objects. Algorithms

. were more_or less rather tools than objects of these investigations.
[195]

&5

4 — Fundamenta Informaticae I.2
; :

TN, AT L. e n

= . 1196 5 %

o “A. Kreczmar

The development of computer hardware and software, in particular

the revolution caused by
forced the theory of alg
First of all, in a pr

the creation of high-level programming languages,
orithms to take quite a different point of view.
ogramming language we can define, and hence

_analyse algorithms over domains which are neither enumerable nor
eifective as, for instance, the field of real numbers. Moreover, algorithms

. are now expressions of "
- defined similarly to that
Thus an algorithm is

a formal language and their semantics may be
infroduced in metamathematics.
not connected with only one relational structure.

We can treat it as a syntactieal category of many relational structures.
For instance, Buclid’s algorithm, which was ‘primarily used to compute

the greafest common di

visor of two integers, is also valid in the case

of polynomials and quite well may compute the ratio of two commeasur

able segments.

In mathematics it happens very seldom that a formula or a formal
proof is an object of investigations. A mathematician does Dot ma-

nipulate formulas of the

theory he just develops. He thinks and works

in semantical categories. In the ease of computer practice it is just the
“Oopposite. A programmist treats his program not only semantically, as

a mathemadtician his for

mulas, but also syntactically.

In theoretical computer science a formal proof of correctness of an
algorithm . becomes a very important task. The first inventors and advo-
cates of it were J, MecCarthy and C. Hoare [11], [17], but afterwards
it was taken over by many authors. We also share this point of view.
A formal proof of correctness ought to be the final but not, of course,
‘the first step in the analysis of an algorithm. To carry out such a proof
is not an easy matter.- It is well known that the mathematical formal
system of the theory of programming has to be essentially infinitistic.
The choice of such a system is not a key to success, but at any rate it

I8 very important. The
[6], [11], [18], [26], ho
author.

_This system is called
-for the first time [24],
3], [8], [1_6]3 [19], [21],
Put concrete questions.

list of these systems is not very long [2], [5],
wever we chose the system best known to the

elgorithmic logic; it was Proposed by A. Salwicki
then developed by a group of Warsaw logicians
[24], [25]. Having the logical framework, we can

For instance, in algorithmic logic we consider formulas of fhe form
La, where X ig a program and « is an open formula,

The logical value of

this formula is true if ¢ is satisfied after the

execution of K, otherwise it is false. An algorithmic property, a syn-

tactical category introd

uced by E. Engeler [6)], ‘takes in algorithmic

logic theé form of a Boolean combination of formulas Ka. The halting
property, the strong and weak equivalence of programs, the partial and

Prograimability in fields 197

Q;_tra,l- -‘coifr_e'ctness of a program are well known examples of algorithmic

~properties. ' _ i

2w -In-the present paper we try to characterize algorithmic properties

=" over-fields; the fields which are the major part of our investigations are
the fields of real and complex numbers.

: ‘This analysis concentrates on the problem of axiomatization of algor-

. jthmic properties, i.e., briefly speaking, it- answers the question whab

- properties of a-field must be taken under consideration in programming
functions and relations over it; whether, for instance, the continuity of
the Teals is necessary to prove the correctness of a program.

. Tt will turn out that solely the properties of formally real ficlds and

_those of fields of characteristic zero are completely. sufficient to charac-
terize algorithmic properties of the field of real and complex numbers,
respectively. This observation implies that programs which are -total
over these fields can be effectively transformed to the loop-free form.
This does not concern programs over the ordered field of reals. In this
case the axiom of Archimedes plays the most essential role. _

" The first section of this paper is devoted to a brief exposition of
algorithmic logic. In the second we consider the general questions con-
cerning programmability in ficlds. In subsequent sections we investigate
the fields of complex, real, ordered real and rational numbers, respectively.

I. Programs and programmability

. By a daia structwre we mean a relational system 9% consisting of a non-
ompty set A ; some relations P; < A™, some functions f;: A" > A, and
some constants ¢, € 4. With respect to such a data structure we imagine
a set of elementary predicates, functional symbols and constants of
a, corresponding programming language. It is called an algorithmic basis.

With the aid of an algorithmic basis we construct programs over
o data structure (. The simplest program is called an assignment sta-
tement and is written in the form

x:=1 OT P:=a,

where = denotes an individual variable, a term, p a propositional variable,
and, finally, o denotes an open formula.)
To construct more complicated programs we use three categories of

statements:
compound statement begin K; 3 end
if stapement ‘if a then K else M
loop. statement while ¢ do K

where o is an open formula and K and M are programs.

n

— r.‘198' P : " A, Kreczmar

Let K be a program and let VR(K) denote the set of all variables
~ oceurring in a program K. By wvaluation v we understand a mapping
- v: VR(K) > AUB where B is the two-element Boolean algebra and

v(z) € A, v(p) € B, provided z is an individual and P i8 a propositional
‘variable. ‘ _ e :

If X is a program and v a valuation of its variables, we can define
in o natural way the valuation E [¢], i.e., the state of variables after the
execution of K with the initial values of variables defined by » if, of
course, the computation is finite; otherwige I 7] is undefined.

The variables from the set VR (K) are divided into three not necess-
arily disjoint sets: input, output and program variables. If Ziy ..., @, 0O
input and x is the output variable of 2 program K (K(=,,...,x,;),
~ then K defines a partial function [+ A™ - 4 ag follows:

’ flay, ..., a,) =K[?J1(£U),

where v(2;) =@, for ¢ =1,...,n. ~

A partial funetion f: A™ - A4 is said to be programmable over a data
structure 2 iff there exists a program K with input variables ,, ..., z,
and output variable z such that f i8 defined by K(=,, ..., x,;2). A total
function f is programmable iff S is programmable by a program K which
halts for all initial values of input variables z,, ..., a,. T

In order to investigate programs we introduce the notion of algorithmic
property (see Engeler [6]). The simplest example of an algorithmic prop-
erty is just : :

Ka

where K is a program and ¢ is an open formula. The logical value of
a formula Ke for a valuation v is equal to « [E[2]] if E[v] is defined,
otherwise He is mnot satisfied by the valuation v.
A Boolean combination of formulas of the above form is called an
algorithmic property. Examples of algorithmic Properties are as follows.
Let 1 and 0 denote logical constants of truth and falsehood, respect-
ively. Then the formula :

. K1l
defines the kalting property of a program K,
Hl = {(a=HKf) and a > Kg

define the partial correctness and the correctmess of a program K with
respect to an input condition ¢ and an output condition 8. Next, the
formula

begin y,:=2,; y,: = z,; ...; Yni=2,; K; M end (3; = y,)A ...

v A (B, = Yn)

o tPraé’raﬁMabimy'ih fs‘elda”' ') - 199
. defines the weak’ equivalence of programs K and M, provided @y, ..sy ay
oD Yyy +ery Yp BTO all variables oecurring in K and M, respectively.

.. We shall denote the above formula by K ~ M. Turther, the formula:

" (Kl< M1)A(E =~ M)

defines the strong egquivalence of programs K and M and.will be denoted
by K = M. '
... A relation P < A" is programmable over 2 data structure U ifi there

exist @ program K and an open formula e in, the language of algorithmic
_ Dbasis of % such that for input variables z,, ..., %, of a program K

Py, -eey) iff a[K['v]],—

where »(z;) = &, t =1,.., %
A relation P is said to be strongly programmable if it is programmable
by a program K and a formula a and if, mMoOTeOYVer, that program halts
for all initial values of inpub variables @yy.-vs Tn-
Tn algorithmie logic (see [24]) we introduce additionally two kinds
~ of quantiliers, classical and iterational. The lattér ones are written. in
the following way: ‘

|JKe and () Ka,
where K is a program. Their realization is defined as follows£

(U Ka}[»] = sup(K'a[2]),
(M Ka)[»] = i_n:E(K"a[@]).
In algorithmic logic we cal define non-elementary classes of models.
TFor example, the algorithmic property:

begin x: = 0; while z # ¥ do #: =z+1 end (2 =)

’

says that ¥ 18 a natural number. So, the formula
(Vy) begin #: = 0; while 7 £y do 2: =#+1 end 1

with some finite number of additional axioms defines the standard model
of arithmetic.
Similarly the axiom

Vo) (Vy){z> 0y >0 = zi=yU (i=2+y)@<2)

gays that < is an Archimedean order. .
Both these properties are known not to be of the first order.
‘We introduce the notion of semantic consequence as usual, If a is
g formula of algorithmic logic, 9 is a data structure and » is & valuation,

’ d200‘ By BT Kreczmar

- then 9 F a[v] will denote that « i satisfied by v in A. U £ « will denote

that e is valid in %, i.e. is satisfied by every valnation. If I" denotes a set

‘of formulas, a is a formula, then I" F ¢ means that for every data structure,

U, if all formulas of I" are valid in A, then « is also valid in 9. In par-
* ticular, k o means that o is 2 tautology. _

- This semantic consequence possessés the complete syntactic charac-
terization presented in several papers (see [16], [19]).

I U, and A, are two data structures with the same algorithmic basis,

they are said to be algorithmically equivalent if for every algorithmie
Property « '

< Wka iff A, k.

From this definition it follows that Programs are interchangeable between
two algorithmically equivalent data structures, '
~ After this list of definitions we now Pass to some general facts con-
Cerning programs. They will make it possible to effectively transform
formulas expressing algorithmic properties into normal forms. The first
lemma concerns the normal form of & program, the others the mormal
form of an algorithmic property.)
DEerFINITION 1. A program K isin the normal form iff it is of the form:

begin K,; while o« do X, end

where K, K, are loop-free programs, .
Levuma 1. There is an effective way of iransforming cvery program K
inlo @ program M in the normal form such that F K = M.
Proof in [16].
LevmA 2. There is an effective transformation which Jor every two
programs K, M and every two open formulas a, § gives a program N and an
- open formula S such that

k(Kav MB) < N5.

Proof: By Lemma 1 we ean consider the case when programs I and
= M are in the normal form: ;

, laegin K;; while y, do X, end,
~ begin 31,; while y, do M, end.
Let us consider the following program (written in Algol-like notation):

begin boolean ¢, g2y 73 :
N K;; M5 p: = 91 = ¢y =7: = true;’
\ 20:

“, programmability i fields C 201
Tif gy = ginr then
Y . if y, then begin H,; 7: = —r; goto 20 end
else if o then begin p: == true; goto 30 end
else if g, then begin ¢,: = false; goto 20 end
~ else hegin p: = false; goto 30 end '
. end else
i .. begin
- if y, then begin Mjy; r:i= "17; goto 20 end
else if § then begin p:= true; goto 30 end
else if ¢; then begin g,:= false; goto 20 end
else begin p:= false; goto 30 end
end;
30:

end
Let us denote by N a program which is obtained from the above one
after the elimination of labels 20, 30 (see [15], [25]). We shall prove
that the formula Np is that mentioned in the lemma.
‘ We consider the following table of possible values of the formula
‘Kav Mp treating it as a function of values of K, M, a, 8. In this table
- + denotes that a program ig defined, — that it is undefined, 1 and 0

denote, as usual, truth and falsehood.

1 2 3 45 6 78 9

E ——-——++++++
e 00 0 0 006 111
¥ - ++-++-++
Mg 0 01 001001
KavMg 0 0 1 0 01 111

Let us consider, for example, cases 2 and 3. In both cases K is unde-
fined, hence the condition y, is always tulfilled. The two-cycle way of
working of the program N is controlled by the variable 7. In the con--
gidered cases the value of g, remains always true, because y, is always
true. Thus the condition g, = G1A ¥ is equivalent to ¢, = 7. But M is
defined, hence after a certain number of steps the condition y, will not
be satistied. Now we have two possibilities. The condition f is or is not
gatisfied. Tn the first case p becomes true and the program halts, Np is
true. In the latter case g, is true, hence g, becomes false and the condition
© g4 »r will be always satistied, N does not terminate computaiion and

© Np is false. ; 7
‘The remaining cases can be proved in @ similar way. ®

&

2 202 m e _A. Kreczmar)

'DEFINITION 2. An algorithmic property is said to be primitive if it
i8 of the following form:
| Ko = Mg

~where K, M are programs and-a, # are open formulas.

DEFINITION 3. An algorithmie property is said to be in the normal
Jorm it it iy a conjunction of primitive formulas.

LEvMMA 3. There is an effective way of transforming every algorithmie
. Properly a into the normal form B such that ,

Fa< 8.

+ Proof: First of all we transform an algorithmic properfy into the
conjunctive-disjunctive normal form of propositional caleutus. Negated
elements of disjunctions can be unified with the aid of the following -
equivalence:

E(T1Kav ""[Mﬁ) < (begin K ; If end (a4 B))

after renaming variables oceurring in these formulas with due care.
The unification of unnegated elements of disjunctions is given by
Lemma 2. _
We see that after these two steps of transformation we obtain the

conjunction of formulas of the following form:
Kav 1 MB equivalent to Mg =~ Ka. m

Let us again consider an algorithmic property of the form Ka. This
formula may be effectively transformed into the more convenient form,
This results from the following :

LEMMA 4 (Engeler (61). There is an effective way of transforming every
Jormula Ka to a formuila of the form . :

K, UKE,p,
where K,, K, are loop-free programs and B is an open formulq such that
FHa< K, K,B.

For the proof see [24]. E

By the above Lemma a formula Ka i3 equivalent to an open formula
of the first order predicate calculus if K is a loop-free program, or to
a formula of infinitistic language I, , of the following form:

V o(@, ..., ,),
1ew

where all formulas ¢; are Elpen and effoctively given,

. Programmability in fields 203

- Looking back at Lemmas 1-4, we observe that all we want to investigé.te
in the theory of algorithmic properties of structures can be reduced to
*the case of formulas:

) £ A wﬂ)(i\c/mai(w“ vy @) = {Xﬁi(m“ saey mn))
If, for example, we want to show the algorithmic equivalence of two
.....data structures, it suffices to show it for formulas of the above form.
One of the most important algorithmie properties is the halting prop-
- erty. In fact, the firgt what we must prove about our program is prove
that it halts on all initial values of input variables from the considered
domain. If a program has no leops, we need mot do anything, because
it always halts, otherwise the problem becomes very difficult. In the
case of programs over the data structure of natural numbers the halting
problem embraces all recursively enumerable sets.
"Now, let us consider a elass of data structure with the same algor-
_ ithmie basis, i.e. assume that programs are written in the same language.
We shall give one criterion which answers the following question:
Is there a program K over that algorithmic basis which halts on all
initial values of input variables from every data structure of that class
and which is not strongly equivalént in that class to a loop-free program?
This criterion was first formulated by M. Paterson [20], next it was
strengthened by D. Kfoury. We ghall give it in the version very close
to that formulated by Kifoury. _
TeEoREM 1 ([14]). Let I" and {a;},. be two sets of formulas for whickh
Lo§’s theorem about wltraproduct is valid ([4]). Let us denote by ¢ an infinite
formula ' :

(an vesy &) V ai(®yy .00y D)y

and by g, s finile segment

(le: ---:mﬂ,)\/ ay(yy ooey).
i<k

If T'F @, then there exists ke o such that I'F g,.

Proof: Let us suppose that for every k¥ e w I' non k ¢,. Then the{'&
exist a data structure %, and a valuation v, such that

(1) WD and W,k TJypled,

where w,: V o{®,...,2,). Now, let ¥ be an ultraproduct:
i<k

(2) | | ‘JI =J]uv

ke

- A. Ereczmar -

‘ modulo a nonprmclpal ultra.ﬁlter V < 2% From (1) it follows that A is .
a model of P and that

3) L {i: Wk oo} = {i: i> %)
Hence, from (3), {¢: U; F], [v,]} € V and for the valuation v = 0}l V
we have
W E ag[v] for every hew,
* which implies that % non Fg. m
Let I" be a set of formulas of the first order predicate calculus. In view
of Lemma 4 the halting formula may be expressed in the form
(an"": m?!)_\/Kl'K; Taf@y,y .y),
i LELW
where K,, K, and « come from the normal form of a program K.

If K halts on all initial values of input variables for every data structure
which is a model of I, then by Theorem 1 there is k € w such that

(4) - (VT'I’ n)VK -K —l':]'-(ml:I T n)

is eqluva.lent to the haiting formula, of . Hence, the programs K and
K, K% have the same domains, and the program
begin K,; if « then I,; .
if ¢ then #,;
if o then K,

end ‘
where the if-statement is repeated % times, is strongly equivalent to K
on zll data structures which are models of the set of formulas I

In particular, if I" is empty, then a program X for which the formula
K1 is a tautology is strongly equivalent to a loop-free program (seo
Paterson [20]). Moreover, we can eliminate loops effectively, because
the relation F a, where a is open, is recursive.

The phenomenon of effective elimination of loops is much more
general “than in Paterson’s version. Namely, consider an arbitrary set
I' of first order axioms. If I"is recursively enumerable, then the elementary
theory with this set of axioms is also recursively enumerable. Let K be)
a program over data structures which are models of I'. If the halting
property of K is a semantical consequence of I, then by Theorem 1 there
exists a loop-free program such that

FeK =M .
But this program may be obtained effectively. In fact, it is sufficient to

. find an integer % such that (4) is a semantical consequence of I'. Now
wo generate all proofs of the first order theory with axioms I'. Affer

" Programmability- in-fields 205 -

very step we verify if it is the proof of-(4). Owing to the condition that
for some % ew (4) is the theorem of this theory, the process always
:termma.tes ,
. From the above it follows that programs which are total in some
“elementary axiomatizable class of models are effectively transformable
to loop-free programs. In particular, analysis of programs over fields,
rings, groups, Boolean algebras and so on is reduced to the case of loop-
..free programs.

IL. Algorithmic properties in fields

‘ In what follows we shall consider exclusively programmability in fields.
First of all, we observe that we can disregard propositional variables.
In fact, we replace every propositional variable by an individual one,
.the logical constants by the field constants 0,1, and propositional con-
nectives by the following ficld operations:

g by (1-—s),
and
' pAg by =y,
where =,y .are individual variables whlch correspond to proposmonal
, varlables B, q.

Fmaﬂy, we replace every condition a by a condition v = 1 where
T 18 a teijm corresponding to this open formula «.

So, from now on we assume that all variables vary through some
field & a,nd all non-logical constants are interpreted as field operations
+, —, -, " and the relation = (in some cases <, when we consider an
ordered field). We shall also investigate programmab lity in field % with
gsome additional operations and relations, as for example the radieals
in the case of the field G of complex numbers or the square root of posi-
tive numbers in the case of the field R of real numbers.

Now, let us consider the simplest open formulas in the language of
fields, i.e. atomic formulas and negations of atomic formulas. Without
loss of génerality we can consider the following cases:

fg =0 and fg7#0,

where f and g are polynomials in » variables. They are equivalent to the

formmlas: :

f=0ng %0 a.nd F#0Ag #0,

respectively. -
An infinite formula (see § I)

(1) | Voo (@, ...y 2,)
fem

Y)

206_) .,. T A Erecsimar

~

‘may be transformed into the above form, where every ¢, is a conjunction

of atomic formulas or their negations of the following.form:
f@y.y@) =0 o flz,...,z,) #0.

Let §& be a field and let f,, ..., f,, be a set of polynomials of n variables
with coefficients in 7, The set of common zeros of the polynomials fi, ..., f,,
is called an algebraic variety. It -is clear that the join and the meet of
algebraic varieties is again an algebraic variety. So, in terms of algebraic
varieties, formula (1) can be expressed in the form:

(2) U (B;—4),

Few

where B; are varieties defined by atomic formulas and A4; are varieties

defined by negations of atomic formulas.

We shall examine infinite enumerable joins of the form (2). Let us
observe that to prove the validity of formula (1) in some field § is the
same a8 to prove ‘

@) U (B,—4,) = ™.
! 1€w

Condition (3) is infinitistie but in some cases it is equivalent to a fini-
tistic one. o

DEFINITION 1. The field & satisfies “finite covering condition” iff, for
every algebraic variety A and every enumerable set {B}.. of algebraic
varieties over ¥, if 4 < | J B;, then there exists a finite subset I < @

such that A = | B,.
el

Every finite field satisfies, of course, “finite covering condition”.
It will turn out that the fields of real and complex numbers also satisfy
this condition.

. On the other hand, every infinite enumerable field does not satisfy
“finite covering condition”. This results from the fact that every element
of a field is a variety and the whole space F" is also an algebraic variety.

In the following basic theorem we shall prove that in fields satisfying
“finite covering condition”, if (3) holds, then it holds for some finite
gubset of w.

TesoreM 1. Lel {4.}, {B;} be two enumerable sets of algebraic varieties
over a field.§ satisfying “finite covering condition”. If

(4) U (B,—4,) = 7,

then there exists a finite subset I < w such that

-~

(5) ' U (B, —4,) ="

fel

Programmability in fields 207

" Proof: By De Morgan's law we obtain from (4)
e - N4 —B) =9

" After the application of the generalized distributive law .to (6) we have
for every function f: w — 2 :
i " (1) n-Di =0,
- where ! -
4, #f@) =0,
| —-B, it f(6) =1.
- Taking as f a constant function we obtain from (7)

Di"_:

. (8)) N 4;, =0
" and -
(9} - _UB,; = I, -
"I @ #£J # w, then taking '
1) 0 ied,
) =
_ 1 ié¢d;
by (7) we obtain
{10) NA4; < U B;.
el 1eJ

Let I be a finite subset of w and let us denote by A the meet M 4.
‘ ’ tel

“TFor A + O consider a set J = {i: AnA; = A}, Then JoI and J is
proper subset of w, otherwise () 4; = 4 % @ contrary to (8). By (10)

and “finite covering -condition” there exists I’, a finite subset of w—dJ
such that :

(11) . A< (UB;
1 Tel”
and ,
(12) for every 1el’, And; Z 4. .

Now we are ready to construct a finife set I satisfying (5). We define
,inductive-ly a tree D whose elements will be finite sequences of integers.
The root of D is the sequence: { —1). By (9) and “finite covering con-
dition” there is a finite set I such that F* = {J B;. All sequences (—1,%.

iel

for i e I are also elements of D. Now, we proceed by induction. Let us
suppose that { —1, g, %1y -+, 4> Delongs to .D. HTA=4,04;n ... NAg
is empty, then {—1, %, %1, ---; i,> has no successors. I A is nonempty,
then there exists a finite set I’ = w— {ig, ..., %} such that (11) and (12)
hold. '

©208 ' L s A, Kreczmar
~ Weadd to D a finite number of successors of the element {~1, 44,8y, ...
ey Gy L8 (=1, 00,44y .u0, G, 1> for el .

- The tree D has no infinite path, because by the Hilbert basis theorem
[13] there does not exist an infinite strictly decreasing sequence of algebraic
varieties 4,2 A, 2 ... and condition (12) guarantees that for {—1,1,,
gy ey Gy and (—1, Ty 1y oeuy Gy G44,> belonging to D Aynd; N4,
Z A,;onfiﬁn ”AiknAi;.-H' Moreover, every element of D has a finite
number of successors. By Konig’s lemma the tree D must be finite.

Let I be the set of positive integers occurring in sequences which are
elements of 1. We shall prove that {5) holds for this I.

Take an arbitrary element z of F™. Hence, for a certain sequence
{(—1,i>eD, =z €B;. Let us assume that g€d, Ay ... N4; #09.
Then from the construction it follows that there exists an element
(=1, %5000y g, B> of D such that z e Bif¢+1' But D has no infinite path,
hence there is an i e I such that z eB,~4;. »

Let & be a field satisfying “finite covering condition”. Then by Theorem
1 we have the following corollaries.

COROLLARY 1. Every program defined on the whole ¥ s strongly
equivalent to a loop-free program.

Proof: The halting formula K1 of the program I is equivalent to an
open formula of finitistic logic. The same reasoning as at the end of §I
‘allows us to find a loop-free program strongly equivalent in § to .the
program K. '

COROLLARY 2. For {4}, (B}, icw, two enumerable seis of algebraic
varieties in F: -

(M (A;9 —B;) # B iff for every finite subset I < o, (4,0 —B;) # 0.
iem iel

Proof: Only-if-part is clear. Let us suppose that

Tew

t

then by De Morgan’s law o
| U (Bi—4,) = 7"
few
and by Theorem 1 there exists a finite subset I < o such that
U (B—4,) = 7"
. . 1l
and again by De Morgan’s law
N(4,0-B) = 0.
el {
COROLLARY 3. An enumerable set of open formulas {a; (@1, «ovy 2) }iew 18
satisfiable in § tff its every finite subset is satisfiable in .
Proof: Immediately from Corollary 2. '

" Programmability in fields 209

‘ _-rfdaj;OLL@f 4.-F0?'/ {0;(@yy - vy @)}y {Bil@a, ...y 2,)) two enumerable sets
i.:0f open formulas: :

s & F (3w, ..., mn)(iyo afByy eos BN "]Z_X Bi(@yy .ory 3,))

sz (k) (Vm)

CFE ey, .., évﬂ)(ak(ml, ,L)A TV Bil@yy ooy L@,

ism

Proof: Only-if-part is clear. Let us suppose that for some ke o and
“"-gvery m € o there exists a valuation v, such that

‘_i'.*-'(1_3) : TE dk[vm] “and % F 718 [v,] for i < m.
From (13) we infer that for every m the set of open formulas

{3 @1y - T}y T1B1(@rs ooy @)y evey fm{@ay ooey @)}
is satisfiable in . By the last Corollary the infinite seb

-

{ak(mu sl)y 1Bi(@1y oy T, 7:65{3}

is satisfiable in &. m
Theorem 1 gives the algebraic cntenon for elimination of loops from
programs which define some total function over a field §. We shall see
- that it is not true in every field, for example, in the field O of rationals
" most of programs liave essential loops. But programs which define a total
function in every field are equivalent to loop-free programs. In fact,
if @ denotes the set of axioms of fields and @ F K1, then by Theorem 1,
§ I, there is a loop-free program M such that @ k K = M. Now, we shall
give examples of programs which are correct in every field.

ExamrLe 1. At first sight it could seem that the algorithmic evaluation
of total functions defined-over an arbitrary field is a quite simple problem,
because we have merely loop-free programs and four arithmetic operations.
But it is not the case, as the following example shows.

- Let us recall Strassen’s algorithm [27] for the fast matrix multipli-
cation. We consider two 2 x 2 matrices

] e 53]

- with items from some noncommutative ring. First we compute 7 products:
Pri=ae, Pyi=b-g, Pai=(c+d—a)(h—f+e),
=({c+d)-(f—e), Psi=(a—0)(h—Ff)
=(b—c—d+a)h, p7:=d-(g-—h+fl—e).

Z 7'-!,\-,--

210) A. Kreczmar

Next in order to compute the whole produet: 7

[o] = [0} = [23]

we must only perform the following operations: .
Ad:=pit+py B:i=pi+ps4+pi+pe Ci=pi+py+0s+0,
D:= P1+?3+P4+P5-

Now if we have two # X n matrices over a field we treat them as 2 X2

 matrices, each of whose elements are (r/2) x (n/2) submatrices. Then
the whole product can be expressed in terms of sums, differences and
products of these submatrices. Recursive application of this method gives .
the algorithm for multiplication of two » x n matrices with approximate
cost:

0 (n'°&2"),

This algorithm uses a lot of auxiliary memory cells. In fact, every
level of recursion requires a declaration of 7+ 4 new matrices of an order
(n/2) (7 for p,, ..., p, and 4 for the result). Henece the straightforward
application of this method needs at least 11 {3 n? memory cells.

We shall define the algorithm, which computes the same arithmetie
expressions as in Sfrassen’s method, but using only inpuf variables:
4, b, ¢, d, ¢, f, g, h and two auxiliary variables: @, . The result of multi-
plication is put on the left or the right argument depending on the value
of a control variable %. . '

Moreovel all seven produets computed in _our algorithm are so
constructed that the result is also put on the left or on the 1ight argument
.of the operation. Hence our algorithm can be applied recursively.

begin -
@ =c+d; Y:=f—e; ¢: =w—a; f: =h—~y;
T:=xY; Yy:=b—ec; h: =y-Iy
y:=g~f; bi=bg; g:=d—e; d: =d-y;
‘ y:=f—e e =ecf; g: =gy
G: =ae; ¢:=c¢ta; x:=atec; y: =g+¢; '

if & = 0 then
begin :

@: =a+b; b:=a+h;c:=y+d; d: =x+g
end else :
-begin

¢: =a+b; fr =w+h; h: =0+4g; g: =y+d
end

end

Proymmmabmty n fields 211

-ll!jjlléf"ebrrecﬁnesé' of the sbove is displayed on the following table:

&y o d ¢ ! g b © y
c+d—a h—f+e o+ d f—e
P undef.
b—e—d+a
Ds undef.
P . undef. g—h+f—e
: e [o 6—0 ' ‘ undef.
Ps ’ undef. h—F
’ undef. P undef. .
Prt Pa PitPatPo | PatPatDs
A[lB|+0o D 4| B] D
- k=0 k#0

This new modification of Strassen’s algorithm gives exactly the same
number of arithmetical operations as the original method and moreover
it uses only)

| 2(n2f4+n216+...) = 2/3n?
additional memory cells. Really, every level of recursion requires exactly
two auxiliary matrices of order n/2*, The whole amount of auxiliary
memory cells is therefore defined by the above sum, where the number
of terms is bounded by the depth of recursion. '

EXAMPLE 2, : o _ o
begin a: =a”'; ¥ =a; Y: =¢; €1 =¢°T; T2 =45 -
br = b wr=0b; y: =y-o; & =y—d; d: =d7Y
@ =b; y: =d; 61 =y-6; Y =0; Y: =TY;
a: =a—y; Yy: =d; b: =b-y; d: = — _
end ‘

The program realizes Strassen’s method of inverting 2 X2 matrix
[27]. The reader can easily verify that it computes the inverse of a matrix

ab
(2]
under the same assumption about computing products as in Example ji Y
Combining both programs we obtain the method of inverting = Xmn
matzices in 2n® auxiliary cells of memory. It must be pointed out that
it applies only to matrices whose submatrices a, d at every level of re-
cursion are nonsingular.

Let us conclude this section with one more remark. Consider a field
% of characteristic zero. It contains the set of positive integers and we
~ can speak abont programmability of reeursive or partial recursive functions.
Hence in the following theorem we assume & field & to be of characteristic

Zero. .

5 — Fundamenta Informaticae 1.2

N .

- -A. Kreczmar

TEEOREM 2. For every partial reoursive fundtion f: NN there ewists.

a _program K over a field § such that

BEE@Y =2)[] iff fn)=m,n,me¥,

where v(2) = n, v(2) = m, v is input and Y 8 oulput variable of K.
Proof: The existence of K for the following functions:
8(@) =a+1, 0@ =0, Ii(m,...,8,)=2a,, oy
is immediate.
~ The program
begin i: = 0; while ¢ 2 2A¢ £y do i: =4 1;
if i =2 then p: =0 else p: =1
end

- computes the characteristic function of the relation z < 7.

Now, the programs:

if x>y then 2: =5 —y else 2: =0
and

begin i: = 0; while (t+1 <@ do é: =i+1 end
compute #-y and [Vxl, respectively.

It remaing to prove that the superposition and minimum are pro-
grammapble in §. But the superposition of pms_computes the soper-
position of functions and the program Wl i O @ '

begin i: = 0; me?:_; t+1; K end end
computes f(z) = (ui) (g(i,m) = 0) provided K computes ¢(¢,#) on the
output variable j. m :

I. Programmability in the field of complex numbers

Let € ¥ Cy,+,—,:,740,1, =) be the data structure of complex”
numbers. We shall investigate algorithmic properties and programmable
functions over this system. First of all we shall prove that € satisfies
“finite covering condition” (Def. 1, § IT). '

TaEOREM 1 (T. Mostowski). Let A,, 4 w, and A be algebraic varicties
in C". _

(1) - . AC UAiJ

tew w

then there exists a finite subset I < w such that

iel

‘,(2)- : A=A,

- Programmability W fields 213

: f.‘lirobf : By Whitney’s theorem -[28], A hag a finite number of topoldgical

.components. So, it suffices to show (2) for a topological component Bof A

From- (1) we infer that '

G o B = (Bn4,).

| Since every component of- an a,lgebra.i'c variety in the field of complex
~ pumbers is & locally compact space, Baire’s theorem is valid for B. From

(3) it follows that there exists ¢, € w such that Bn A, contains a nonempty

open. subset E

(4) g +@ < Bnd,,.

. open

. But by the theory of analytical functions, if a polynomial p vanishes
on @, then it must vanish on the whole topological component B. So,
by (4) we obtain :

(5) Id(BnA4,) < Td(B),

where 1d(A) for arbitrary subset A-— (" denotes the ideal of polynomials
vanigshing on A. On the other hand, the set

Cl(4) = {z e O": for every feIld(4), f(z) = ¢}

- is an algebraic variety called the algebmic closure of A. I£ 1d(4,;) < Id(4.,),
then of course Cl(4,)> Cl(4,). Thus, we obtained the following chain
of ineclusions: g

. B< OI(B) « CI(Bn4,) < OL(4,) = 4,

where the second of them follows from (5) and the remaining just from
the properties of algebraic closure. We have proved that B< 4,. m
Remark: This theorem remains valid also in the ease of real numbers,
since Whitney’s theorem, as well as the other facts used in the proof,
‘are frue in the field of reals. B
THEOREM 2. There is an effective method of tramsforming every program
K for whick € & K1 into a loop-free program M such that '

CrEK =M,

Proof: We recall that the first order theory of algebraically closed
fields of characteristic zero is recursive, and moreover, it is exactly the
game as the first order theory of complex numbers. In § I we showed
that if the semantical consequence is for open formulas recursively
enumerable and loops are eliminable, then they are effectively eliminable. m

THEOREM 3. The set of algorithmic properties valid in the field © is
a TI3-complete set. :

-

214 . . AfKreézmar .

~

.~ Proof: Let ¢ be an a;lgorifhmic property. By Lemma 3, § I, we can

consider the case of a primitive formula;: ‘
y a;(®yy ...y 1) :"iy Bz, ..., 3,),

where «,, f; are open formulas effectively given.
' We have the following equivalences:

Cnon k (Y, ..., 8) (V a1, ..., 3,) = V Bi(@y, -, 7))
S {ew {fer
iff "
U (3‘1’1’ ---,fGn)(iV o;(z, 'f',a"‘n)f\ —Iiy B: (@, ...,w,,,_))

. iff (by Corollary 4 of'Tllleorem 1, §1IT) - ..
AR M) € E Ty, .y 3,) (0 (@1 e, B A Y 8@y ey)

The above proves that {p: ¢ is algorithmic A € k @} is I77.
. By Theorem 2, §II, for every partial recursive function f: N - N
there exists a program K over € such that considering only positive
integers it computes f. This theorem wags proved effectively, hence we
can consider the program K, which is effectively obtained from the
partial recursive function of index 4.
Let M be the program:

begin y: = 0;
while % % 2 do y: =y+1
end

It is clear that the domain of M is the set of positive integers. Now, the
relation

holds iff K computes a total recursive function. This last relation is
known to be a II}-complete property [23]. m 3

THEOREM 4. Let y denote the set of azioms of fields of characteristic zero
Then for every algorithmic property @

_ Crko iff xEop.
Proof: Ii-part follows from the fact that € has characteristic zero.
' Now, suppose that for a field §§ of characteristic zero § non kg. We
can eonsider ¢ o be a primitive formula. So, ¢

(6) JE (3:01, 1“"'1;)(\/ a; (@, ---::-'L'n)f'\ /\ 1@y ..y mn))

1€Q te

Let § be the algebraic .closure of §; hence (6) holds for ¥ due to the
existential form of the above formula. There exists a % € » such that

;- S ‘ ' Pﬁ;qgrammabfility in fields 215 .
o860t {o; 1Pu 1 €) 18 satisfiable in-§’. So, its every finite subset is
‘gabistiable in §'y and by algebra it is also satistiable in €. If every finite
Chset of some enumerable set of open formulas is satisfiable in €, then
by Corollary 3 to Theoremm 1, § IT, {ay, 18 i€ w} 18 satisfiable in €.
Thig proves that Cnon F¢. ® , o
: Remark: Theorem 2 was proved for the first time by Efowry [14],
but be did not know Theorem 4. He ased the fact that the first order
"““theory of € is ¥,-categorical. It is clear that his method is useless in the
‘eage of R, because the first order theory of M is not categorical in. any
power. Moreover, he did mot give the axiomatization of algorithmie
properties over C. ' | '

Let us make the following observations coneerning algorithmic
properties in €. From the form of an. algorithmic property ¢ it follows that
if kg, then for every subfield § of €, § F ¢, because ¢ ig universal.
But by Theorem 4 ¢ is also valid in any field &, not necessarily a subfield
-of ©, of characteristic zero. '

On the other hand, consider an algorithmic property which transformed
into the normal form has no negative occurrences of loops, i.e., such that
its every. primitive formula is the following:

a = Eg,
where a, p are open formulas. Then for the program M:

begin if o then

begin H;
while 78 do
" end
end
we have

Cea =>Kp iff CF ML

According to Theorem 2 the formula « = Kf is equivalent to an open
_ formula. We proved that loop-positive algorithmic properties are semanti-
cally equivalent to elementary formulas. By Theorem 4 and Robinson’s
theorem (see [22]), if CF o, then there-exists a prime number p such
that for all ' = 2, &» F @, where §,- denotes arbitrary field of character-
istic p'. ,

Now, let us co_n'sider‘some examples of programs in .

Examrre 1.

begin while 22 = —1 do @: =2 end

2 216 o ; : A. Ereczmar

~ The domain of this program is ¢ —{V'~1, —V_1}, and its halfing
formula is ‘equivalent to the. open formbla 2* ¢ —1= Notice that this
Program is total in N, S s

EXAMPLE 2. The program K

-be-ginw:=1,- while 2 = 0 do #: =241 end

has only one variable 2 which is neither input nor: output variable. The
algorithmie property
1K1

is equivalent to x~-the axioms of field of characteristic zero. Thig example
shows that we cannot reduce the set of axioms mentioned in Theorem 4.

Examerr 3.

~ begin 4: —1; Yy: =uaz;
while ¥ = 1 then 0

begin

it =1i41; y: =y.m
end;
z: =g!

end

The program has one Input variable z, two output variables ¢, z and
One program variable y. Its domain-is the set of all roots of the unit,
In the loop, y is set to Y-z until ¥ £ 1. On the output 7 is the degree of
@, ie o =1 and 2 is the conjugate 7 of this root a.

Exsvere 4.

begin ¢: = (903 —105) * (2, — 24) ;
if 0 5= 0 then -
begin 0: = (s —w,): (2 —2,)-67; @ ~ 0215 b: = wy-d—y 2,
d: =d—zy; a: =W~ Wy 05 6; =1 —g;
if a-d £ b-¢ then
~ begin ‘
if ¢ = 0 then
begin
if d =a then
begm
. ifb=0thenbegin k: =38; m: =1 end
else begin %: = 0; m: — 1 end
end else begin %: = 1; m: =1 end
end else
begin a: = 2 —g;

Programmability in fields 217

if a® # 4-b-c then begin %: =2; m: = 0 end
~else begin %: =1; m: =0 end
end '
end else %: = —-1
end else k: = —1
end _ : it

— - This program is maueh more complicated. It has six input variables
Wy, Wy Way 21, %, 23 aNd six output variables a, b, ¢, d, k, m. Let us

' - imagine two circles’ (proper or improper) on the complex plane C, the
first of which is defined by three points w;, W, Ws and the latter by
another three z,, z,, zs. We want to find a homographic function:

a-2+b

wis) = ¢-z+d

which transforms the second cirele onto the first one. It iz known that
guch a transformation is defined by the equatbion:

w—1w, Wy—Wy 2—2 B3—%

W—wWy, Weg— W, Z2—%y Z3—Rs

Moreover, we want to compute the number of fixed points of this
homographic transformation. The problem consists in the analysis of
the following eguation:

czt—(a—d)-2—b=20.

At the exit of the program. a; b, ¢, d are coefficients of w(z), m is 1 if
w(z) has a fixed point at infinity, otherwise m is 0. Finally, k is 0,1 or
2 if w(e) has % normal fixed points or kE = 3 if w(z) = # is the identity
- transformation or & = —1 if a transformation does not exist.
ExampLe 5. Now, we show how to use the theorems of this section
to prove nonprogrammability of some functions and predicates over &.
First, let us consider the predicate r(2) —2 is real. Is it strongly program-
‘mable over €% If it were, there would exist a program K (2; %) defined on
the whole & such that, for the output variable z, ¥ = 0 iff is real, other-
wise z — 1. By Theorem 2 we can assume K to be a loop-free program.
Hence the formula K (z; 2)(@ = 0) would be equivalent to an open for-
mula afz) such that € F7(2)< al(?). Atomic formulas of one variable
" define only finite sets of complex numbers, 80 a(z) defines a Boolean
combination of finite sets which is finite or cofinite set. Hence it is clear
that a(z) cannot define the straight of reals which is neither finite nor
cofinite in .G. ']

' 218 B A Kreczmar

Now, consider the following funetions:
re(z) — the real part of 2,

Im(z) — the imaginary part of ¢,

z — the conjugate of 2,

2 — the modulus of 2.

We have € F r(2) < re (2} = 2, whieh showg that re (#) 18 not programmable
in €. Next, the programs:

“i = (¢+7)/2 (computes re(z)),
ui =im(2%)-(im(2)}7/2 (computes re(z)),
u: =2"""l2|* (computes z),

show that none of im(2), 7, |zf is programmable in G.

EXAMPLE 6. The problem of programrriabﬂity over € is closely eon-
nected with the problem of solvability by radicals. We recall that the

no__ .
radical ¥z can be treated as @ many-valued function which gives for

n

z all solutions of the equation #™ = 2. First of all, notice that Vz is not
programmable over & for any n 2 2. This follows from the fact thai
algorithmic properties valid in € remain valid in) — the field of rationals.
The programs over any field transform rational arguments to rational
results, hence radicals are not programmable in 2, which implies that
they are not programmable in .

So, the radieals augment our primary computational possibilities.
If we introduce them to the relational system €, shall we obtain a class
of algorithmically solvable problems much wider than the original one?
In particular, we can ask if loops are essential in that new data, structure.
Looking back at Theorem 1, § IT, we find that 4,, B, ought to be algebraic
varieties, nothing more. But the formula

f(“":: ey Bp) = 0,

ny
where f is a polynomial and @, i3 the radieal I/Z, defines also an algebraic
varieby in @, because it is the meet of {ze C™: f(z) = 0} and {(z;, 2,):
=} i=1,..,n ‘)

Hence any program which halts on all initial values of input variables
in the field € of complex numbers with radieals is strongly equivalent
to a loop-free program.

Let us denote this data structure by CRad. The most important
result of nonprogrammable function over CRad is supplied by the famous
Abel-Ruffini’s theorem about unsolvability of algebraic equations of
degreo > 5 by, radicals. Moreover, by the same argument as in the case
of € we dan prove that such relations and functions as re (#)y 7(2), im(2),

—

Programmabilily in ficlds ' 219

_-é-, 2| are not programmable over ERad. However, there are some functions .

yrogrammable over ERad which are interesting. For example, the well-
‘Jmown algorithms for solution of quadratic, cubie, some symmetric
‘equations and s0 on are programmable over CRad without being pro-

- grammable over ¢.

Felt _IY;V‘P-rogrammahi?]ity in the field of real numb\ers

Let RS (R, +, —,+, 7, 0,1, => be the data structure of real
numbers. In §IIX, Theotem 1, we proved “finite covering condition”.
for the field of complex numbers. As it was moentioned in the remark,
the proof remains valid in the case of K. So, we can repeat Theorems

© 1-3 mutatis mutandis.

TaeEOREM 1. The fidld B of real numbers ‘satisfies ©finite covering
condition”.

THEOREM 2. There is an effective method of transforming every program
K for which R £ K1 into a loop-free program M such that

REXN =M.

: TamoreM 3. The set of algorithmic properties valid in the field R s
a II3-complete set. -

ﬁ In what follows we shall try to find, as in the case of €, a set of axioms
which characterizes all algorithmic properties of . It will turn out that
in this case the axioms are also of the first order.

DEFINITION 1 (Artin [13]). A field § is called formally real iff the
only relations of the form o%+...4+a} =0 in § are those for which
B =T =... =2, =0

It is immediate that § is formally real iff —1 is not a sum of squares
of elements of F. If the characteristic of § is p 5= 0, then 0 = 174 ... 417
(p terms), hence it is clear that formally real fields are necessarily of
characteristic 0. .

L3t us denote by 2 the axioms of formally real fields, i.e. the axioms
@ of fields and the scheme of axiomas:

(1) _ Vo, o, @)@+ ... +@p #—1) n=l.
TomoREM 4. For every algbrithmz'c properky @
_ Rep off 2Fo.
-+ Proof: If-part follows from the fact that 9 is formally real.
Suppose that for a primitive formula ¢ and a formally real field ¥
we have § non F¢. Then E

@) § F @y, s) (V @@y @A A TTBlE1s 2oy Bal)-

jew €W

‘A, Ereczmar

 Liet-§'-be the real closure of ¥ (see [13]). (2) is true for %’. There exists
’;,ﬁq? @ such that the set {a,, 718;,4 € w} is satisfiable. in &'y hence every
- finite subset of it is satisfiable in &'. By Tarski’s theorem [13] and by
. Corollary 3 to Theorem -1, § IT, this set is satisfiable in R, which proves
that (2) is also valid for . m -
Now, as in the case of €, we can consider two classes of algorithmic
- properties. Those which have negative occurrences of loops and are not
equivalent to elementary formulas and those loop-positive ones which
are equivalent to elementary formulas. :
" From Theorem 4 it follows that for every algorithmic property P,
if it i3 valid in R, then it is valid in any formally real field §R. In par-
ticular, all subfields of R satisfy this condition.
Let us denote by &R, afield which satisfies axioms ()yforn =1, 2, ...,p.
Notice that there are fields of characteristie zero which are R, not being
&R, for n > p. For example, the field: ‘

{a+bV—2: a,b — rationals)

s ¥R, and is not FR,. Indeed, (a+5V —2)° = a2—2b*+2apV 2.
If a®—2b+2abV —2 = —1, then 4 — 0 or b = 0. The firgh implies
b* = 1/2, the latter a* = —1. Hence this field is &R;. On the other hand,
(04 V_:E)2+(1+0-l/~—2)2 = —1, which proves that it is not FR,.

Now, let ¢ be a loop-positive algorithmic property. By Theorem 4
and by the Compactness theorem for the firs§ order logie, if R k¢, then
there exists » such that for »’ =n, FR, Fo.

ExAMPLE 1,

begin while 2> = —1 do #: =2 end

The domain of this program is the WhOl_é field R and it shows that
the fields R and € are not algorithmically equivalent. '
. BXAMPLE 2.
. - ’
begin #: =1; while » 0 do #: — »1 end
Negation of the halting formula, of the above program is equivalent
o y — the scheme of axioms of fields of characteristic zero. As in the
cage of €, it is valid in R,
Exivmreir 3.

begin

e: =2-brd-¢e—a-et—dt-o; ‘

a: =a-0—b; 6: = ¢4 f-a;

if ¢ £0 then k: =1 else if ¢ = 0 then %: — 0 else k: =2
‘end

o . Programmabilil}y in fields - ‘ 221,

“Theo progr&m computes the number of centers of symmetry of the
algebrme figure defined by the equation:

aw2+2bwy+cy+2dm+26y+f—0

. Input variables are ‘@, b, e, d,e f, output is % If ¥ =1, 0, then the
figure has & centers of symmetry, otherwise it has an mﬂmte number of

_fhem.
ExaMpLE 4 ([1]).
begin :
—(a+b)c y:=a(d—c)+e m =az—b-(d+0)
- end ‘ ¥

Let a, b, ¢, d be input variables and z, ¥ output variables of our program.
It is easily shown that ¥ = a-d+b-c and # = a-¢c—b-d and, of course,
4, @ are the real and the imaginary part of (a4 b)- (¢ 4d).

This program computes the product of two complex numbers using
only three real multiplications. In what follows we shall repeat the proof
[1] of the fact that for evaluating the product of two complex numbers
three multiplications in R are neeessary. We shall base on the following:

TEEOREM 5. Let M be an rxp maitriz with elements from the ring
Flay,...,a] of polynomials of ay,...,a, with coefficients in o field
F. Suppose that for any two vectors u, v fwzth elemenis from F, uMv belongs '
o szf either u = 0 orv = 0. Then any computation of Mz, wherex = [y, ..

, @], requires at least v+ p —1 mulliplications.

Now, the computation of (a+ib)-(c+id) can be represented as foliows:

o —b] [e]
boal |4}
So, it suffices to prove that if the product
J.[e —?] %
10 el lz
" is. an element of F, then for ¥,, ¥, %1, 2s € F either y; =y, =0 or

#, = #; = 0. Since we consider the field R, we can take ag I an arbitrary
formally real field FB. The above product is equal to

yl°zl'“+yz'_z1'b+y£'32‘“—yx'za'b-
‘Thus the coefficients of a and b must be zero, ie. .-

yzr-z'1+y3-zz =0 and ¥H—¥Yi-%=0.

L k. v . -~ ' : o
- i :

R . ‘:'_'?222_:' ;-' . ’ "A. Kreczmar

"~ Suppose Y1 # 0. Then 2, — y,-2,/y, and sul;stituting this into the
‘second equation we have ‘

(4922 = 0.

Since y; # 0, we have in the formally real field FR 4°--y% 5 0. Hence
= 0, which immediately implies that z, = 0.
Now agsume 3, = 0. If 9, = 0, the proof is finished. If y, + 0, then
we interchange the roles of y, and v, and we obtain again 2, =2, = 0.
. The above proof is very close to the original one, but here we emphasize
the role of the axiomatization. The facts which are essential and can be
taken into consideration in proofs of algorithmic properties in the field
R, are only the axioms of formally real fields. '

ExampLe 5. Congider the following functions and relations:
r>y, >0, w>=y,
abs(w), sign(z), entier(x).

We shall prove that all of them are nonprogrammable in K. First we
prove that z > 0 is not programmable. By Theorem 2, if > 0-is pro-
grammable in R, then there exists an open formula a(z) such that

R E(Va)(z> 0« a(x)).

As in the case of €, a(z) defines in R only finite and cofinite sets. Bnob
{e: #> 0} is neither finite nor cofinite.

Now, if >y or 2>y were programmable, then of course x> 0
would be programmable. Next,

220 iff abs(z) =w,

hence abs is also a nonprogrammable function.
Finally, consider the following programs:

begin y: = sign(z);

if y=0vy =1 then y: — & else Y= —g

end
begin y: = entier (z);

if # + 0 then -

begin i: = 0; while i = yvi = —y do i: =i+1;

if i =y then y: =1 else y: = —1

end else y: =0

end

The first computes abs, the latter sign, hence neither sign nor entier
is programmable in K.)

Pa;ogrammabmty in fields ‘ ' 223
: : /-

ExAMPLE 6. Consider the field % of reals with one additional oper-
. ation: Vo;2'+y2, i.e. extracting the positive square root of the sum of
=" . tWo squares. ' -

* This system gives the algorithmic basis for the classical geometrical
..~ construetions. From the fact that
wﬂ +y2 = z2

.. .is.an algebraic variety in R, it follows that loops are eliminable from
“programs over thiz system. Every construction is definable by some
finite open formula. '

V. Programmability in the ordered field of reals

Lot RO = (R, +, —*y 50,1, =,<)> be the data structure of
the ordered field of reals.. The axiomatization of algorithmic properties
_in O was given by E. Engeler [7]. Let us demote by 2 the axioms of
Archimedean ordered fields, i'.e., the axioms of ordered fields which are
of the first. order and the following axiom of Archimedes:

Qy: (Vay)z > 0ay > 0 = (5 = y)U(#: = 2+9) (@< 2)).
TrEoREM 1. For every algorithmic property p:
ROFg iff REo.

Proof: The implication from right to left is immediate. Conversely,
guppose that RO k¢ and that FO is any Archimedean ordered field.
By algebra, [13], O is embeddable in RO. Henee, ¢ being 2 universal
formula, it is also valid in FO. =

The first question concerning programmability in RO is immediate.
Does 2 theorem on the elimination of loops hold in RD? The answer 18
negative. Loops cannot be eliminated from programs over RO. Namely,
consider the predicate: x is a positive integer. This property is strongly
programmable in RO: :

RO F begin ¢: = 0; while i <2 do i: =¢+1 end (i = 2)
iff # is a positive integer. :

Now,; we can easily show that the above program is not eguivalent
to any loop-free program. In fact, if it were, then there would be an open
formula «(x) defining in RO the set of positive integers, which is well
known to be impossible (see Tarski [13]).

By Theorem 1, § I, the set of algorithmic properties valid in RO has
no first order characterization. This shows that the axiom of Archimoedes
is not equivalent to any set of first order formulas (A. Robinson [22]).

_ An important property of Archimedean ordered fields examined
already in ancient Greece is the so-called exhaustion rule. It comes

" A. Eteczmar

. from Eudoxos and was used by him and Archimedes to prove quite
- precisely many facts from integral calculus. Before we present the
rule formaily, let us recall how it was formulated in Flementa of Euclid.
Consider two quantities # and y, z > y. If we subtraet from & more than
its half, from-the difference more than its half and so on, after a finite
number of steps we shall obtain the difference less than . '

Suppose for 8 moment that z is the area, of a certain surface. If z,, Tyyenn
i8 an increasing sequence of figures with known areas such that &— 2,
< {2}, then by the exhaustion rule the difference # — x, becomes arbitrarily
. small. :

From the presentday point of view the exhaustion rule actually
gays that a sequence {z;} of nonnegative quantities for which 7y < /2
converges to zero. In what follows we shall try to underline the role of
this rule in the analysis of Programmability in RO,)

First of all we characterize the exhaustion rule in termas of algorithmic
logic. ' ’

Let K be a program and let # be a nnique input-output variable of K.
If K does not change values of varigbles ¢, %, 7, 2, then H(K):

, H(K) . Vuy)y > 0at > 0nu> 0
ik ((@: =t;2: =)(K; 2: = 22)0<2<2) = (v =)UK (r< 'u,)))

ig the algorithmic version of the exhaustion rule.
TrEOREM 2 (Euclid [10]). For any ordered field
FEQy 4ff FEH(EK) Sfor every program K,

Proof: Let us suppose that & i8 Archimedean. We define a sequence
{=;} by induetion. , = > 0 and Ty = K(2;). fy > 0, then 0 < z; K Y20
But if ¥ > 0 and % > 0, then from the assumption that § is Archimedean
follows ¥ < %-m for a natural m. From the axioms of ordered fields we
-get zom << Tm*2™, becauge z,> 0. So T MK Ty 2" LYy < w-m and
again by properties of ordered fields B, < U.

- Now let us suppose that & EH(K) for every program K. Let K be
the program:

7 Ti= /2.

Congider ¥ >0 and %> 0. For ¢t — ¥, by assumption, there exists a
natural m such that ¥y <2™-u. Hence, for n — 2™, y<<u-n, which
pProves that § is Archimedean. m

COROLLARY. Let us denote by H the scheme of awioms of the form H(K).
Then for every algorithmic property @

' ROFe iff HEg.

Proof follows immediately from Theorem 2.

" Programmability. in fields C ‘ - 225 -

2. " " begim if @3>0 then y: =z else y: = —2 end
. This program computes the function abs over RD.
EXAMPLE 2.
begin. i: =0;

if 2> 0 then =

. while i+l <2 do i: =i+1
else -
while i > do 4: =i—1

end

The above program computes entier.
EXAMPLE 3.

begin
z: = {a+1)/2 :
while 5 —a /v > eps do x: = (+afD)[2

end

This program for @ > 0 and eps > 0 computes the square root of
& with the accuracy eps. We shall prove this fact formally in ordér to
emphasize the role played by the exhaustion rule. '

Tirst of all, notice that the above-program is equivalent to:

_ begin : = eps while ©> eps do M end
where M is the loop-free program:

begin .
if # = eps then w: = (a+1)/2 else w: = (w04 afew) 2
@ = Ww—ajw

end

Here w plays the role of in the original program. and = is equal to the
obtained accuracy in every step of the loop, except the first step, of course.
We must show that the demanded accuracy eps can be always achieved.
By Corollary it is sufficient to show that for certain y >0 and
t.=u = eps:

.y {w: = eps; 2: = ¥ M; 2z: = 2/2) (0 € 2 < 7).
Then by the exhaustion rule we shall have immediately:
(2) (=: ='eps)UM(m< eps).’

. So, it remains to prove (1). Set to ¥ the value ¢+ eps+1 > 0.
Further steps of the proof carry as follows:

(3) (w: = eps; 2: = a+eps+1l) (0<z<7)

226 . ' © A. Kreczmar

. '(iminédia.tély from the properties of substitutions),
@ (@+D2P > a0 < (a—1)2/2/(@+1) < (at eps-+1)/2
(from the axioms of ordered fields), -
(5)- (w: = eps; 2: = a+eps+1)(M; 2: = 2[2)
. (wagmxogmgz/\w=w—a/w)
(from (3), (4) and the properties of the ﬁrogram M),
(6) (W= an0< (w—afw) <) '
= ((w—i-a,/fw),(?.,)2 =anl g (w+a/w)/2—a/(w+a/w)/2 < z/2)

(from the axioms of ordered fields),
() Wzaen0<s<<enr = w— afw)
- = (M; =: =z/2.)(w2>aAogwngm'=w=a/wj
(from (6) and the properties of M)
(8) for every natural | e 7
(@ =eps; ar = atepsH1)(M; 0 =220 (0 < 5 < 2)

(By induction on i. For ¢ = 0 this is (3). For i — 1 this holds by (5). The
inductive step now follows from (7)),

{9) (z: = eps; 7 = a-t+eps+1)(M; z: = 2/2)(0 <T<?)

(Immediately from (8) and the definition of the iterational quantifier [M)).
Finally, by (2),

(10) HFa>0neps >0 = (2: = eps)\J Mz < eps)ﬂ.

By analogous but more sophisticated methods one ean prove the
correctness of many numerical algorithms in RO as, for example, the
bisection strategy for evaluating zeroes of funetions or Simpson’s algorithm
for integration. Moreover, by Corollary to Theorem 2, all algorithmic
properties valid in RO are semantical ' consequences and by the com-
pleteness theorem they are also syntactical congequences of axioms of
ordered fields and. the exhaustion scheme. In numerical practice the
general idea is based on the construction of an algorithmically computable
sequence {z,} which converges to the wanted quantity z. Then » can be
computed with arbitrarily high precision.

The analysis of the correctness formula (10) indicates that the fequence
{@,} need not converge, it is completely sufficient if = is a cluster point of
{w,}. In other words, if for every ¢ps >0 there is @, such that abs(z —ax,)
< eps. # : R

‘ Programmabimyﬁn fields e . 227

- BXAMPLE 4. We end this gection by giving some examples of non-

- _programmable functions in RO. Let us consider

_ lfs; 2z=0,
fle) = 0 x<0,

i f were programmable, then there would exist 2 program K (z;y) such

that
ROFx>0 = K(y* =uam).

This formula must be also valid in every Archimedeap field, so for the
fiold O of rationals and » = 2 we come to a contradiction.

_ This argument shows that every function which transforms rationals
to irrationals or vice versa is not programmable in RO, and this concerns
almost all standard functions. '

VI. Programmability in the field of rationals

Let Q2 (Qy +, — 'y % 0,1> denote the field of rational numbers.
The following lemma allows us to consider the ordered field Q.
LEya 1. The relation. of order < is strongly programmable in 1.
Proof: The idea of a program which decides > 0 is very simple.
If we can generate all pairs {3, j» of natural numbers, then it will be
sufficient to verify the conditions # = jfi and & = —jfi. Henece, because
every rational = must satisfy for some pair {i, §> one of the above equations,
our program will always halt.
begin’ '
pr =23 ki =23
while p =2 do
begin
T =k j:=0;
while ¢ = 0 do .
if £ = —j/i then p: =0 else i
if © = j/i then p: =1 else '

begin
ir=1—1; j: =741
. end; '
& k: = k41
" end

end :

At exit p =1 if > 0, otherwise p =0. m _

The next problem concerns the axiomatization of algorithmic proper-
ties in Q. May it be the same as for the field RO? If it might, bofh
fields would be algorithmically equivalent and this is impossible by
Lemma 1 and Ezample 5, § IV. It is also quite clear that algorithmic

& — Fundamenta Informaticae 1.2

-

-228 S . J A krebzr‘nmr

properties in L. caxinot have the first order characterization. So, the
axioms must be infinite and stronger than those of Archimedean ordered
fields.. '
'We shall show that 9 may be characterized up to isomorphism in
algorithmic logic. Consider program Z:
begin . ' '
while z =y do
if 2>y ther 2: =g —y else y: = y—u
end S ,
The program E realizes the famous Buclid’s algorithm and is known
- from practice. It computes the greatest common divisor of two integer
numbers a8 well as the ratio of two commeasurable segments and in this
latter sense it was used by the learned Greeks.
Let us denote by I, the following formula:
Vo, 1)z > 0Ay > 0 = E).
p : . g e
' THEOREM 1. Let § be an ordered field such that & ETL,. Then ¥ is iso-
morphic to Q. ' 7
Proof: Let o, ¥ be two positive elements of §§. By Euclid’s algorithm
we have two sequences {2}, {y,} defined as follows:

To =&, Yo =Y;

w—y, H x>y,
Tiqyq =

@; * otherwise;
Foi = Yi—w, i yi>a,
oy, ~otherwise.
By the axiom I, there exists = such that &, =Y, = a. By induection
Z;, ¥; are positive for every ¢. Hence a > 0. Now suppose that x; = %-a
and y; = m-e for some natural numbers k,m. Then ~

@y = (k+m)-a, y_,=m-a,
or

Ty =k-a, Y, = (k+m)-a.
But #, =y, = a and by induction there exist k, m natural such that
= k-aand y = m-a. This immediately implies that #+y ' = (%-1)-(m 1)~
- But § is ordered, hence it must be of characteristic zero. This proves

that the set of elements of § of the form (k-1)-(m-1)"! is isomorphic to Q. -

So we proved that the ratio #-y! of two arbitrary elements of ¥ is a ratio-
nal pumber. Taking y =1, we see that § is isomorphic to Q. m

The following lemma shows that the axiom of Euclid implies that
. of Archimedes. We recall that the converse is not true, because the field
RO satisfies the latter without satistying the first axiom.

EUCHRVIPPES VIS P B

T, 7 Programmability in fields ' : 229

. LimMmA 2. For any ordered field %, if & F Iy, then § F 2.

" Proof: Suppose that §% is not Archimedean. Then there are two

~ " glements @,y > 0 such that for every natural #, n-#<y. But for these

= .z and y Euclid’s algorithm does not terminate, because y —n -z > x for

. every n. ® :

o TEEOREM 2. The set of algorithmic properties valid in the field L is

Loe-tp. IT3-complete set. :

i Proof: Primitivé formulas ' 7
(Vagy ey @) (V ey s) =V Bil@1y -er)

1e@® e

" realized in © are by the Tarski-Kuratowski algorithm {23] of II;-form.
We prove that this set is I17-complete in the same way as in the case
of C. m ' _

THEOREM 3. A total function f: Q—Q is programmable in L iff there”

- ewist three total recursive Sfunctions g, k, j such that

. F((n—R)fm) = (g(n)—R(#)[j (m)
for all n, &, m e . }

Proof: Only-if-part follows from the effectiveness of computation in the
field Q. Having n, k, m we can effectively compute n,, ki, m, such
that f((n—k)/m) = (ny—F,)/my. o

To show if-part, let us notice that for any given rational z we
can easily regain as in Lemma 1 three positive integers 7, s, p such that
= (r—8)/p. This step is of course programmable in Q. Now, by assump-
tion, there are three recursive functions g, &, j such that

fllr—s)p) = (glr) —R()) i (P)-

By Theorem 2, § II, g, k, j are programmable in L. =

From the above theorem it follows that all functions and relations
programmable over £ are up to isoraorphism recursive objects. So, the
theory of programmability over Q can be reduced:-to the theory of recursive
functions. '

References

[1] Aho, A.. Hoperoft, J., Ullman, J., The design and analysis of computer
algorithmme, Adison-Wesley 1974.

[2] de Bakker, J. W., Recursive procedures, Mathematical Centre Tracts, Amsterdam
1971.) .

[3] Banachowski, L., Extended algorithmic logic, descriptions of programa and
their correctness, Notes of lectures held at Mathematical foundations of com-
puter seience semester, Stefan Banach International Mathematical Center,
Warsaw 1974.

230 , A, Kreczmar

[4] Bell, J., Slomson, A., Models and uliraproducts: an introduciion, North Ho].la.nd,
Amsterdam 1960.

[6]1 Blikle, A., An extended appromh to mathematioal analysis of programs, CC PAS
Reports 169, Warsaw 1974.

(6] Engeler, E. _A.lgomﬂmmo properties of siructures, Math. Systems Theory 1 (1967),
183-195.

[7] — On the solvability of algorithmie problems, Report ETH Zirich 1973.

[8] Graboweki, M., The set of all taulologies of the rero-order algorithmie logic is
decidable, "Bull. Acad. Pol. 8ei.,, Sér, Sci. Math. Astronom. Phys. 20 (1972),
575-582.

[0] Greibach, 5., Theory of program struclures: schemes, semaniice verification,
Lecture Notes on Computer Science 36, Springer Verlag 1975.

[10] Heath, T., 4 manual of Greek mathematics, Oxford 1931.

[11] Heare, C. A. R., An a:momatw basis of computer programming, Comm. ACM
12 (1969), 576-583.

[12] Figcher, P., Probert, R., Bfficient procedures for uging matriz algorithms, Proe.
2nd Coll. Autom. Lang. Program., Lecture Notes on Computer Scienee 14,
Springer Verlag.

[13] Jacobson, N., Lestures in absiract algebra, Van Nostrand 1951.]

[14] Efoury, D., Comparing algebraic struoctures up to algorithmic equivalence, Proc,
1st Coll. Autom. Lang. Program., North Holland 1872.

[15] Enuth, D., Floyd, R., Notes on aveiding “‘go {0’ statements, Inf. Proc. Lett.
1 (1971), 23-31. _

[16] Kreczmax, A., Effectivity problems of algorithmic logie, Proe. 2nd Coll, Autom.
Lang. Program., Lecture Notes on Computer Science 14, Springer Verlag.
[17] MeCarthy, J., 4 basizs for mathematical theory of computation, Computer pro-

gramming and formal systems, North Holland 1963.

[18] Ma_,zurkiewicz, ‘A., Recursive algoriithms and formal languages, Bull. Acad.
Pol. Sci., Sér. Sei. Math. Astronom. Phys. 20 (1972), 793-799.

[19] Mirkowska, G., On formaliced systems of algorithmic Togie, Bull. Acad, Pol.
Seci., Sér. Sci. Math, Astronom. Phys. 19 (1971), 421-428.

[20] Paterson, M., Bquivalence problems in & model of computation, Ph. D. Theasis,
University of Cambridge 1967.

[21] Rasiowa, H., On logical struciure of programs, Bull. Acad. Pol. Sei., Sér, Soi.
Math. Astronom. Phys. 20 (1972), 319-324.

[22] Robingon, A., Intreduction to model theory and to the mtazmathemaffws of algebra,.
North Holland, Amsterdam 1965.

[23] Rogers, H., Jr., Theory of recursive func!/bons and effective compulability,
McGraw—Hﬂl 1967.

[24] Salwicki, A., Formalized algorithmic languages, Bull. Acad. Polon. Sci., Sér.
Sci. Math. Astronom. Phys. 18 (1970), 227-232.

[26] — On the equivalence of FS-expressions and programs, ibidem, 275-278.

[26] Scott, D., Oulline of & mathematical theory of camputatian,'l’rdc of the 4th
Annual Prmceton Conference on Informahon Soiences and Systems, Princeton
1970.

' [27] Strassen, V., Geussian climination is not optimal, Numer Math. 13 (18469),

’ 354-3586.

[28] Whitney, H., Plemeniary struclures of real algebraic varieties, Ann, of Math,
66 (1957), 545-568,

