
Parallel execution of object-processes in a

computer network

Oskar

�

Swida B. Ciesielski P.Susicki

May 24, 1996

Abstract

We present a tool which permits to treat local computer network as a

virtual, multiprocessor LOGLAN machine.LOGLAN is an object-oriented

programming language supporting parallel execution of object-processes

and equipped with an unique, truly object mechanisms for synchronization

and/or communication among processes (alien call). LOGLAN program-

mer can explicitly allocate a object-process on any network node (there

is also possibility to calculate the location). Processes at di�erent nodes

are executed parallely. This article presents the problems and solutions of

object-process allocation, communication mechanisms and related ques-

tions. The presently supported platforms are a heterogenous network of

Unix machines and local network of DOS machines which are communic-

ating using TCP/IP protocol.

1

Contents

1 Introduction 3

2 Terminology and basic ideas 3

2.1 Terminology : 3

2.2 Object-process concept : 4

3 Problem speci�cation 6

3.1 Object-process referencing : 6

3.2 Initialization of LOGLAN virtual machine - assembling the ma-

chine : 6

3.3 Creation and allocation of object-process on remote network node 7

3.4 Activation of a passive process (operation resume) : : : : : : : : 7

3.5 Calling method from remote object-process : : : : : : : : : : : : 7

4 Solution 9

5 How does it work ? 9

6 How to use it? 12

7 Applications and future research 13

8 Comparison to other distributed and parallel languages 14

2

1 Introduction

There is a few truly object-oriented programming languages which support

implementation of parallel algorithms. One of them is the latest version of

LOGLAN - a language implemented at Warsaw University in 1982. (The com-

parison to other languages we present in Chapter 8) We have obtained availabil-

ity of parallel programming by parallel execution of object-processes. Processes

are constructed from de�nition modules written by programmer (each object has

its own memory and resources) , then they are allocated on a concrete machine

and executed. Appendix A describes structure of process module and how does

it work.We can treat local computer network (where the LOGLAN interpreter

is working on each computer) as a virtual, multiprocessor LOGLAN's machine.

Network node becomes then a virtual LOGLAN processor. Additionally such

processor is able to execute several processes concurrently, so we have parallel

and concurrent programming together!

This article presents ideas and implementation of allocation and communication

mechanisms for object-processes.

As a conclusion we can say that there is a posibility to construct object-oriented

programming language, where object-processes are executed in parallel.As a

result we obtained a very cheap multiprocessor system which cost is equal to

several computers connected by local network (such network usually exist, and

there is only need to install LOGLAN interpreter on each computer).

2 Terminology and basic ideas

For better understanding this paper we present used terminology and idea of

object-process.

2.1 Terminology

LOGLAN object-oriented programming language implemented atWarsawUni-

versity in 1982 and then developed LITA, Universit�e de Pau and at Bia-

lystok University of Technology in 1995. For more information about

LOGLAN language see at LOGLAN repository: http://aragorn.pb.bialystok.pl

TCP/IP communication protocols from DoD family (Transmission Control

Protocol and Internet Protocol), used to provide communication mech-

anisms in local computer network.

Interpreter program which interprets LOGLAN code

Network node workstation in a local computer network.

1

shared memory problem will be researched later

3

Console node where the main program block is executed.

Object-process process de�ned in LOGLAN language

Alien call communication mechanism developed by B.Ciesielski

Virtual LOGLAN machine set of interpreters working at nodes in local com-

puter network

Virtual LOGLAN processor network node with LOGLAN interpreter work-

ing on it.

2.2 Object-process concept

LOGLAN language o�ers a special objects for use in concurrent and parallel

programming. These are object-processes. We use that name to point out

di�erences between UNIX processes and LOGLAN processes. Object-process

(called later O-process) is an object and a process simultaneously. In "process

aspect" it is simply a thread, "object aspect" however gives him all object

properties like:

� inheritance

� methods and data

� encapsulation

Moreover LOGLAN processes can dynamically decide which of their methods

are available for another objects. Privacy and publicity of given method can

change in time. Object-process can mark that method is private or public during

process execution. Each O-process has an "access mask" - the set of procedure

names which are available for external call. O-process can add or remove name

to/from the set causing procedure to be enabled (public) or disabled (private)

respectively.

Below we present de�nition module of O-process and its working scenario:

De�nition module syntax:

unit module name : process(parameters)

local declarations

begin

initialization code;

return;

process code

Here we can put: classical instructions, stop, resume(...) call, enable/disable,

end, accept

endmodule name

4

Working scenario:

We assume that process is created by instruction:

p := new MyProcess(...)

Picture below presents the scenario:

Initialization code executed

until RETURN command

?

NEW MyProcess(...)

Process in

passive state

?

the pointer to

process is returned p:=

Process in active state

STOP

Alien call

Enable/Disable

accept

Other instructions

End

�

Process terminates and disappears

-

RESUME(p)

�

STOP

5

3 Problem speci�cation

During the research we have tried to answer a question:

Are we able to implement a system for parallel execution of LOGLAN

object-processes?

The main idea for resolving speci�ed problem lies in constructing (and imple-

menting) LOGLAN Virtual Machine. Each network node participating in pro-

gram execution is treated as a virtual processor. Each virtual processor works

independently but is able to communicate with another processors. Programmer

can allocate O-processes on any virtual processor. Such machine enables parallel

execution.

We assume some facts:

� All computers are DOS or UNIX machines able to communicate using the

TCP/IP protocol.

� Network is reliable, that means there is no danger that it will stop trans-

miting messages during program execution

� There are LOGLAN interpreters installed on each network node we want

to use.

The problem was divided into �ve parts:

3.1 Object-process referencing

As we mentioned above, programmer can allocate O-process on any network

node. Of course each allocated O-process must be available by reference for

future use in program. The question is how should we implement O-process

reference to be able to referencing processes on remote network nodes. We im-

plement reference as a union of two informations: number of the virtual processor

on which O-process is allocated and memory reference (on that processor) where

the process code exists.

3.2 Initialization of LOGLAN virtual machine - assem-

bling the machine

LOGLAN virtual machine consists of computers connected to local network with

interpreters working on them. Single computer is called virtual LOGLAN pro-

cessor. We distinguish one of these processors as a console, it will be executing

6

the main program block. At the initial state the console will construct connec-

tion to each node we want to use during program execution and check if such a

connection works properly. This assures that the interpreters can communicate

to each other.

3.3 Creation and allocation of object-process on remote

network node

Allocation of process P2 on node Y made as a result of request sent from node

X by process P1 one can present following way:

� process P1 sends request to allocate process P2 on node Y

� interpreter on node X sends this request to interpreter on node Y

� interpreter on node Y builds local instation of P2 from de�nition module,

executes the initialization code and returns P2 pointer to the interpreter X

� the interpreter X sends P2 pointer to P1.

The main goals of implementation are:

1. sending allocation request to proper node

2. returning (and receiving) acknowledge of allocation

3.4 Activation of a passive process (operation resume)

Activation of process P2 is made on explicit request from any other process (for

example P1) by executing command:

resume (P2)

in the code of the process P1. Such an operation needs neither acknowledge

nor process synchronization because refers only to activated process. Imple-

mentation task here is to send resume request to proper node.

3.5 Calling method from remote object-process

Majority of languages for parallel (distributed) programming use the Remote

Procedure Call mechanism for communication. We could use this , but B.Ciesielski

developed unique mechanism called "alien call".

Figure 1 presents the main idea of "alien call". In order to call procedure

from remote O-process this process must be in active state and called procedure

7

must belong to access mask. General idea is similar to RPC but B.Ciesielski

extended this by constructing two forms of the call which we named "asyn-

chronous" (Figure 2) and "synchronous" (Figure 3) calls. "Asynchronous" call

simply interrupts P2 and forces execution of proc1. "Synchronous" is similar to

rendez-vous mechanism. Which kind of call occurs depends on state of P2. If

P2 executes accept command before P1 calls proc1 it's "synchronous" call, if

P1 calls proc1 and P2 is not waiting for that procedure (P2 is simply running

his own code) then the "asynchronous" version of the call takes place. In both

cases it is required that proc1 is enabled.

call P2.proc1

O-process P1 calling proc1 from P2

Wait for results of proc1

?

-

O-process P2

execute instruction

?

External call ?

�

NO

?

YES

proc1 is in access mask ?

�

NO

?

YES

Execute proc1

?

Return results of proc1 to P1

�

Figure 1: The main idea of "alien call"

8

4 Solution

Implementation and research have proved that the answer to the question we

asked in the chapter 3 is YES.

MAIN RESULT: We constructed the LOGLAN VirtualMachine which

is able to execute O-processes parallely and realizes all �ve re-

quirements mentioned in Chapter 3

Our solution realizes multiprocessor paralellism through special protocols

that enable allocation and communication of processes.

Allocation The programmer may decide where the code of the speci�c process-

object should be executed. There is also posibility to compute, which node

should be used so one can implement any algorithmof automatic allocation.

Communication Allocation of processes and communication between them is

based on message exchanges.

Parallelity Each interpreter has own process tables and execute them independ-

ently to other nodes what gives us required parallelity. The main program

block is proceeded on console.

Multiprocessor We treat our solution as a multiprocessor, virtual machine.

Protocols All of communication is performed using only four types of protocols:

1. initial connection - assembly of a virtual LOGLAN machine

2. process allocation

3. resume request

4. alien call

The communication scenarios for these messages are described in next chapter.

5 How does it work ?

As we noticed before there is four scenarios of communication. Let's present

them:

9

Console interpeter Node #1 interpreter : : : Node #n interpreter

Wait for n calls from clients Connect to console and wait : : : Connect to console and wait

for acknowledge for acknowledge

If you have received all If you have received : : : If you have received

calls then register them acknowledge then start wor- acknowledge then start wor

and send acknowledges to king - connection established king - connection established

all clients

1. Initial phase - we cosider making connection between console and n net-

work nodes.

2. Process-object allocation - process Z working on network node #W

request allocation of process Y on network node #X.

Interpreter on node #W Interpreter on node #X

If you have received allocation request

send this request to node #X and let

the process Z wait for CREACK

If you have received message CREATE(Y) then

construct an Y instance from de�nition module,

execute initialization code and send pointer

and CREACK to node #W

If you have received CREACK message

(and pointer with it), activate process Z

and return him pointer.

It's easy to notice that if CREACK message won't reach network node

#W (due to transmission error) process Z will never be activated! Thus

the assumption of network availability is very important.

3. Resume operation - process Z on node #W activates process Y on node

#X

Interpreter on node #W Interpreter on node #X

If you have received resume request then

send it to node #X

If you have received resume message

then activate process Y

As we mentioned, such operation doesn't need an acknowledge.

10

4. Alien call

Here we present two versions of communication scenario because alien

call may be considered as a asynchronous or synchronous dialog. We

consider that process Z working on node #W is calling procedure proc1

from process Y working on node #X.

- asynchronous version (means Y is active and there is proc1 in his access

mask)

Interpeter on node #W Interpeter on node #X

If you have received call request

then send RPCCALL(Y,proc1) message

to node X and stop process Z

If you have received RPCCALL(Y, proc1) then:

- check access mask

- stop process Y

- save access mask and clear it

- execute proc1

Here the proc1 code is executed

If proc1 execution is complete then

send results and RPCACK message to node #W

If you have received RPCACK (and results Restore access mask

of proc1) then activate process X and return and activate process Y

him results.

- synchronous version (Y is active, there is proc1 in access mask,and Y

executes accept instruction)

11

Interpeter on node #W Interpeter on node #X

If you have received call request then Execute accept instruction

send RPCCALL(Y,proc1) message to and wait for external call

node #X and stop process Z

If you have received RPCCALL(Y, proc1) then:

- check access mask

- execute proc1

Here the Y code is executed

If proc1 execution is complete then

send results and RPCACK message to node #W

If you have received RPCACK (and Restore access mask

results of proc1) then activate and continue process Y

process X and return him results after accept

6 How to use it?

Now we describe the actions which should be made when you want to use parallel

programming. In order to assemble and initialize a LOGLAN virtual machine

one should execute the int command on every node which is concerned (this

may be done by a remote script also). There are two assumptions:

� Each network node used by programmer is given a unique number from 0

to 255 (during process-object allocation programmer use that number as

an virtual processor id)

� Network node number 0 is a special node (console) where the main program

block is executed.

If one wants to run a parallel program (let it be program written in �le

named prog) you must run interpreters on each node you want to use. Starting

interpreter on speci�c node you explicitly choose the number for this node. After

checking the connections the interpreter on console starts to execute the main

block. Let's take an example:

Assume that programmer allocates two processes P1 and P2 on nodes #3 and

#5. So he use three computers in that case : #0 (console) , #3 and #5. The

main block will be executed on console and processes P1, P2 on proper nodes.

To run execution you should execute:

a) on the node which you want to be a console: int -r 0 number of clients

�lename (int -r 0 2 prog)

A -r option says you want to distribute your processes, 0 describe this node as

a console and 2 means that interpreter should wait for two clients

b) on the other nodes execute: int -r client number console node address:port

�lename (int -r 3 aragorn:3600)

12

client number means number which you give for node (in that case it will be 3

and 5 respectively)

console node address is an internet address of computer which you have decided

to be a console,

port is a server port for the all interpreters (default is 3600)

7 Applications and future research

We can point on three main applications of that version of LOGLAN program-

ming language:

1. A cheap multiprocessor machine

Multiprocessor machines are quite expensive, but now you can built your

machine using your local computer network.

2. Truly object-oriented distributed and parallel programming

3. Didactical purposes

LOGLAN language may be an excellent for studying of parallel and distrib-

uted algorithms.

Implemented version is not a �nal product. We want to implement parallel exe-

cution of process-objects on DOS machines using again a TCP/IP protocol and

maybe IPX protcol. New process conception is also a starting point to further

researches, perhaps some modi�cations to LOGLAN language should be made.

We could also consider many network problems related to network relaibility

(for example reactions to network errors, real time systems etc.)

13

8 Comparison to other distributed and parallel

languages

There are many languages which support distributed and parallel programming.

Few of them are truly object-oriented (PVM, PCN, ConcertC are not at all).

We can compare only two of them: Synchronizing Resources and Emerald. The

comparison is shown below:

Property Synch. Resources Emerald LOGLAN

Classes Yes No Yes

Inheritance Yes No Yes

Private/Public methods No Yes Yes

Dynamic changes of method No No Yes

privacy/publicity

Persistent objects No Yes No

Communication mechanism RPC and rendez-vous ? alien call

Object location independence No Yes Yes

Object mobility No Yes No

Works on UNIX machines Yes Yes Yes

Works on DOS machines No No Yes

14

call P2.proc1

O-process P1 calling proc1 from P2

Wait for results of proc1

?

-

O-process P2

execute instruction

?

External call ?

�

NO

?

YES

?

proc1 is in access mask ?

�

NO

?

YES

Passivate P2, save and clear access mask

?

Execute proc1 code

?

Return results of proc1 to P1

?

Activate P2 and restore access mask

�

Figure 2: "Asynchronous" version of "alien call"

15

call P2.proc1

O-process P1 calling proc1 from P2

Wait for results of proc1

?

-

O-process P2

execute instruction

?

Is it accept instruction ?

�

NO

?

YES

Wait for external call

?

proc1 is in access mask ?

�

NO

?

YES

Passivate P2, save and clear access mask

?

Execute proc1 code

?

Return results of proc1 to P1

?

Activate P2 and restore access mask

�

Figure 3: "Synchronous" version of "alien call"

16

