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Abstract

The thesis we present in this Paper siates that for eve-
ry concurrent program m there exists a set of modal for-
mulas, also called the axiloms AX(T), such that a) the
structure of admissible parallel executions of the pro-
gram w 1s a Kripke model of the set Ax(™) and, b) any
Kripke model of the axioms AX(W) 1s an exXtension of the
structure of all admissible distributed (i.e. parallel)
executions of the program .

INTRODUCTIOR

The paper presents an attempt to give axiomatic definition of the
semantics of c¢oncurrent programs. We consider two model of concur-
rency called MAX semantics (cf.fSM]) and ARB semantics. While +the
second 1is based on arbiltrary cholces of nonconfilict 1instructions,
the fFirst requires maximal eéngagement of processors. We describe a
general method which allows to construct axioms A for a given
program M with the following properties. 1} The set of all possible
computations of the program M in MAX semantics creaté a model of A
called computational model. 2} Every model of A can be restricted
to a computational model. Hence in some sense the set A categorica-
1lly characterizes MAX behaviour of the Program M.

We begin our paper with an example 1llustrating the notions
and methods. We present for one Program two sets of medal formulas
called axioms. The meaning of them 1s a puzzle for the reader. One
set of formulas describes the computations of the Program in terms
of arbitrary interleavings of atomic actions, second set of axioms
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describes computatiens in the environment of maximally invelved
processors. Then we present the Kripke model for these sets and fi-
nally we connect the formulas with a concurrent program. The de-
tailed presentation of the example helps to concelve the differ-
ences between two models of concurrent computations.

Sections 2 and 3 are devoted to the definition of MAX semantics
and dlagrams of programs. In section 4 we generalize method presen-
ted in section 1. Various sets of axioms defining local and global
pehavicour of an arbitrary program in MAX semantics are discussed
there. Finally sections 5 and 6 presents the proofs of +the main

results of the paper.
We assume the reader is familiar with the language of modal lo-
glc and the notlon of semantic Kripke model for sets of modal for-

mulas, In an Appendix we supply the shorti resume of these notions,

1. AN BEXERCISE IN MODAL LOGIC

In this section we begin with certain sets of modal formulas and we
show that they describe semanti¢ behaviour of a concurrent program.
The formulas in our first set are constructed from propositional

varlables Py BT T 1T 23T 4 by means of classical proposi-
tional connectives and modality signs: 0 (necessity sigm) and ¢

(possiblility sign).

We shall consider the following set Ay of modal formulas

by => - {bp ¥V .. V Py vV g V gjg V.V gyl
Py => D(pg vV -~Pg A g)

g =>0f P AN P3 A~ Pyl

Pz => 0(q4 A —~Pp} A OPp

P3 => 0(gz N ~p3) A OP3

gy =2 O(~g4 A Psl N G

Tz => O(~gz A Pyl A 0dgz

Py => 0{dz A -Pg) N 0Py

gz => O0(~g3 A Pg) A 0Tz

(Ps N —Dg) => O0Ps
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(Pg N -pg) > Upg
{Pg N Pgl) => 0G94
qy4 =2 OPF

gy AN q3)

Let us guess what 1s the semantic meaning of the axioms written
above. Firsi, we shall consiruct a Xripke model for the set Ay of
axioms. The result can be seen on the Following diagram, cf.
Figlis . The states of the model are identified by the Formulas
valid in them, the arrows represent the reachable relation.

Consider the following diagram of a bipartite graph, cf.
Fig.l2. The circles and rectangles form its set of vertices. Each
arc 1s elither an arrow from a circle to a rectangle or an arrow
from a rectangle to a circle. The circles are denoted by Ppy,.. DBy,
the rectangles are denoted by gq.g5..,.94 MNow, let us play a game
of tokens. The rules are defined by the set of axioms. For example,
if there 1is a +toKen in the circle pp then it is acceptable
[possible) that it stays in place and it is also possible that it
1s moved intoc the rectangle gy;. The game begins with one toKen in
the circle p; and is over when a toKen reaches the circle Dg. Ob-
serve that the KripkKe model of the set A; brings the structure of
alt possible moves 1in our game, It is not necessary to stress out
the similarities between our example and the nets. In the sequel we
are extending our example.

Now, let us change the set of axloms. Let the signs o, B, ¥
denole Tormulas. We are introducing schemes of axioms with the
subformulas afx/1), afx/a), B(x/0), B(x/b), yWx/b»b) y(x/2) within
three schemes DDelow. It means that there are_inﬂnitely many axioms
and that they are not necessarily of propositional modal 1logle,
they are formulas of first order modal logic.

The set Ap

Dy > n (Pa VvV . ¥ Py V @ .V g3 V.V gyl
Py =2 O{py vV apy A g)

g => 0 Pz A Pz A ~ Py

DPp =2 Q(@y A ~DPp) A ODp

D3z => 0(gp A ~p3) A OP3

gy ~ ef(x/1)) => Qla(xr/a) N ~qg; N Ps) A 0gy
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(gr A B{x/0}) => O(Blx/b) A ~gp A Py} A 022
Pg > O(dg A -Pyg) N 0Py

(g3 A Y(x/b)) > O(yfx/a)l A —~q3 A bg) A 0G93
{pPs N -Pg) => DPs

{Ppg A -pgl) => ODp

(Ps ~ Pgl => vdyg

gy > Opy

~(gy N a3}

The meaning of a formula (afx/ 1} => ¢arx /a)) is as follows: 1f a
state at the beginning of an arrow satisfies afx/1) then the state
at tne end of the arrow satisfles afx/a). Since it 1s true for ev-
ery formula a(x), it =arys that the wvalue of the varlable a at the
end of the arrow 1s i. Compare this axiom with the corresponding
axioms of assignment imstructions in algorithmic, dynamic or other
logic of Pprograms, cf.[MS].

with these explanations we are able to verify that the diagram
presented in Figl3 1is the model of the set Ap of axioms., Moreover
i1t describes behaviour of the net in Figl4. Observe that there
are two terminal states, i.e. the states with no arrow leaving
them. The value of the variable & is ! in one terminal state and 0
in another. We can verify that the formula

(pg = 98(py A a:z1)) A (p; => 0T(Py A a:0))

is valid in the model. Really, there are two paths starting in the

initial state of the Kripke structure and leading in 8 (or respec-

tively in T) steps to terminal states. In one of the states the

value 1f the wvarlable a equals f, in another state value of a 1is Q.
Now, we shall add a new formula to the set Ap

(Max) (pg A Pzl => O(G; A ga A =Pz A -b3)

The model for the set Apu(Hax) exists and ls easy to construcy,
cf.Figl.5 Simply, one has to rejecl the states reachable £from the
siate (pp N p3) other than {(gy A 92)

Observe that in the new model the following formula holds

py = oOTtpy A a=0h
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Certain behaviours are excluded, and therefore is necessary that
after 7 steps we land 1n a state described by the condition

(p7 A~ a:=0)

Let us look closer at the formula Max. It states that whenever
two processes are ready to execute their atomic actions ¢; and gp
{the readiness has place iff the formula (ppApz) is satisfled) then
eventual agents must Involve themselves in the executien of the ac-
tions gy and gp. It is possible since the actions are non-conflict
ones.

Till now we have seen three sets of axioms, three models for
these sets and two diagrams: cne 1s a concurrent program and an-
other represents its, simple, control siructure. As many others au-
thors we came to the conclusion that a discussion of behaviours of
a concurrent pregram requires additional Information about the
{distributed) state of control. Hence we I1ntroduce additional wvari-
ables. We shall call them control variables., We distingulsh vari-
ables which assume the value true when a proc¢ess of a concurrent
program is ready to execute an action and variables which have the
value true when a process 1s executing its atemic action.

Let 1s consider now another example with iteratlon (see ihe diagram
in Fig.l.6). The program M reads as follows:

M: cobegin while » do x:=x+{ od " r:=false coend

The following set Az of formulas describes the structure of compu-

tations of the program:

fiocal transitions]
By o> 094
gy => 0f{Pp A P3 AN -Dy)
Pp > Q(gp A nPp) A OPp
Pz => ¢fgz A Pz} N 0Pz
(r A qp) => 0(Py N ~Tp) A Qgp
(~r A gp} > ¢pg A ~gp) A Odp
(arx/false) A g@z) => Ofafx/r) A ~gz A Pg} N 093
Py => 4Py A Q-Pg A Tyl
(BEy/x+1) A qg) => 0qug N UB¥/X) AN ~Gy N Dp)
(Ps A -Pg) => ¢Ps
{Pg N —Pgl => dPg
fpg A Pg) => Ddg
495 =2 Opy
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Fig.1.5
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’Full Kdipke modei for the set A1 + Max
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cobegin while r do xX:+ X + 1 odhr::falsa coend
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Flg. 1.8
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fconflict]
-{qy A dp)
{initial state]
Pf—">'*(P3V.P3VP4VP5VP5VP7VQ_{VQ'EVQ3VQ’JVQ'5J
faxiom of maximal concurrency)

(Py A P3) => M{qg A g3 A Py A "P3)

There are iwo Pproblems connected with £he guestion of existence of
a model for the above set of axioms:

First, the structure of a model will be infinite. Should we
forget abbut the formula B, a finlte model can be constiructed. wWhen
the £full content of axioms is taken into account, we shall realize
that the structure of any model must contaln paths of any finite
length and by Koenlg’s lemma it must contaln an infinite path.

Second, when one recalls non-standard models of the arithmetic
of natural numbers, then it 1s immediately seen that there exist
non-standard models of the the set Az of above axioms as well, It
means that an additional specification 1s required. One can demand
that the model should be the least model of axioms. This would be a
meta-axiom or rule. Another person can add an explicit axiom stat-
ing this. We Dbelieve that algorithmic metheds can be used here. On
the other side we have ihe problem of the admissiblility of the
principle of maximal engagement. It turns out that in MAX semantics
the preogram we are studying has only finite computations.

In ARB semantics one may observe computations of arbitrarily
many steps and also infinite computations. We can state that the
formula -oMtrue holds. The meaning of the formula l1s there exists
a nonterminating computation of the program M,

In MAYX semantics we observe not only termination property of
the program M but morecver the fairness property of H

(3n) (txz:k A r} => DM(X < ktn})

The more detalled study shows that the value of n 1s less than 2

2.SYHTAX AND SEHARTICS

our aim is to convince the reader that the remarks made in the
preceding section have more general character. In this section we
shall present a simple language of concurrent programs and 1its se-
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mantics. Later we shall formulate a thesis about axiomatizability
of semantics of concurrent programs.

Let L be a first order language with certain set of functicenal
and relational symbols. We shall consider the class of while pro-
grams extended by the construction cobegin coend over the same-
set of functiconal and relational symbols.

DEFINITION
The class 7 of concurrent programs is the least set of expressions
which contains all assignment instructions of the form

X:i=T or q:-y

where T is a term, y 1s an open formula, x Is an individual varia-
ble and g 1s a propesitional variable, and such that the class w 1is
closed under the following formation rules: 1if exprgssions

My,...Mn are in w, if y is an open formula in Lt then the ex-
pressions 1f y then My else Mp fi, MMy, while y do My oq,
cobegin Hi” || Hn coend are in . o

The programs My,uMy, in a cobegin coend statement will be
called processes. Before we present a strict semantics of con-
current programs let us stress that processes are arpitrary pro-
grams. In particular, 1t means that the sets of variables V(Mi) oc-
curring 1in processes are not necessarily disjoint ones. It means
that certain actions of processes are In conflict and that they
could not be executed 1in parallel.

DEFINITION

We shall say that two ilnstructions ¥ and M are in conflict 1ff X 1is
an assignment instruction =z:-r and M contains the same variable =z,
ie. it is in one of ihe following forms:

Eizw, 1Ff y({x)} +then ..fi, while vy(X} do..od, ¥izw’(x).
A set of instructions is a conflict set i1ff it contalinsg a pailr of
conflict instructions. i}
EXAMPLE

Consider two sets J; and Jp of instructions:

Jy = [ x:xyrz, while x>0 do y:=T od }

Jp = Xx:y+z, while y>0 do x:=7 od }

Ji 1s a conflict set while Jp 15 a non-conflict set. 0



SEE

212

DEFINITION
We shall say that a set I is a maximal non-conflict subset of a

set J of instructions iff I is a non-conflict set and for every set

I* if ICI’'CcJ and I'=T implies that I’ is a conflict set,
u]

Let us consider an arbitrary data structure A for the language

L. By a configuration in A we mean a palr <v,H>, where v 15 2 valu-
ation 1in A and M is a Ppreogram in which some instructions are marked
by # or by ¢ An instruction K is markKed by ¢ when o occurs Just in
flront of K or when K is of the for cobegin o coend.An instruction K

is marked by % when % occurs in front of X or when K is of the form

cobegini”{-"...“* coend.
Below we describe the successorship relation Ma¥-3 in the set

of all conflgurations.

DEFINITION
Let «<v,M> be a fixed configuration and let IN be the set of all oc-

currences of instructions in M marked by circle o and AT Dbe the set

of all occurrences of instructions in M marked by #.

(2.1) If IN is a maximal in INuAT nonconflict set then for ar
pitrary JCIN the configuration <J(v)J(M)> is a successor
of ¢v,M> ( in symbols <V, H> max_, ¢J(v),J(H)> )} where
Jiv) 1is a result of execution of all assignment instructions
from J at the valuation v and J(M} is a result of simultane-
ous replacement of all instructions from J ( with marks and
separators if necessary) by 1ts reducts according to the fo-

llowing rules of reductions.

pif y then My else HMp #1 -2 My if AV F ¥

olf y then My else Mp €1 --=> M, 1f AV F oY
swhile y do M od ---2 $M; while y do M od if Av F Y
owhil'e y do M od () —> % if AV F -y

ofE:=T) { i) ] *

oscobegin % coend ()} -——> # (witn separator ; 1if occurs)
scobegin I'Iiu..."}![ncoend sy cobegln *Hlﬂ.."inncoend

(2.2) If IN is not a maximal nonconflict set then for arbitrary
set J C AT, such that JuIN is a maximal nonconflict set,
the configuration <v,M'> is a successer of <v,M>», 1e,

cv,Mp MAXo, v, H'>
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whenever M’ is obtained from M by replacing marks of all
instructions indicated by J to ¢ according to the follo-
wing rules

cobegin -1-"*""* coend --> c¢odbegin ¢ coend

$¥K -—>0K for all other lInstruction X. . o

Removing word "maximal" from the above definition we obtain
the other Kind of semantics called ARB-semantics (since the set J
will denote now arbitrary non-conflict set). The notion of succes-
sor obtalned in this way we shall denote by 2I'D-y, Obvicusly it is
not necessary to use two Kinds of marks when talking about ARB-se-

mantics,

DEFINITION

By a computation in MAX-semantics (or in ARB-semantics) of the PIo-
gram M in A and v we understand any maximal chain of configura-
tions, 1n +the sense of relation MaX-; ( or relation ATP_y), with
the initial configuration of the form ¢v,¥M>. o

3. DIAGRAMS OF PROGRAHS

Let M be a fixed concurrent program and V. the finite set of
rropositional variables <¢olled control variables which do not occur
in M. By a diagram of the program M we shall understand a bipartite
labeled graph d(M,Pen.Pex @) (for short dM) where pgy is a label
of entry point, Pgy is a label of an exit point. The sets P and @
are disjoint and Pu@=V. is the set of all vertices of dM. The dla-
gram dM is defined by induction with respect to the structure of M
as follows:
~ If M 1s a assignment instruction x:-7 then Fig3.l.presents a
diégram of M where Pen-Pti Pex-Ppr + F =fpPpuPpi and @ ={gy/.

- If aMypsd, pp PLEY . aMyps® pp PR,G2) are diagrams of My
and Mp respectively (cf. Fig3.2) such that PlaPR:fpnj, a@ln @2:p
and moreover pgneneéPly P2, pinonc@ly @2, +then the diagram of
H-i¥ y then My else Mp f£f1 is described in Fig3.3 and

dM = dfif y then M; else Mp fl ,p; ,pp P,Q}
where P - Ply pPeufpyl, @ = a@iv Q2urgyl.
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- 1£ amMypt Pt PLel) , arMppsf, pz2.PR,Q2) are diagrams of
M; and Mp respectively, cf.Fig3.2, such that PlaP2:rp,2j- [ppij,

oln @2:¢ then the dilagram of program MyMp is such that Pen=Pi
Pex~ PEE,P = PinPEIG - ola Ga. ct.3.4. -

- 1f dMuptpptPhel) is a diagram and ppaonéPl and pplzpy, -
psl.pplnone P!, then we put
dM - d/while y do My od, pppP2 .F.Q)

where P = Plutppl, @ = @Qlvigyl, gnone@t, ci. Fig3s.
- 1 aMups, ppl PLeL) for iin are diagrams of HMy..Mp res-
pectively and Plapl = @in@d - # for izj, and ppppnoné UPi, then
df{cobegin M1||..."Mn coend, pj,pE,P,G) is a diagram of cobegln
Mi i coend , cf.Fig.3.6, where

I n -
P o= 0 PLou (puP2t pyppnon€ 4y PL

@ -y @ v [g592] ., TuTpnoné U @t
1tn ifn

Let dM- d(H,pen.pex,P.G) be an arbitrary diagram of a given program
M. We shall call F the set of at-labels and the set @ the set of
in-labels of -the diagram. If g is in-labels of an action then by Vq
we shall denote the set of variables occurring in this action. If p
is an at-label which corresponds to some action I then by 4qp we
shall denote the in-lakel which corresponds to the same oCcCUrIrence

of action I.

4. SEMANTICS EXPRESSED BY HMODAL FORMULAS

In this section we shall define for a given diagram daM a set
of formulas AxMaX(dM) called axioms of program M. By means of this
formulas we would like +to characterize HMAX-semantics of progra.m H.
The set AxMaxaM) consists of
- local axloems Loc{dM) (which describes local behaviour of program
M) and
-~ global axioms 1i.e.,

{. axiom of conflict which describes all possible conflict situ-
ations in M,
2. axtom of reachable Rea(dM) which determines the world of possi-

ble states of control,
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3. axioms of HMAX-semantics which specify the Dehaviour and coop-

eration Dbelween processes.

Local Axioms Loc¢(dM)

This set of formulas is defined with respect to the stiructure
of program M.
a) Let M - x:s7 and dM be a grapn described in Fig.31. Then
Loc{dH) consists of the following schemas of formuias

(#1) Pp3g > O(Py Vv =DiAgy)
4.2) (gy v afx/t)) = TNl x/T) v g AP pAG(R))
where x is the only free variable in a

by Let M -if y then M; else Mp fi and let dM is described in
Fig.3.3. Then Loc(dM) consists of Loc(dMy), Loc{dMa) and the fol-
lowing schemas of formulas

(#.3) Py => 0O(Py Vv gA-py) v
(4) (g A Y A Q) 2> BUGAY Vv ~ggapd) A a) g =y
(#5) (g A =Y A O} 2> B(giA-Y v ~gAPE) A Q)

for arbitrary formula o such +that Vi)V ey}

c) Let M - MM and 1let dM be described in Fig.3.4, Then
Loc(dM) c¢onsists. of Loc(dMy}, Loc(dMa). ’

d) Let M -while ¥y do Mj od and let dM e described in Fig.3.5.
Then Loc(dH) consists of Loc{dM4) and the following schemas of for-

mulas

(#.8) Py = DO(pt Vv QA -py)
(B.T) (s A Y A Q) 2 O(gAY Vv ~qADRE) A o)
(4.8) (gy A =Y A @) > DUGIA~Y ¥V =ZyADp} A a)
for arbitrary dformula o such that Via)CViy)

e} Let M - cobegiln Hi“..."H coend and let dM be described in
: n

Fi1g.3.6. Then Lo¢(dM) consists of U Loc(dM;) and the following
schemas ifn

(4.9) by = Dbi(gy A -py)

(410) g4 = of~g;y A Py A P2 A A Py

(4.41) (f_’-f_ A pgﬁ' A A Py s ol A apd A LA =p4tt) <——-—
(442) g2 = O(~gs A Pa) ' :

LR

Axicms of conflicts
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et us denote by Conf(dM) the alternative of all formulas of the

L
form (g A g’) such that [a-n-d-\ g 1s in-label of . x/-T, for some T and

g’ is an in-label
either of "if y" and HEV(Y)

or of "while y* and X€V(y)
ar of "y:-m" and XEV{im}
or of "as=m".
Axiom of conflict is then 1n the following form

(4.13) il Conf(dHM)

This formula indlicates actions which cannot be executed simulita-

neously.

Axioms of MAX-semantics
For the sake of simplicity let us assume the following denotations

atca) 9 A p A A -p and ia(l} =9F A A A g
DpEA pEP-4 - qé‘?( geE-T
where A4 and I'are apbitrary subsets of P and @ respectively.

(4.14) atfa) => ( max = A conf(qp/pPl}
pPEA
{4.15) (atfA) A~ InfI) A max A o) = Dfin(I) A @)

for arbitrary o such that Via)CAW@-I)

(4.,16) (atfA}) A~ infr) A max A a} => fotnfI-J) M —Ofinr(I-Jin-al)}
for arbitrary a such that Via)CV —U{Vq.'qEJ] and JCI

(4.17) ratfd) A in(r) A -~max A ) = 0f max A —atfd) N Q)
for arbitrary o such that Via)CVu(P-ATI

(4.18) (at{A} A in(I) A -max)} =» oat{A-J) for arbitrary JCA

The £irst group of axioms of MAX-semantlics (4.44) express what
Propositlonal variable max indic¢ates that
y of at-labels without

we mean by maximality.
the set of 1ln-labels cannot be enriched by an

conflict The set of lnstructlons under execution is maximal if

and only if each possible extension leads to conflict.
The second group of axioms (4.15) expresses that being in

the state of maximal engagement of pProcessors at least one active

instruction must be executed to . obtain the next state.

The last group (4.17) states that from a state of not maxial

engagement of Processors we necessarily reach a state of maximal
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engagement of processors. Moreover by (#.18) no individual variable
ls changed 1n such slituation. The possible changes will taKe place
only inside the set A of at-labels ,cf. (4.17)

Axioms of reachability

This axlilom denoted by Rea{(dH) is defined by induction with respect
to the structure of program M. For the sake of simplicity we shall

use a logical operator | with +the following meaning é_,—
b

e T § = VvV { o AA L 0 )

! -l n itn i JA J

(€€ PZIr = (P ATT A =r) VAR A =g A PN (~P A g ATP) ). 5

Rea(dlM) =94f p1|q1|p2 for dM presented in Fig, 3.

Rea(dHM = df Rea(a# Rea{dHM
for dM presented in Fi g, 3%

If Rea(dM): «alp ! and Real(dM ): 1 then
(@M):  ap, R I

Rea{dl) =9f alpeilﬂ for dM presented in Flg. 3.4
Rea(dad) -4f pJ|q1|Rea{dM1)|p£ for dM presented in Fig. 35
g u.,.g)ao.
df Rea(d e \R (an ) bt Ak
Rea(d¥) = (=4 ea(dHM JA...ARea g {p (s Y9N0
( Pl ! 12 olP g e ,\pﬁ;
st for dM presented in Fig. 3.6

The role of this axiom 1§ to describe ithe possible states of con-

trol in all executlons of program.

5. FUEDAMENTAL HMODEL

Let us consider an arbitrary fixed data structure A and the

set C of all configurations which occur in any computation of a

fixed program M in A. On the base of this set and the relation

max_y defined as in section 2, we shall construct below a semantic

structure ’
Comp(A) - ¢ 5 R, w >

which we hope to prove is a model of the set of corresponding modal

formuias PI‘ESEI’;tE(’i in the previous section,
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Let dM = d{M,PomPexFd) be 2 fixed diagram of the program H.
For arbltrary configuration c=¢<v,K>, c€C, such that IN is the set
of all instructions under execuilon in K and AT 1is the set of all

instructions ready for execution in K, we put

vitz) = v(z) ¥for arbiirary individual variable z&£V,

vtfg) = t iff g 1is an in-label of an instruction dfrom IN,
vtep) = 1 1ff p is an at label of an instruction from AT,
{ 1ff the set IN 1s a maximal nonconflict set.

u

vtimax)
Let #frans be a mapplng defined for arbitrary configuration

c-<v,KE>EC Dby the equality

trans(<v,K») = <vtEKo.
We put
s - trans(G)
R = { (trans(cy)trans(cg)): ¢y M3X—> cp |, cpca€C ]
wis) - vt for arbitrary state ss<viEK>, s€S.

REMARK It is easy to see that trans is a one-to-one mapping
trans:c --»> S and moreover 1t is an isomorphism which maps the
structure «<C/M28%-> > onto <8,R>

THEOREM 5.1
For arbitrary data structure A& , Comp(a) is a model of the set

Ax(dM), 1l.e. Comp(A) kB AX(dH).

PROOF
Let us consider an arbitrary fixed state s in Comp(A). By the de-
finition there is exactly one configuration ¢ such that trans(c) =

4. Let us assume that
(5.1) s E (attd) A in(l))

for some sets ACP , JCGQ.

Hence ‘each instruction which at-label belongs to A 1s marked by #
and each instruction which in-label belongs to I is marked Dy o.
Let us denote the set of all instructions marked by ¢ and ¥ by IN
and AT respectively. Below we would like to prove that all axioms
AXx(dM) are valid in s.

a) Suppose § nonE-Conf, Thus s F Conf, l.e, there are at least
two in-labels g; and gz which corresponds to Ey and Ep in the pro-
gram E such that s E(g; A gp). Hence gygp€A and K Kp €IN. By
the consti‘*uction of the formula Conf, the instructions KKz are
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in conflict. The set In is the conflict set too and therefore «v,X>
does not belong toe C, a contradiction. This ends the proof of va-
1idity of axiom of c¢onfiict.
b) By (51) the predecessor of the formula (4.44) is valid. If for
some PE€A, 5§ nonE Conf(p/qp) then the set IN extended by action with
the label p, create a nonconflict set. Since qpno.nEI, the set In
1s not a maximal set, i.e., s nonE max. .
Conversely, 1f for arbitrary b, )
5 FE Conf(p/q p)

then the instruction labeled by p 18 in conflict with each instruc-
tion marked by o. Hence the set IN cannot be extended and, In wview
of previous considerations, IN is a maximal nonconflict set which
implies s E max. This ends the proof of wvalidity of formula
{4.14),
c) Assume now that s E max. Let ¢”: «v’K'> be a successor of
<v, K> and s‘-trans(c‘). By the definition of semantics, c¢f. case
(2.1), ihe instructions marked by star ¢ in X are still marked by o
in k', le, s E p for pecA

Horeover, K' is obtalned from K by removing executed in this
step actions. The in-labels of thils instructions will not be wvalid
and therefore s E - in(I). This Proeves valldity of (4.16) and

(4.15).

d) Assume that s nonkE max. Hence IN is net a maximal set. By the
definltion of semantics, cf. (2.2), it is necessary to extend IN to
a maximal noncoflict set. Hence in all successors of s, all in-
structions marked by o will be still marked »dy ¢ and some instruc-
tions marked by # will change marK. Thus in each immediate succes-

sor £° of £ we have
s | (-~ atfd) A in(r) A max}

Furthermore, since valuation of individual variables In s’ 1s iden-
tical with v,

s EFra o s B a
for arbitrary formula o with individual variables only, i.e., the
formulas (447) and (4.18) are wvalid.

e) The validity of axiom of reachable follows <from the definition
of semantics and the definition of the formula Rea. The base ildea
expressed in this formula Is that occurrence of an action cannot be
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gimultanecusly marked by ¢ and ¥ HMoreover, in each seguential pro-
gralﬁ at least one action is marked.
The exact proof, by induction with respect to the structure of pro-

gram M, is omitted.

f) Let us consider finally the local axioms. Suppose

. (5.2) 5 = Py

and p; occurs in the diagram dM in the context presented in
Fig.3., By (5.2) the instruction x:-T is marked by #% and therefore
occurs in AT. If s Emax then by the above considerations and
(5.2) for all successors s’ S'EP;s

1f s noprEmax then possible that (x:=T) 1s chosen for execution.
Thus 1in all possible successors s’, S'E(pyvgih-Pil)-

This proves validity of the formula (4.1),

Suppose

{5.3) s F gy

apd let a/x) be a formula with one free individuwal wvariable =&,
such that s FE a(x/7h

If s nponEmax then from the above consideratlons (cf. part d
of the proof) s'k(g; A Q(x/T)} for arbitrary successor s° of s,
If 5 = max then the instruction (x:-7} 1s possibly executed
in tnils step of computation. Hence its in-label disappears from the
set I and the successor of (x:-7) will obtain mark ¥. Moreover,
since ‘V(‘x/T)Fa(x), we have for all such successors s’ of 5, §° F
afx). Thus +finally s’ E(~gyA Pz A a(x)) '

For & E max it is also possible that (x/-7} is not executed
in +this step of computation. Hence in such successors 7 of &,
§° = gy The executed in this step instructions cannot change any
variable from V(¢r) v [x}], since of conflict. Thus s~ Ef(q; A o{X/T)
Both c¢ases together proves the formula (4.2) This ends the_: proof
of the theorem 5.4. a

As a simple consequence of the above proof we obtain the fol-

lowing observation (¢f. Appendix).
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LEMMA 5.2
For arbitrary data structure A and an arbitrary initia) configu-
ration «<v,¥M> in A, the substructure Comp(A,v) determined by «<v,%#M>
is a model of Ax/dM). r]

DEFINITION
We shall c¢all Comp(A,v) a MHAX-computational model determined by A
and v. o

Similarly we can construct a computational model based on suc-
cessorship relation A&rb.,  7gpe resulting structure denoted by
Comparb(V,A). let us call ARB-computational model determined by A

and v.

THEOREM 5.3
For arbiirary data structure A and an arbitrary valuation v in A,
Comparbir A) is a model of AxArDam), o

6. AXIOMS DETERMINES SEMANTICS

In this section we try to argue that the converse to the tﬁeo—
rem 5.1 1s in some sence also wvalid. Namely we would like to prove
that an arbitrary modei of the set of axioms defined in section 2
can be restricted to a computational model,

Let HM(A) =-¢S,R,w> be an arbitrary homogeneous model for
AXMAX(AM) such that non H(A) E~Pen and d(M)=<M,Pep,Pex.F.G> . We
assume moreover that w is a one-to-one mapping, We shall call such
medel proper for the diagram dM.

For $,€5 such +that S5 F DPeps let MolA,5p):¢ 80, RoWg> Dbe a
submodel of M(A) determined by s,

THEORE.H B.1

Let vy=w(s,) and Comp{A,r,) be a computational model of AxMaxgmy,
Then M(A,s,) is tsomorphic to Comp(A,Vo).

PROOF

Let us put nes) SF prs) for all s¢s.

Thus by definition, h is one-~to-one mapping. We would like to prove
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(6.1) (VSESe) W(SJECOMP(A Vo)
(6.2 (YVECOMP(A, Vo)) (35€8,) w(s)=v.

To prove (6.1} we shall show that for arbitrary state s, 1If
wors)GCOmp(A,Vo) then for all S’€Rg(S) wo{s’}ECOmp(A.vo).
Let s be an arbitrary state of M(A,Sg) such that wels)=v and

wo{s}e‘Comp(A,vo).

Case 1
s E (atfA) A IimI} A max) for some fixed ACP and ICQ.

Let s’ be a fixed successor of S, SRas’. By (4.5), W{s’) and V¥
afe equal on the set Aure-1). Moreover it is necessary that some
variables from the set 7 nave been changed while moving from & to
s’. Assume that s5° BEir(I-J) for some JCI , nmonJ:=g. ’

If g€J and g 1s an in-lapel of the instruction (x/=7) (cf.
Fig.3.4) then, by local axioms, for arpltrary formula a such that
Via)=(x],

s E oarx/T) implies s* E pPp A afx).

Hence Wo(s ) X)=Ta(V) and wufs'JE Pz - BY axioms of reachability
Wols’}) B Py
Similarly we can analyze other in-labels gé€J.

By axloms (4.46) no other individual variable from V—U!Vq:qEJ]
will change value and by local axioms all c¢hanges are connected
with adssignment instructions japeled by g€J . Finally, bY (2.14)
the set of I1instructions indicated by I 1is a maximal nonconflict
set, It may be observed now easily that wyf(s’) is a valuation ob-
tained from v according to the rule (2.4) where the set of executed
instructions are marked by in-labels from . Hence vDaX.y,rg)

and wo(s’)GComp(A,vo).

Case 2 .
5 = (at(d) A 1inf{I} A ~max) for some ACP and ICQ.

Let s° be a fixed successor of 5, SRgs’. By (417} w(s’) and V¥
are egual on the set VuIufP-A}). Thus while moving from S to s° ne
individual variable will chanege, all instructions wunder execution
in v and all instructions not ready for execution in v will remain
in Wwgfs’). Furthermore, DbY (447) all the possible changes are c<on-

nected with the set A
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Let s’ | atfA-J). Analysing local axioms we come to conclu-
slon that wy(s’) F g for all g being in-label corresponding to
at-label péJ. By (4.14) the set of instructions marked by in-labels
from I is not maximal set and by (417) the set [gt@: wols'JE ¢} 1s
maximal noncenflict set. This proves that the valuation wgyls’) 1s
obtained from v according to ithe rule (2.2) of the definition of
MAX-semantics.

To prove (6.2) i1t 1s enough to show +that for arbitrary valua-
tion veEComPlA,Vvy), 1f Wefs)-v for some s, then for each v’ such
that vMaX-5y- there exists a state s’ in Sy with wy(s’}sv. The
proof similar to the presented above is omitted.

To end the proof of the theecrem 6.4 let us remark that due to

the construction
s Ky 87 iff nrs) MAX-> nrs’),

Thus 1 is an isomorphism which transforms M(A,s;) onto Comp(A,Vy),

D

Analogous result can be proved for the other concept of con-

currency.

THEOREM 6.2

For arbitrary data structure A, if M{A,s) 1s an arbitrary proper

model of Ax2TDP(dM) determined by s then M(A,s} 1s isomorphic to

ComparPravis)) D
.,_'a_L.Ui

L ol

7. APPERDIX

We are going to present here a modal logic we¢ are dealing with in
this paper. o

Let LM denote an extension of the language I by a finite s‘efr, '
of propesitional variables V. and modal operators necessary O an
possible O, Hence the set F of all formulas of LI contains mo
formulas of the form Do and ¢a for arbitrary a from LD, a}_:ga'r’t

£

classical open formulas. The sets of terms of L and LM are .
cal, we shall denote 1t by T.
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Let A be a data structure for L, ie, 3 relational system of
the same signature as the language L. We shall assume that the
reader 1s familiar with the semantics of the first eorder language.
Let us mention nere only that T4(v) denotes a value of a term T in
" the structure A at the valuatlon v and A,v E o denotes that v sa-

tisfles & in A,

DEFIKITIOK E
B'y the semantic structure of the language LM we shall understand a L
Kripke-llke structure H =< S5,/A(s):5€8i,R,w> such that S 1is. a
nonempty set of states, K is a binary relation in & £ CS5 X S8, A(s)
{s for every s€S a data structure for Dﬁuﬂ and w is a function de-
fined on S5 which assigns valuation 1n Ar-(s) and Boolean algebra to

arbitrary state s
The meaning of expressions of LM is then defined as follows:

TH(S) = Taps)w(s))
Ms E o = Afs)w(s) F «

for arbitrary term T and formula a from L. HMoreover

s E Da = R(s) ? ¢ and (Vs')s'E€R(s) = M. E a )
Hs EF ¢a = (As’)}s'€ R(s5) A Hs' F « p)
for arbitrary a€L™ o

Let us consider a formal system L. determined by the set AX of
axioms and three rules of inference, The set Ax contains all axioms
of ciassical propositional calculus and the following schemas

{fna => ¢a)
ofa A B) = ( Da A Bp}
—Dfa--AN B} => (0o A 0B )
(b v Oo) => Dfa v B
_ —Bfa—v—PB)--=(0a v B )
LI N
—ono = - --~dtrue o~ )
' Dy
ki
L 0o = { -Ootrue [IET S R N

-pfalse \ru,\cjm\d.o_. \:v\.m..aﬂJwCen
u

e




D e P S

PRSETR e

227

The set of rules contains modus penens and

(oo => OB) { oa => DB}

For arbitrary set of formulas Z , Z F o denotes that o is a se-
mantic consequence of the set of formulas Z, and Z | o denotes that

a is provadble from Z, i.e. 1s a syntactl¢ consequence cf Z.

Let Z be a consistent set of formulas and let d, be a formula

of the language L™ such that

(T4 non Z b dg

The Lindenkbaum algebra < F/"‘-{"‘:U"»’ of the theory determined by Z

is therefore nondegenerate Boolean algebra, where
a x B iff 2 F (a = B} A (& 2B)
and for arbitrary [e):9fry : a = yJ and (B1=9fry vy x BJ

@l A (B 5 [ AR
@) @ [B] = [a] Vv [B]
wa] = [-a]

Moreover for arbitrary formula g,

(7.8) nmen Z F & 1ff tfoﬁ‘]f 0. 4—/’

By KuratowsKi-Zorn lemma for every fHon-zero element B there 1is a
maxima} filter in the Lindenbaum algebra which contains B. Hence by
(7.4) and (7.2) the set & of all maximal filters is not empty.

For a given filter F, let A(F) be a data structure for L in

the set of all terms T such that for arbitrary functor ¢ and arbit-
rary predicate p in L

PA(FHT g1 T gl = POT 10Tl
PA(FR )T T ) 1f4f CP{T g2 T pllE F.

Let B - < S.,(A({s):s€ES],R,w> be a semantlc structure such that
& 15 the set of all maximal filters in the Lindenbaum algebra des-

criped above,
R = [(s,5p): [Dtruelfsy and (Val ([owl€sy => [al€sp) 1
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wi{s}) is a wvaluation v such that vfx)-x for individual wvariable x¢&V

-and vip)l 1ff [ples, SE8S.

THEOREM 7.4
For every formula a« and for every s€5,
Hs F a 1ff [al6 s,

PROOF . ]
The proof is by induction with respect to the structure of ao. When
a is a propositional variable or elementary formula, the proof Z01-
lows from the definition of semantic structure. When « is of the
form (y v Bl (¥ A B) or -y the proof follows easily £from Proper-
ties of maximal filters.

Let us conslder more strictly the formula ¢B assuming thai the
theorem was proved already for B,
Suppose M5 E ¢B for some fixed state s. By the definition of se-
mantics, there is at least one state s in S such that

(7.3) sSEs’ and HM,s8’ F B.

If [¢Blnones then [-¢B]€s, since s 1s a maximal filter. Hence ei-
ther [-Diruejés or [pD-BJ€s. The fFfirst case contradicts {(7.3). In
the second case we have by the definition [Blmen€s’ and by in-
ductive assumptlion M,s’nmonE= B which contradicts the second part of
(7.3}

Conversely, suppose that

(7.4) [OBlE 5.

We shall iray to determine a state s’ such that [BI€s’. To this
aim, let us consider the set F := [[yl [DYIEs J.
Clearly F 15 a fliter. Suppose

(1.5) [a3lmlaglé F and  [aqlA.Alag] A [B] = ©

Thus by property (7.2) of Lindenbaum algebra

Z b (fay AaA ap) s> B
Hence applying one of inference rules we obtain

Z  Bf{oy AnA ap) => DB-B
and by (7.5) [0-B}s (i.e. [-0Bl€s ) contrary to (7.4). This bpro-
ves that the considered set F has finilte intersection property.
Thus the set FufpJ can be eztended t¢ a mazimal filter. Let us de-
" note it by s'. By the definition and assumption (7.4) (s,s’JER and
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[RI€s’. Hen¢e Dby the 1nductlve hypothesis H,s'FB and as a cohnse-

quence H,s E 0B.
The analogous considerations for formula 0P are omitted.

The above theorem can be reformulated to as every c¢onsistent
set of formulas in L has a model. This allow te proves the follow-

ing completeness theorem.

THEOREHM 7.2
For arbitrary set of formulas Z and for an arbitrary formula o the

following holds
ZE a if and only if Z = «

we end this auxlliary sectlon with the following observation.
Let M - ¢ S, fA(s)hs€S),Rw> be an arbltrary semantical structure
of the language LM For a given state s, 0f § let Hyisy) be a suk-
structure ¢S, [A(S)NS€S547,Rq,Wg> defined as follows

Sq = [s€8: sg RTY s g
where RFY¢ is tne reflexive and transitive closure of R ,

Ry = R /8pKSp and Wa :w?/so_

LEMHA 7.3
For arbitrary set of formulas Z, if H is a model of Z then the sub-

structure Myfs,) is also a model of Z. o

The class of models of the language LM is very reach. To our
purposes 1t 1is convenient to restrict this class to models con-

cerning one data structure only.

DEFINITION
The semantic structure M :(.S‘,{A{s):' SES],R.W¥> we shall call homo-
geneous 1f all data structures A¢{s) are ldentical with A for every

$€S5, We shall denote such structure by MrA) n
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