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The stepwise retinement method [4;] and the notion of an implemen-
tation of one data structure type by another are formulated on the
besis of algorithmic logic [2]. It is shown that the properties of
_partial and total correctness of an implementation are expresaible
by means of mondeterministic algorithmic formulas.

M. INTRODUCTION:

In the programming practiceé the tollowing situation occurs frequent~
ly. We wish to develop & program correct with respect to some condi-
t#ione o and Ey(ﬁlj. This program is supposed to operate on objects
dremn from & certain fixed mamy sorted algebra d,:({UIB}HEs,B>, where
iUE} 865 is a family of basic date types (such as for example integers,

@y We coneider two notions of program correctness: partial and total
correctness [2] « We assume the following definitions. Suppose we are
giiven program P and two formulas o and B (ol describing intended
input data, [5 describing results), 2ll of them written in the algo-
rithmic language [2] of a cgertain relational system §l. P is said to
b pamtiaidly correct with respect itc o ana F; ift for every input da-
tm satisfyingol if the computation of P terminates, then the resulting
output data satisfy [5 +» P is said to be totally correct with respect
to ol and E‘: iff for every input data satisfying ol the computation
of P terminates and the resulting output date satiefy (3 . Thus the
partial correctness ie expressed by the frormulm (§ A Ptrue = PP_. )

and the total correctness by ®=>Pp )
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reais, Boolean values, vectors of integers etc.) and & is a set of
functions of the form

Lf:ws1x '"xmﬁ'p;_> U.Bk+1] (1'91,...,sk,sk+1e S
{In this paper for notational convenience we treat relations as func-
tions assuming one of the sets U's to be the set of Boolean velues
‘10,1lk.)}' However the problem in question may involve some other- objecta

trom m certain larger many-sorted algebra IT:dUs}seS R 917 where we
1

asgume that 5S¢ 5, and egﬁ%r It is often much easier to write a prog-
mam over ¥ than over ¥ . Suppose that we have written a program P
over Jy correct with respect to conditions o and & . To get &
correéponding program P° over & correct with respect to of and P y WER
must replace in sgome way ocbjects not in ¥ by objecis in J ana mo-
meover we must program over ¥ all the: operations 1{’6@1: @ that are
used in P i.e. we must provide en implementation for P. For example

. the standard system of programming {derined by a programming language)

is frequently adjoined by the objects like graphs, sets, families of
sets ete.

Example 1. Let us congider the following problem. Given a positive
integen k and integers e,f,c[ﬂ,...,c[l],d[?],...,d[l:[ drawn from the
gat {1,2,.;..,k} determine whether the pair (e,f) belongs to the least
equivalence relation containing ell the pairs Gc[i],d[ij) for 1€igl.
We are to solve thie problem over the algebra congisting ol Boolean
values, integers and vectors of integers. However it is more natural
for this problem to think about it in terms of sete of integers and
gets of equivalence classes of eguivalence relations over the set
{t,2,....k}. So let R be a variable assuming &s its values partitions
of the set {1“2,...,k and let A and B} be variablaﬂ apsuming as thei:
values subsets of the: set { 1,2....,k} . Conpider the ;oliowing opera-
tions:

(1) init(k) whose value ip the partition {{ﬂ},{%},....,{k}} ¥

. ¢2) find(h,R) whose velue is the set of the partition R that contains

integer h;
(3} eg(A,B) whose value is either Boolean value 1 if A=B or Boolean
wvalue O it A#B; :
(43 union(k,B,R) whose value is either the partition CR-iA,B}yuikuiﬂ
it ‘gets & and B are in R, or R otherwise. .
Now consider the program which uses these operationa:
begin |
Jet tKBUA 220A A 1€¢e[u],afulg kA 1¢e, 2k §
1 R:=init (k)3 )
for i:=1 to 1 do
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beginjinvariant:R is the set of equivelence classes of the lemgt
eguivelence relation containing the pairs Gc[u],d[q])
fmwsmi}
k:=find(c[i],R);
:=tind(d[i],R);
:=union{A,B,R)!

end;

A:=find(e,R)3
6 B:=find(t,R)3
T q:=eqfr,B)

ib ig=1¢&> (e, f) belongs to the least equivalence relation. over
{ U,E,...,k} containing all the pairs Gc[@],d[uﬂ) tor 1€u<l }
end
where q is a Boolean variable s2nad i is an integer variable., Abstract
instructions which should be replaced by concrete instructions are
preceded by labels in the text. []

After Hoare [¢] we shall call the source program P an abstract
program and the target program P’ a concrete program. We shall admit
the following noitational conventions:

(1) a vector ot variables of types in S common o bothi P and P’ will
be denoted by x (these variables will be called common variables);

(2) a vector of variables of types in 5,-8 appearing only in. P will be
denoted by y (theser variables will be called abstract data structure
variables);

(30 a vector of variables ot types in S appearing only in P’ will be
denoted by 2z (these: variables will be called concrete data structure
variables).

Note that in order to represeni one abstract data structure variable
we must sometimes use several concrete date structure variables. For
example it we: represent a set A, card(A)s=n, by an ordered table T[1:mﬂ
guch that ném and A={T[i] : 1% iéll} then two concrete data structure
variables T and n correspond to one abatract data structure variable S.
Hence it follows that the trensformation from r to P° should be accom-
plished by replacing whole instructions by instructions. Returning to
Exawiple 1 the parte of the program that should be replaced are the
whole assignment statements: Ri=init(k), A:=find(c[ﬂ R,

:=find(da[1],R), Ri-union(a,B,R), ;=find{e,R), Bi=find(f,R),
q:=eq(A,B). ‘

In the opinion of the author input and output specifications should
be the same for both P and P* and should depend only on common variab-
les. x. We shall adopt here this point of view assuming "data structu—
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a" of P and P’ as local means being initialized at the beginning of

ne

computations.
To gimplify furfther considerations relations between values of cor-

responding date structure variables in the veectors y and =z, respective-
1y, will be extended to vectors of values of y and z. The notetion
I(z)=y will denote the fact that the vector of values ol concrete data
gtructure variables z corresponds 3o the vector of values of abaireact
data structure variables y. The two main properties which should hold
between corresponding computations of P and P’ are: the invariance of
the pelation I(z)=y and the invariance of the fact that the correspon-
ding vectors of values of variables x are the same. Now it should not
be surprising that these two properties allow to infer from partial or
total correctness of P with respect to of (%) and ﬁ>@x), partial or to-
tal correctness of P’ with respect to the same formulas.

In section 2 we introduce an appropriate notion of 2 data structure
“typé. In section 3 we define a notion of an implementation of one data
gtructure type by another. In section 4 we introduce notions of par-
4+iml and total correctness of an implementation and we prove two guf-
ficient conditions for these two kinds of correctness which have the
form of validity of some determinigtic algorithmic formulas. In sectio
5 we present the rules which from partial (total) correctness of &
gource, abstrect program P ana partial (total) correctness of an imp—
lementation allow to infer partial (total): correctness of a target,
concrete: program P°. In section 6 we prove that both the properties
partial and total correctness of an implementation are expressible by
means of rormulas of certain extended nondeterminigtic algoiithmic

logic.

2. = (K)-PROGRAMS AND THEIR COMPUTATIONS

U u, witn
! geS
operations forming many-sorted algebra &:({Uﬂ}ses, 9} vhere S is
a set of morts and & is & set of operations such that for each vel
there exists k>0 and 51""“Bk+ﬁe S such that

| ¥ :_Us1 X ...xmsk-% wEk+1 ¢

¥e assume that one of the sets U is two-element Boolean algebra. More
over we agsume that for this algebra an algorithmic lenguage L{#l) is
defined which includes the following seta:

{1) the set of deterministic instructiona (programs) FSt

(2) the set ot algorithmic fterms FST;

(3) the set of algorithmic formulas FSF.

(For the detinitions comsult [2].)

Suppose we are given e many sorted univerpe ol objects
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For notational convenience we shall denote operations and corresponding
functors by the same symbols.

Since we wish to abstract from specitic pfograms which contain cer-
tein objects and instructions to be implemented, we need to introduce

the notion of a computation of a sequence or instructions (drawn trrom
arbitrary programs which use these instructions).

S0 let j&:{'KO,K1,...,KnE be a finite set ot instructions in FS.
We assume that three kinds of variables are distinguished:

{1) common variabies x (common to abstract and concrete programs);

(2) data structure variables y (specific for only one program either
abstract or concrete);

(3) auxiliary veriables (local to & single instruction).

Abstract and concrete progrems usually carry out some initializations
of values of data structure variebles at the beginning. We assume that
this is accomplished by the first instruction KO which should deliver
initial values to all data structure variables in y. In addition we
assume that K, has the stop preperty in 3l,

By Z () we shall denote the set or all finite sequences

5§ 510ene0s By
where m3 0, § =K, and E:.LE;!_\;L—{ KO§ for 1§ i< m.

The elements of the set Z(‘S{ J will be called lj{--prt:vg:a:-alma.

The intuitive meaning of ﬂ{-programs is as follows., Let us suppose

that the instructions of the set 3{=t KG'K?""’Kng are usewn in a pro-
gram P, P may be called the main program. Consider a finite computation.
of P for some initial valuation of variables. During this computation
executione of gome instructions trom K take place. Suppose that
&.G},...,sm is the sequence of‘instructions uged consecutively by
the main program P, First the execution of 56=K0 initializes the va-
lues of data structure varisbles. Afterwards some computations take
place in P, which however do not change the values of data structure
variables. The main program P prepares values or common variables for
the instructiion 51‘and then 31 ig called. The execution of 51 can
change values of data structure variables and upon the completion 51
communicates the values of common variables to the main program P,
Thie process 1s repeated ror the next instructions 52,...,Em, comaecur
tively. At any time values of data structure variables cen be changed
only by one ot the instructions in }L In this way the valuees: of data
atructure veriables form a cexrtain kind of duta type to be distinguished
from other date. The: main program P may use the values of data structure
variables only by calling instructions in j(.

In this paper such a set ﬂ{ of instructions will be called a



LET B 2

date structure type over ¥ . With the presented above intuitions in
mind, we adopt the following definition of a computation of a :j'{.,—prog-
ram., Namely e computation of a X -program B"':B'O’E‘I"' ..,B'm congists of
three sequences. of vectors oX values:

{1) XgsEqseeesdy

(2) ¥ye¥oreves¥p

(3) fgatyreventy

such that the tollowing conditions hold:

(1) for each i, 0< i&m, Xy and ti are vectors of values of the common

variables xj
(1i) tor each i, 1€ if m, y; ie a vector of values of the data structuz

variables ¥;

(iii) ¥y is the vector of values of data structure variables upon the
completion of the execution of §y =Ky;

(iv) for each i, 1€ i4m, the computation of §; for x=x; and y=¥j ter-
minetea: and upen the completion Y=¥i1 and x=ti. It iis convenient to
present a computation of a K, -program 5:5’0,511,...,3'111 by means ofX
the following disgram (assuming the above denotations).

vectors of values of the J{ ‘I/ \L
common variebles x before . L

execution of an inatruction ~0 ! 2
vectore of values of the

data structure variables ¥y ¥ o) -
vectors of valuee of the %

common variables x after 0 1

execution of an instruction

Exoemple 2. Let N be m positive integer. Congider the system whose
universe includes the set {1,2,.....]‘1} , the set of Booleam values
{0,1}; and the set PLN) of all subsets of the set L 1,2 eeesN -
Assume that the following set operations gand relations are in the sya-
tem under consideration:

(1) constant § (empty set);

(2) two-mrgument operations / and - 'of union and gubtraction of
pets, respectively;

(3) two-argument relation € of being an element of a set;

(4} the operation ﬁ_ } of composing one-element set.

Tet i be s variable assuming its values from the set &1:,2,...,1‘!}‘,
let S be a varieble assuming its values from the set P(N) and let q be
a Boolean vamisble. Let us consider the following data structure type

DICTIONARY={ init, insert, delete, member}  where
init=[S:=07] ,



insert=[ 8:=Suiil],
delete=[ S:=S—-]’i§] ;

member=[ g:=i€5 7 .

We assume thet i and q are common variables and 5 is a data gtructure
variable. (N is treated as a constant.) These instructions do not con-
tain any auxiljary variables. For example B=init, insert, insert,
member, delete is a DICTIONARY-program. II we provide the inputs
1,2,2,2 for the common variable i of the consecutive inatructions in §
we receive the tollowing computation (only relevant values are indica-
ted).

i

\ y J

i=1 i=2 i=2 i=2

@S:ﬂinsert s={ jflinsert é:ii, s member 1={'|!,2} delete S={11}
q="1

|

3. A NOTION OF AN IMPLEMERTATION
Let :u:{{ US’SSES.i'@l > be an algebra which is an extension of

A=< U kges 0> (die. 5C5; and @S @) We shell assume that LU
ig a sublanguage or L{¥} ). Suppose that we are interested in & data
structure type 5{,:-‘11 KU‘Ki — ..Kn} over ¥ and we wis h to implement it
by another data structure type M;{MU,M1,....MH15 over ol . Assume that
x is 8 vector of common variables ot ¥, and M. , y is a vector of data
structure variables of ‘j{( and z is a vector of aata structure variables
or J. . For example, suppose that we have an abstract program P such
that it uses a data structure type 3 and all its instructions which
cannot be directly carried out by a computer are included in ':R,. We
could look for a data structure type .)Uu guch that its instructioms can
be directly carried out by a computer and each instruction in }{,Bimu-
lates the corresponding instruction in 'j(,. By replacing the ingtruetions
of ‘JL by corresponding instructions of JL in P, we would get a program
P’ such that it solves the problem in question and it can run on a com-
puter. Given common inputs for P and P* the prognmam P calls consecuti-
vely some instructions K, K, ,...,]{i ot j{ , while at the pame time

P” ‘calls coneecutively thg co}'respond.Tng ingtructions Mio.Mi1 ,...,Hi

of .H,.
We shall call 'j{_. an abstract data structure type and H  a con-
crete data structure type. We shall use the following notational con-

m

vention, If
5= Kio'Ki.l - ,Kim
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s a ¥-program then by F we denote the corresponding Al -program

Y .
(which is to simulate § ).

To wholly define an implementation of b8 by ‘LL we need to estab-
1ish the connection between values of concrete and abstract. data struc-
ture variables. We shall use the notion of an intermpretation instruc-
tion, which is similar to Hoare’s [4] concept of "abstract function¥.
Namely to define an implementation we shall provide an instruction I
in the language L(J7) which is intended to determine: the vector of va-
lues of abstract date structure variables y which corresponds to a gi-
ven vector of values of concrete date structure variables az.

Any peir J=(H.,I) satisfying all the conditions stated above will be
called an implementation over 9, of the data structure type H .

Example 3. Let® us congider again the data structure type DICTIONARY=
{init, ingert, delete, member& defined in Example 2. Its implementa=
tion can be defined as JF=(JL,I) where ‘

J=1 INIT, INSERT, DELETE, MEMBER },

INIT=(for j:=1 to N do TLj]:=false),

INSERT=[1(1]:=true] ,

DELETE= [T{1] :=falsel,

MEMBER=[q=:=T[i]] ,

4 and q are common variables, T is a concrete data structure variable
of type Boolean vector of length ¥, j is an auxiliary variable of type

,"""Mi

integer and

I=[ S:={ j:T[j] =true}t] .U

#i. PARTIAL AND TOTAL CORRECTNESS OF IMPLEMENTATIONS

The question arises. under what conditions M -programs can be regar-
ded as correct simulations of ﬁ{-programa. We shall adopt the following
definitions. s

An implementation J={jM,I) over ¥, of the da;a structure type K is
said to be partially correct if for- every ﬂ{—program 5%50,51P...,Em
and tor every computation of the corresponding J{,-program
E%HOJL1,....4Lm given in Figure 1 there exists a computation of &
of the torm given in Figure 2 such that for each i, 1§i€ m+1 the vector
of values Iuﬁz=zi)(y) ie definsd and equal to y, (where by &‘(z=zi)(y)
we denote the vector of resulting values of variables y on the comple-
tion of I for z=z; )M

In virtue of the definition partial correctness of an implementation
means that if we have a terminating computation of a sequence E' aimu-
lating § €Z (), then we can obtain the results of the original sequen-

o ki
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common variables x before
execution ot an ingtruction 0

vectors ot values of the
data structure variables g 7 }&ok iz z' et I ﬂ%mﬂ
vectors ot values of the %

common variables after o]
execution of an instruction

vectores of values of the ¢ ¢
X

Figure t. A4 computation of ULL—program T

common variables x before
execution of an instruction Q

vectors of values ot the . .-
data structure wvariables y =§{§:}<if& ‘;E Y2 ¥ &l m+1
vectors of values of the

common variables after 0
execution of an instruction

vectors of values of the i

Figure 2, A computation of 4 -program § .

ce b directly from this computation, This corresponds (as we shall see
in the next section) %o the notion of partial correctness of programs.
If we get results we know they are correct. Of course sometimes we wish
to know something more. Namely if a sequencer § simulates § ana the
computation ot [ terminates then the computation or'g terminates as
well,

An implementation J=(JL,I) over ¥, oI the data etructure type §£is
sajd to be totally correct if for every ﬁﬁ-program E:Eb,SH,...,Hﬁ
and for every its computation oI the form given in Figure 2 there
exists a computaticn of'E of the form given in Figure 1 such that for
each i, 1§ i< m+1 the vector ot values Iy(z=2; ) (y) is defined and
equal to ¥i-

Obgerve that if all the instructions of an abstract data structure
type 3 (in practice the instructions in j{ are simply assignment
statements or at most sequences of assignment statements) have the: stop
property in :Y then the: total correctness of J implies partial corre-
ctnegs of J. The ceonverse may be not true.

It seems that the definitions of partial and total correctness of
implementations cannot be written by means of ordinary deterministic
algorithmic formulas. Nevertheless in practical situations we need not
go sway from algorithmic formulss. Qur reasonings about sequences of
instructions consists in considering each instruction separately.

Below there are two criteria of partial and totazl correctness of
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an implementation, respectively. They use the notion of validity of a
gorithmic formulas. Let A(z) be an arbitrary algorithmic formula whic
plays. the role of an invariant of the data structure type M.
Theorem 1. If the following formulas are valid in ?3
(1) MpAa),
(2)& (Alz)A Mitrue$MiA(z)l) .
148 n

(3) Kgy=Mgly A Kox=ligx ,
1£ign
then J=(A,,3) is a partially correct implementation over ¥ of the da

structure type H.
The validaity of the consecutive formulas in Theorem 1 can be expre
sed as follows:
(1) A(z) holds after performing Mos
(2) A(z) ig preserved under each instruction M, 14 i< n;
(3) the computations ot all the instructions in the diagram below ter

minate and the diagram is commutative;
o)

/T——N't

x_o_éz,t

(4) for each i, 1€ i< n, if a vector of velues of data structure var]
bles z satisfies A(z) and the computation of Mi terminates then the <
mputations of all the instructions in the diegram below terminate anc
the diagram is commutative:.

Ky

Fox—— ¥yt
I M, 1‘ I

Zhx————2 5t

Proof of Theorem 1., Let us consider an arbitrary computation of +1
M-program § given in Figure 1. It follows that during the realizat:
of § the computation of each instruction U terxaina'tes, 04 ig m.
Now carry out § providing the vector of values x; for the: i-th ina-

truction, 04 ig m.

To prove the thesis of Theorem 1 it is sufficient to show that fo:
each j, 1§ j{m-ﬂ , there existe a computation of the X-progranm Ej=
{0,5'1,...,5’:]_“ of the form given in Figure 2 such that for each i,
1€ 1€ J, the vector of values I;ﬂ(z:zj.} (y) ie defined and equal to y;.
The proot proceeds by induction on j. The validity of the formula {3
implies the initial induction step for j=1. Since by (1) and (2) Atz
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vectors of velues of the:

common variables x before J i &

execution ot an instruction &) 1 2

vectors of values of the %% %

data stricture variables y 3’1 m Yo m b
vectors of values of the % o
common variables x after 0 1 j=1

execution o1 an instruction
Figure 3. A computation or EJ,

is an invariant during the computation or T the validity or the for-
mula (4) allows to carry out the induction step from j to j+1. []

Theorem 2, If the formulas (1)-{4) of Theorem 1 and the formula
(5) /\ Alzin IKitrue:;'o Mitrue)

18 i< n
are valid in 13 then J=QA, ,I) is a totally correct implementation
over T of the data siructure type 3{ .

Proor. It is sufficient to observe that the validity orf (5) together
with the validity of the remaining formulas allows to infer from the
termination or the computation of a j{ -program & the termimation ot

the corresponding A -program T . []

In some situations when all the instructions of J{ and M, have
the stop property and no restrictions on valuea ot concrete data struc-—
ture variables z are needea, the formulas in Theorems 1 and 2 simplify
their ferm very much.

Gorollary, If the following formulas are valid in jj
(1) Mo Ty=Kq¥ A Mgx=K.x ,

(2)1</\1§n (M; Iy=IK,y A M;x=IK x)
then J=(M , I) is a totally correct implementation over {l of the data
structure type jb .

Proof. It is sutficient to apply Theorem 2 for A - true and obser-

ve that the wvalidity ot (2) ensures. the validity of all the formulas

M, true ana IK,true for 1€ ig n. []

Example 4. Let us consider again the data structure type
DICTIONARY:{ init, insgert, delete, member} defined in Example 2 and
its implementation J=(J ,I) detined in Example: 3, By Corollary in order
to prover the total correctness ol this implementation it is suftiecient
to show the validity of the following formulas {the equalities concer—
ning veriables whose values do not change in the corresponding instruc-

tione are omitted):
[s:=f1s = (for j:=1 to N go T[j]:=false; s:={3:2[31) s,
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(1] :=true; S:={j:T[J} )8 = (s:=d3:7(3)} 5 s:=8u{ 1)

(p[i] :=false; S:={j:T[3]})s= (s:=33:70 )} s 51=8-1 i._],)-s ,

[@:=T{i]] @ = (s:={5:7(3]} 5 @:=ieS)a .

The above formulas can be reduced equivalently by means of simple rul
for algorithmic formulas to the following ones:

g = ( for j:=1 to N _@T[j]::false){j:T[,ﬂB .

[T[i]::tme]{j‘:T[ﬂ} = {j:T[j]}u{i} n

[(i]:=false]{i=T(3]} = {i:703]} -3y

ofi] = @efs:m31%)

which are obviously valid. D

%, PARTIAL AND TOTAL CORRECTNESS OF PROGRAMS WITH DATA STRUCTURES

Let § and its extension Pb will be defined as previously. Let
J=(.,I) be an implementation of a data structure type j{,, where
ﬂ:{KO.K.I,...,}%} ig an mbstract data structure type over Jg and
JL:".MO'M‘I""'Mnk ig a concrete data structure type over . As pre-
viously assume that x is & vector of common variables, y is a vector
of abstract data structure variables (i.e. of '}[) end z is a vector ¢
concrete data structure variables (i.e. of M, ). Now we want to apply
the implementation J to transform "ghatract" programs over 'b’ into
"concrete" programse over W, + Let P be a program over :b’ in which we
distinguish instructions of the data structure type jﬂ. Let P* be a
program resulting from P by textual replacement of each occurrence of
the instruction Ki by the instruction Mi for 0\<~ i n. Let ol(x) ana ﬁ(
be two formulas in the language L ).

Theorem 3. If the following conditions hold:
(1) P’ ie & program in the language L(Y
(2) P is partielly correct (fotally correct) with respect to d(x) anc
bix);
(3) J is a partially correct (totally correct) implementation over j{
of the data structumre type ' b
then P* is partially correct (%otally correct) with respect to dh{x)
and fx(x}.

Proof. Let us consider computations of P and P" tor some-input dal
x=F satisfying of . Assume that the computation of P’ terminates. Frc
this computation of P’ we can extract a certain M -program =
NO'}‘HZ'“"}LM and its computation of the form presented in Figure 1. 1
the assumption (3) it follows that there existe a computation of the
corresponding 'j{ -program § , E =},{_ , of the form presented in Figume
such that for each i, 1§ ign+1, the vector of values I&(z=zi)(y) is
defined and equal to yj. Consider now the computation of P for input
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data x=X. Using the assumption (1) it can be easily proved by induction
on the length of computations that excluding stepe ingide instructions
of K and j{, the following three conditions are preserved in the cor-
responding steps of the computations of P and P°
(4} the vector of values of Iy is detfined in P* and equal to the vee-
tor of wvalues of y in P;
(5) the vector of values of x in P is equal to the vector of values of
x in P’
(6) the statements which are currently carriea out in P and P* are ei-
ther the same: or one is K; and the other one is b; for some 04 ig n.
It follows that the computation or P comes to the end point and the va-
riables x have the same values as the variables x at the end point in
P". By the assumption (2) the values of the variables x satisfy &.
We have thus proved Theorem 3 for the case of partial correciness.

The proof for the cage of total correctness is similar (the invaria-
nce of the same conditions (4),{(5) and (6) should also be proved).
Therefore we omit it here.

Example 5. Let usg come back to the program in Example 1. We shall
treat this program as an abstract one. It uses the Yollowing common
variables x=(k,l,e,f,c,d,q) and abstract data structure variables ¥=
(A,B,R). To be able to apply the methods presented in this paper we
mugt add to this program two assignment statements which initialize the
values of A and B, Thus we shall deal with the tollowing program:

P: begin ]
{ol:ky 1A 130414 [ ,a[u { &k For 1€ug 1 A NS e, 8 iy
begin Ri=init(k); A:=f; B:=f end;
for i:=1 to 1 do
begin
{invariant R is the set of equivalence classes of the least
equivalence reletion containing (c[u],d[u]) for 1€ ud i &
As:=find{e[1],R);
B:=find(d[i],R)s
:=union{4,B,R)
end;
:=Ffind(e,R}j;
B:=find(f,R);
g:=eqg(A,B)
{@: gG=1<=> the pair (e,f) belongs to the least equivalence rela-
tion on the set { #,2,...,k} containing the pairs {c[u],alu] )
for 1§ wg 1}
end
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It is easy to prove the ifotal correctness of P with respect to ol
and P by using the enclosed loop invariant. In P we distinguish seven
abstract instructiens:

KO: begin R:=init(k)s A:=@; B:=@ end,

Ky: A:=find(e[i],R),
Kyt B:=find{d[i],R),

K3: s=union(A,B,R),
K4: :=find(e,R),
K5: B:=find(f,R),
Kg: t=eq(4,B)

forming together a data structure type, call it find-union.

Now we shall present a certain implementation ot this data structur
type called a tree implementation (11 . An underlying algebra 1, will
consist of three basic types: Boolean values, integers and veciors of
integers. The set of operations of o will consist of all operations
uged in the concrete data structure type to be defined.

Each subset of the set {1,2,...,k§ will be represented as a tree.
The whole partition of the get 1,1,2,....k}- will be.represented as a
forest of treea, emch tree representing one get of the partition.

The vertices of this forest are integers 1,2,.4+,k. The edges of this
forest are given by the contents of an integer array T[1:k]. Namely
for each i, 1§ i$k the value P[i] is an integer such that o€ itk
and if for some 1£i,j% k, TEi]:j then the pair (i,j} forms an edge of
the forest under consideration. If T[i]:O then this means that the vex
tex i is the root of a tree. For example the contents of the array T:

"n 2 3 & 5 6 T B
] Trsfols][o]

determines the following forest

'

{arrows go from sons to fathers of vertices). The forest above reprent
the partition {{1,2,3,4,7},{5,6},{8}}. Each root of & tree represents
all vertices composing this tree. For example the root 1 represents

the set §1,2,3,4,7F .
Now we shall proceed to the definition of the concrete data struc-
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ture type PU-tree={ INIT?, FIND(c[i],a}, FIND(d[i],b), UNION, FIND(e,a),
PIND(f,b), EQ} with z=(a,b,T) as a vector of concrete data structure
variables. (Note that there are four distinct instructions whose names
begin with FIND. However they can be considered as digtinect calls of
the same procedure having two integer parameters u and v called by
name.) Let u and v be auxiliary integer variables. We define
INIT= begin
1=y
white ugk do (u,T[ul):=(u+1,0);
(a,b):=(0,0)
end
{INIT builds the forest composed of k one-element trees);
FIND(v,u)= begin
(u,v):=(v, 2[v] %
while v#0 do (u,v):={v,Tlv])
end
(PIND begine at a given vertex v and follows the path to the root of
the: £ree. Upon the completion u is the root of the tree);
UNION= if € a,b€{ 1 A afb then
if Plal-0A T ]=0 then T[al:=b
fif a and b represent roo%s ol distinect trees then UNION combines these
trees into one tree};
EQ=( q;::(a:b)] %

Now we shall proceed to the definition of the interpretation inst-
ruction I. Let for a nonnegative integer h and an integer p, 0< p< k,
the: notation Th[p:l means p it (h=0y p=0) or Th_1[T[:p1] otherwise.
Recall that the contents of the array T and integer i, 1% i k, deter-
mine a subset of the set -\'_152,...,1:} consisting of all verzices j,
1€ } £ k, from which the vertex i is reachable in the forest. Denote
this set by set(i,T) i.e. set(i,T)=fj:J h,0¢ hS kA Th(:j]=i}. It should
be evident that this set can be built by a program over the abstract
system. The interpretation instruction I can be delined ag tollows
I=[ A:=set(a,T); Bi=set(b,T); R:={ set(u,?):1§ ugk A 2fu] =0}

Thus we have completed the definition of the tree implementation of the
data structure type tind-uniom, J=(FU-tree,Il}.

Now: using Theorems 1 and 2 we shall show thet J§ is a partially end
totally correct implementation. To do this we shall consider consecu-
tive tormulas, whose validity is sufficient for pertial and total cor-
rectness. As an invariant Mz) we take an algorithmic formula stating
that the contents of the vector T represents & partition of the set
{_1,2,...,1(_15 . It should be clear thet such a formula can be conatructed
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if we are provided with classical quantifiers.

(1) Formula (1), namely INIT Alz) states that after initialization T
represents a partition or the set {1%2,...,k} .

(2) Formula {2) states that this property is preserved under any ins-
truction. The instructicns EQ and those prerixed with FIND do not chan-
ge the current forest. The instruction UNION adds new edge only if this
edge links two roots of distinct trees. Hence UNION preserves Az
(3) Formula (3) states that the initializations have the following pro-
perties: '

(1) they possess terminating computations;

(1i) on the completion the values of the common variables k,l,e,f,c,d,
i are the same in KO and INIT, respectively;

(iii) on the completion the values of abstract data structure variables
A,B,R and of concrete data structure variables a,b,T corresponds mutu-
ally according to the interpretation instruction I.

Phe conditions (i) and (ii) are obviously fulrfiled. The condition
(1ii) holds since after initializations R={{1@,{2},....,{k}& =
faet(u,T):14 ug kA Mu]=0§, A=Peset(0,T) and B=P=set(0,T).

(4) Formula (4) states that for each pair of corresponding ingtructions
for every values of common and concrete data structure variables, if T
represents a partition of the get {N,Z,...,k} and the concrete insgt-
ruction possespes a terminating computation then the following condi-
tions hold:

i) the interpretation instruction i possesses a terminating computa-
tion transforming given values of concrete data ptructure variables T,
a,b into corresponding values of abstract data structure variebles R,
A,B, respectively;

(ii) the absetract ingtruction possesses & terminating computation;
(iii) on the completion of both the instructions the values of common
variables are the same;

{(iv) on the completion of both the instructions the values of abstract
data structure variables R,A,B and of concrete data strQcture variables
T,a,b correspond mutually according to the interpretation instruction 1.

The conditions (i) and (ii) are easy to check, Consider now (iii)
and (iv) ftor each pair ot instructions, ’

Each particular call of FIND(v,u} computes the rcot w of the tree
that contains v. Thus set(u,T)=find(v,R) which equals either A or B.
FIND(¥,u) computes nothing more, 8o the conditions (iii) and (iv} hold.

Observe that the values & and b are roots ot diptinct trees ify
A=get(a,T) and B=set(b,T) are distinct nonempty sets or the partition R.
Hence if a and b are roots ot distinct trees then the new value of T

repreasents the partition:
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1§et(u,T):T[u]=OA ufa,bye {Eet(a,T)L;set(b,T)}:(R—iA,Bj)u iAqu

= union(4,B,R) which is the new value of R, It follows that UNION ma-
tisfies (iii) and {(iv).

Since A=set(a,T) and B=set(b,T) and the equality set(a,T)=set(b,T)
ig equivalent tc a=b, ER satisfies (iii) ana (iv).
(5) Pormula (5) states that it T represents a partition or {H,E,...,k}
and an abstract instruction has & terminating computation fror given
values of common variables and ifor values of abatract data structure
variables resulting from given values of concrete date structure va-
riables by applying of the interpretation instruction I, then the cor-
responding concrete instruction possesses also a terminating computa-
tion, Since the values e,f,cfi] and d[i] btelong to the set {N,2,...,@}
all FIND-instructions possess always terminating computations. EQ and
UNION evidently possess terminating computations.

By Theorem 1 J is partially correct and by Theorem 2 J is totally
correct. Hence by Theofem 3 the program resulting trom P by textual
replacement of abstract instructions by corresponding concrete inst-

ructions is totally corfﬁg%\ o the submitted tormulas of and E» [:j

6.EXPRESSIBILITY OF PARTIAL AND TOTAL CORRECTNESS OF AN IMPLEMENTATION
BY MEANS OF FORMULAS OF NONDETERMINISTIC ALGORITHMIC LOGIG

Let an algebra W and its extension dj be defined as previously.
Let us extend the language ot orfdinary algorithmic logic by the follo-
wing three nondeterministic constructs:

(1) for a vector of variables x, [ ?x] means the nondeterministic
agsignment %0 x ot values drewn from the appropriete basic types of Eﬁ
(2) for a sequence of statements PiaPsyeee, P, choice[ P1,P2....,PE]
means the nondeterministic choice of one of the instructions P1,P2,....
P_ ana the execution of it;

{3) for a tormula ™, [Jol has value 1 if' o yields 1 for all possible
nondeterministic assignments and choices in ™ , otherwise [ has wva-
lue O,

Let J=(}{,I) be an implementation over P of a data structure type?ﬂ
Where,fk={‘Ko,K1,...,Kn} is an abstract data structure type over 33 and
J{F{‘MO,M1,...,MHK- is a concrete data siructure type over o . AB pre-
viously, assume that x is a vector of common variables, y is a vector
of abstract data structure variables and z is a vector of concrete: data
structure variables, Let g be a Boolean variable which appear neither
in 3 nor in M, .

Theorem 4., J is partially correct iff the following formula is valid

in dﬂ:
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PC: Kyx=Mgx A K0y=MOIyAD(-| Pl 1) where
P= begin

L2l Mg [2q]:

while g do

begin

[2x] 5 [2q];
choice{M1,M2,....MA]
end; [?xl

end and

o= </i\( ) (1 true SIK x=M x A TK; =M Ty))

J is totally correct ift the following formula is valid in Yo

TC: K0x=MoxAK0y=MOIyAD(ﬂP(‘1P))) where P is defined above and

b S (/i'\‘{n (IK, true (TK;x=M;x A TK; y=M, Iy))

Proor. First observe that (Qirue = Qw ) is equivalent to =1 (G fo:
any deterministiec program Q. The next observations concern equivalent
formulations of the statements defining the notions of partial and tot:
correctness of implementations. It follows that:

(1) J is partially correct iff the formula K0x=MOx/\ Koy=M0Iy is valid
in 13 and for any J{-program H= po,p1....”um. for any terminating
computation of it which results in z-%, foxr each i, 1%ign, for any va-
lues x=X such that Mi terminates for X=X and z=%, the formula

IK;x=M X A IR, y=M; Iy ig patisfied by x=X and z=% .

{(2) J is totally correct itt the tformula K0x=M0x AKoy=MOIy is valid in

'y end for any M -program }LﬁHOJ*H""fLm' for any terminating computa

tion of it which results in z=%, for each i, 1%i%n, for any values x=X
such that K. terminates for x=X and y=Ik(z=E)(y)5 the formula
IKix=Mix/\ IK; y=M;Iy is satisfied by x=X and 2z=% .

(1) and (2) imply thaet PC and TC express the desired properties.
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Abstract

A generalization of Bimula’s prefixing of classes is presented,
The notion of one-level prefixing is first introduced by means of
the example of Simula 67; the semantics of a programming language
with prefixing at many levels is then discussed and analyzed,
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play update algorithm is proved, A new data structure for efficient
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1., Introduction

The prefixing of classes ig one of the most attractive and power-
ful mechanisms incorporsted into the programming language Simula 67
(cf [4]]. This tool allows a programmer to design a program in
a structural, sbestract way. To present briefly the main ideas of pre-
fixing we start with the notion of a class.

Let us congider the following scheme of class declaration:

¢lass A;
attributes aq,...,an;
11;...;Ip; inner; Ip+1""‘Ir
end Aj;

where Bqse.038y are attributes (variables or, perhaps, other synta-
ctic units like classes, procedures, functions etc.)and Iq,...,Ip,
Ip+1""'1r are instructions of the class A. With the help of an
object generator ( "new A") one can create an object of the class 4,
i,e. create a frame (activation record) in the memory for attributes
Byseesarly and execute the instruction list Iqi-'-!IvaP+1"'-vIr'
When control returns to the object where the expression "mew A" has
been execubed, the freme is not deallocated and a reference o that
frame is trensmitted as the velue of the expression "new A", Hence,
a reference to the object may be retained in a reference variable
(e.g,X:—new A, where X ig a peference variable qualified by the class
).

The attributes of objects are aceemsible from outside as well as
from inside the object. Remote acceasing (e.g.x.ai] allows one Ho uwse
the attributes a s..« 8, from outside. Internal access occurs wnile
executing the jnstructions of the object of A and any unit nested
within 1t or during calls of the class's procedure attributes.

Congider now declaration scheme of a class B:

9
4 class B

attributes b1,...,bm;
Jq;...;J ipner; Js+1"";Jt
and B;

gl
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Class B is prefixed by A, i.e, B has attributes aq,...,an,b1,...,
bm and the instruction list 11""’Ip’J1""’Js'Js+1""’Jt'Ip+1""’
I, and B is called a subclass of 4, One can create an object of class
B in a similar way as was done for 4, i.e. by Y:-pew B, Here Y may be
a reference variable qualified by class B as well as by class A {for
the general rules of this kind of assignment statement see [4]) .

The following class C is a subclass of the classes B and A:

B class C;
attributes CqsesesCpi
Kq;...;Ku; inner; Ku+,|;...;Kv
end C;

and it has the attributes a,l,...,an,b,,,...,bm,c,l,...,ck and the in-
struction list I1""’Ip’J1’""Js'K1""’Ku'Ku+1""'Kv'Js+1’""Jt'
Ip+1""'Ir' The sequence of classes A,B,C is called the prefix
sequence of the class C, Class C may in turn be used as & prefix of
some other class, and so forth, but no class can oceur in its own
prefix sequence. Hence prefixing has a tree structure,

Blocks may alsc be prefixed, For instance, a block:

A begin
attributes CqrensyCyi
K'i;"'iKu.

end

ls prefixed by the class A, i.e. it has the attributes BqsevepBly,
CqreresCy and the instruction 1list I1""’Ip'Kﬂ!""Ku’Ip+1""’Ir'

In Simula 67, perhaps because of the method chosen for the origi-
nal implementation, there is an important restriction on prefixing;
namely, & class may be used s a prefix only at the block level at
which 1t has been dsclared. Before we explain the reasens for this
restriction and possible ways of abolishing it, let us look at some
examples which illustrate the difficulties arising from this restri-
ctien,

Suppose we have a declaration of a class PQ which provides the
data structure of a priowrity gueue of integers with maximal capacity
defined by an input paramstr n:

class PQ{n); integer n;
begin
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integer procedure deletemin;

end deletemin;
procedure insert(x); integer Xi
end insert;
end PQ;
In the following program:i
begin
class PQ(n); integer n;
end PQj

begin integer nj
read(n};
PQ(n)begin
end
end
end

the declaration of PG is not at the same level as the prefixed block,
hence this conatruction is incorrect in Simula 67.

If the class PQ were translated separately and treated as being
declared in the block at level O, it would never be possible to use
this detsa structure as a prefix in other block except the outermost
one.

In Simila 67 this problem has been partially solved, because &y-
stem classes like SIMSET and SIMULATION mey be used at any level.
But the user is not able to extend the library of system classes,
which still forces him to rewrite the declarations at relevant block
levels.

Thisg situation becomes even mora cumbersome if we want to meke
use of-two data structures simultaneously and both of them are sub-
classes of one class. Congider for instance, the data&ﬂructures A
and B using lists as an auxiliary data system. Fence they ought to
be subclasses of a class 1L.IST. We have the following declarations:

class LISTj
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end LIST;

LIST class 4;
end A;

LIST class B;

end B;

and now we would like to open two prefixed blocks:

4 begin
B begin
end
end

Because of the restriction ome must redeclare classes B and LIST at
the level where B is used as prefix, Thus, redundancy is unavoidable.

Observe that with the possibility of separate translation and allo-
wing prefixing at many levels we can develop software ia a structural
way. Any system or wser class may be easily extended by the user and
attached to the catelog of system ¢lagses without the necessity of re-
compiling already compiled units and without the redundancy of the
program text, Moreover, as we showed before, the user is eble to make
use of arbitrary data structures simultaneously by weans of a prefi-
¥ing mechanism ingtead of remote accessing (what speeds-up run-time
of a program and clarifies its source code).

To conclude, we emphasize that prefixing at many levels is not me-
raly a sophisticated technical problem in progremming languages, butb
an esgential step forward in developing an effective software metho—
dology.

The structure of the peper is the followlng. In section 2 we give
an Informal insight, illustrated by examples, into some important se—
mantic questions concerning many-level prefixing, Section 3 contains
definitions and facts concerning the block structured programming lan-—
guages, which are well knmown but necessary. Section 4 contains the
formal definition of access to attributes in one-level prefixing
(Simula 6?). In section 5 we prove that the proposed semantics of the
rules for many-level prefixing is correct. Section 6 gives a descri-
ption of addressing algorithms for many-level prefixing. In particu-
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lar, a generalized display mechanism is iantroduced, a mecharism which
realizes an efficient access to attributes. In section 7 we discuss
the various strategies of storage management and their impact on the
semantics of the proposed consbtruct.

2, Many-level prefixing (informal presentatiunl

The prefixing in Simula-67 1is subject to an important restriction:
a clags may be used as a prefix only st the syntactic level of its
declavation. Hereafter we shall call this prefixing "at one level”,

In this paper we consider a Simula-like language, in which there
is no such restriction and "many-level" prefixing is possible il.e.
a class may be used as a prefix whenever its declaration is visible.
To speak about such a language we must be able first to determine its
gemantics. One might think that prefixing gt many levels® is a tri-
viel generalization of prefizing "at one level", but this is not the
case. ‘

The semantics of such a language is not obvious: in particular the
rules defining access to object ettributes cannct be deduced from the

analogous Simula rules,
Consider the followlng program scheme (we foliow Simula syntax):

L1: begin
class A; begin real Xx;

\

end
12: A begin r
class Bi D

@ |

3
al yi

HI=TH

@
=
e

new Bj
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L3: A begin real y;
B cless C; begin

.

Fi=x;

end C;

end;

This program has the following bleck structure: the class 4 is decla-~
red in the outermost bleck of the Program. It prefixes two blocks
(one contained in the other] labelled L2 and L3, respectively. Note
that the use of the same prefix for two blocks - ome nested in the
other - is not allowed in Simule-67.

The first prefixed block contains the declaration of a claas B,
while the second containg the declaration of a class C prefixed by B.
Let us consider the structure of objects created during the exe-
cution of the program, Every object of a prefixed class or block cone

tains all attributes belonging to classes from their prefix sequen-
ces, In the above program the first object is created upon entry to
the block labelled L. Denote this cbject by pl. The second, denoted
by p2, is created upon entry to the block labelled L2, This object
contains two local real variables: x and y. The execution of the sta—
tement new B yields e thira object {denoted by p3) corresponding to
the class B, As indicated in the Drograr scheme, variables x and ¥
occur in the statements of B. Both variables denote attributes of the
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object p2.

Upon entry to the block L% a new object p4 containing two varia—,
bles x and y is ereated. The exscution of the statement new C yields
a new object p5 (see Fig,1) of the claess C.

|
class 4

P -

real X
p2 real ¥ & ———-

class B p3 [object of B)
A

l —

real X
4 real ¥
class B Eadal

B class C jel) (object of C)

Fig.1.

According to the definition of prefilxing the instruction list of C
contains the instruction list of B. Therefore we must determine for
esch occurrence of the variables X and y in the instruction list of C
the object from which the appropriaste attribute is taken.

Consider first the statement y:=x in the body of C of the object
p5. Note that none of the occurvences of the variables x,y 18 local
in ¢, The objsct p5 belougs to class C and the nearest block conta-
ining the attributes X,¥ and the declaration of ¢ is the block L3,
Hence, both variables denote attributes of the object p4, which re-
presents the block L3. v

There are, however, different ways of defining the semantics of
the aﬁatemant x:=y from the elass B of the object pS5. The semantics
of the stetement can be based on a purely textual concatenation of
the bodies of classes, &s in g8imula-67. We treat the declaration of
class ¢ as if it vere concatenated with class B and declared in the
block L3, Therefore both variables denote attributes of the object ph4.

The semantics of the statement can be also defined in the following
way! the synbactic unilt to which the veriable x is related is the
class A, aince A is the class in which x is declared; the syntactic
unit to which the variable ¥ is related is block L2. During the exe-
cution of statements in the object p5 the seqguence of objects stati-
cally enclosing p5 is the following: p4,»3,p2,p1. In this sequence
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p4 is the first object having attributes of the class A. Hence the va-
riable x denotes an attribute of p4, The first object representing
block 12 is the object p2, therefore the variable ¥ denotes an attri-
bute of p2.

From the above example it follows that there are some alternative
ways of defining the semantics of assignment statement x:=y executed
in p5.

In this paper we chose the one described above as the second, and
we present its precise and formal definition in Section 5.

Why is this way of defining the semantics preferable?

There are several reasons for this choice, The most important is that
we are able to define it in a precise and formal way and we are able
to implement it efficiently {cf Section 6).

In the semantics based on a purely textual concatenation we see no
way of addressing attributes which would depend only on the place of
variable declaration, In particular we are not able to assign a rela—
tive displacement (offset) to an identifier occurring in a class sta-
tement, Note that esn identifier may relate to attributes with diffe-
rent relative displacements depending on the place where a class is
uged, Compare with the example: in the statement x:=y of B the varia-—
Dle y relates to an attribute of p2 or p4 and these attributes may
have different relabtive displacements. To illustrate the chosen seman-
tics let us consider the program scheme structurally analogous to the
example of Section 1.

begin
class LIST;
begin
rof (+..)head;
procedure into{...);... head:=,,.; end;

end LIST;
LIST class QUEUE;

begin
procedure intoqueus; ... into(...) vesd sse endj

nd QUEUE;



LIST clags DECEj;
begin
procedure intodeck; ... into(...) vasi ass end;

end DECK;
I1: QUEUE begin
12: DECE begin
51: intoqueue;
82: intodeck;
end;
end;

end

The sbove program contains declarations of classes: LIST, QUEUE,
DECE, The class LIST describes the general structure of lists and
contains the declaration of the variable "head" and the procedure
"inte", where that variable is used.

The ¢lasses QUEUE and DECK use the structure of LIST to describe
the structures of queues and decks. In partlculer, they oall the pro-
cedure Minto" declared in LIST, and they use the varlable "head" as
its local attribute.

If we want to use both classes: QUEUE and DECE in a program, we
mey need two blocks prefixed by QUEUE and DECK, respectively.
Moreover we wish the procedure "intp" called in the body of
"intoqueue" to be taken from the object representing the block pre-—
fixed by QUEUE; similarly, this procedure when celled in the body of
wintodeck” is to be taken from the object representing the block pre-
fixed by DECE. Otherwise they should use the same attribute "head",
which might destroy completely the proper execution of the program.

Denote the objact created upon entry to the outermost block by pi.
Objects created upon entries to blocks 11 and 12 will be dencted by
p2 and p3, respectively.

The call of the procedure "intogqueue” (statement 81) ¥ields a new
object denoted by p4. The procedure "intogqueue' is an attribute of
p2, so that the sequence of objects which statically enclose p4 is
as follows: p4, p2, pl. The procedure "intogueue™ calls in turn the
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procedure "into'", which is declared in the class LIST: The first ob-
ject in the sequence p#, p2, pl which contains attributes of LIST is
p2, thus in our semantics "into" is an attribute of p2 and "head"
will be taken from p2. Analogous reasening shows that the procedure
"into" when called in the body of "intodeck" is an attribute of p3.

Thus the discussion shows that such informally presented semantics
suifts our purposes. In the subseguent sections the precise definition
of this semantics end its implementation will be given.

3. Syntactic environment in programming languages without prefixing
Static containers

Consider first the case of a programming language with block structu-—
re and without prefixing. By a syntactic unit in such a language we
shall mean a block or a procedure. Arbitrary syntactic units will be
denoted by U, V, W with indices or dashes, if necessary,

From the point of view of its block structure, any program may be
treated as & tree T. The root of this tree R(T} is the outermost
block and for U,VeT,U is the father of V iff V is declared in U (in
definition blocks are treated as declarations in units where they
appear). For the sake of simplicity of notation we shall write V decl
U when V is declared in U (or alternatively, when U is the father of
V in T),

Let decl® denote the transitive closure of the relation decl and
let decl™ denote the transitive and reflexive closure of decl. So we
have, in particular, U dect® U and U deec1® R(T) for any U, :

The level of a node in a tree T is introduced as usual, i.e,
1evel(R(T)) =1 ana 1evel(U) = level(V)+1 if V deci U,

Any variable and any syntactic unit except a block has a name,
called an identifier, introduced at the moment of its declaration,
The identifier is then used to represent the variable or the unit in
a program, The question of distinction between identifiers and syn-
tactic entities (variables and syntactic units) is essential, beca-
use the same identifier may be introduced by different declarations
in the program text,

Let id denote an arbitrary identifier., We consider now an occur-
rence of an identifier id in a stetement of & program, Since a decla-
ration associales an identifier with a syntactic entity, for the oc-
currence of 14 one must determine s unit U such that a syntactic en-
tity named id is declared in U, For the semantics of a program to be



56

unambiguous, the correspondence befween occurrences of ldentifiers
and syntactic entities should be unigue, i,e. only one syntactic en—
tity may be associated with the given occurrence of an identifier id.
Let us assume that id occurs ia a unit V, i.e. V is the innermost
unit containing the considered occurrence of id. In the following de-
finition we make precise what is meant by scope of declarations or
visibility rules.

Definition %.71.
By a static container of the otcurrence of an identifier id in a unit

¥, denoted by SC(id,V), we mean a syntactic unit U such that

(a) id is declared in U,

(b) Vv decl® U,

{¢) there is no unit U’ such that V decl® U’ and U* decl™ U and id
is declared in U’ (i.e. U is the innermost unit enclosing V such
that id is declared in U),

If SC(id,V) does not exist, i.e. if there is no U such that {a)
and (b) hold then of course the program is incorrect. Otherwise we -
say that the occurrence of id is local in V if V:SC(id,V), and non-—
~local in V if V#SC(i&,v).

Dynamic containers

During a program's execubtion we can deal at the same time with
many objects of the same syntactic unit, hence = computation of any
ingtruction in an object requires identification and access to all
the syntactic entities that it uses. In 4lgol-60C instances of blocks
and procedures may be treated as the examples of objects,( in Simu-
la-67 this is sugmented with the objects of classes). The collection
of objects of a svotactic unit U will be denoted by |U[ + The obje—~
cts themselves will be denoted by small latin letters p,q,r with in-
dices, if neceasary.

Consider an object pe 'U . If the occurrence of an identifiler 14
ig 1local in a unit U, then the syntactic entity identified by 1d is
situated within the object p., Hence there 1s no problem either with
identificetion or with access to this syntactic entity., In general,
however, for any id such that SC(id,U) exigts, we must determine a
unique object q such that qe [5C(ia,U)| . Then during the execution
of the inmstruction list of U in the object p, the syntacvic entity
jdentified by id will be taken from g. Such an object g will be cal-
led a dynamic container of 1d with respect to p, and will be denoted
by DG(id,p). Dynamic containers are unequivecally determined by means
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of static links,

Upon a unit U is entered an object of this unit is allocated and
initialized., It contains some system pointers in addition to declared
attributea, for example the dynamic link (DL) which points to the cal-
ling object and the static link (SL) pointing to the object which is
its syntactic father. We shall write p.8L=q when SL link of the obje-
ct p points to the object q. [ If p.SL is not defined, then we shall
write p.$L=gggg.)

An object q is called the syniactic father of an object P, Since
g must be the object of a unit V where U is declared, l.e. if p.5L=q,
pe |U] , qev], then U geca v.

4 sequence Py evesPy of objects is called the SL chain of the ob-
ject 2 if Pas Sl=none and Py SL:pi-1 for izk,...,2. The SL chain
of an object p will be denoted by SL(p).

The SL chains define completely and uniguely syntactic environ-
ment of objects. This follows from the well-known results quoted
below:

Lemma 3.1,

(a}If SL{p£]= Pyresespq and p;e |0y for i=k,...,1, then the sequ-
ence Up,...,U; is & path from U, to R(T) in the tree T,

(b)zet SL(py)= pyserssp, and pke'VI . If 8C(id,V) exists, then
there is 2 unigque i, 7€ i<k, such thet p, e[sc(id,v) . .

Lemme 3.1 (b) shows that the SL chain of an object defines comple—
tely and uniquely its syntactic environment, A1l syntactic entities
which can be used in V are uniquely situated in SL(pk). Consequently
the dynamic container DC(id,pk) of the occurrence of id with respect
to the object py is defined as a unioue object p; belonging to sL{p,)
such that p; € ISC(id,V)'.

The way 8L links are defined during a program’s execution induces
the semantics of identifiers, The following algorithm determines
exactly what should be done with SIL links in order to obtain the
most natural semantics (cf [?] ).

Algorithm 2.1.
We can assume the only one object of the outermost block R(T) may be

entered and, of course, for that object SL= pone., Consider now the
call of a unit U in an object rk:elvl. If id identifies U, then acco-
rding to the definition 3.7 U is declared in SC(id,V). The syntactic
father of p €|U| must be the object of the unit 8C(1a,V), i.e. the
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unit where U is declared., Let SL(r,) = ryy.se,2q. By Lemma 3.1 (v)
there is a unique i, 1€ i k, such that r; €|SC(id,V)|. Then define
D.SL=r,, i.e. xy becomes the syntactic father of p. fef Fig.2).

R (T}
A
H
1
|
Iy sc(ia,v) L s > denotes SL link
B — > denotes DL link
l 5,
| N
| Y
Ty v U D

Fig,2.

4, Prefixing at one level

Prefix structure of a program
In this section we shall consider a programming language with block

structure and one-=level prefixing,i.%. exactly the case of Simula 6%.
From the point of view of its prefix siructure, any program may be
treated as a forest of prefix trees {fi} . Each prefix structure of
a program 1s a tree Pi where for U,V ePi y U is the father of V iff
U is the prefix of V and the root of Py is a unigque element of Py
without any prefix. Simllarly to the relation decl we introduce the
relation pref,i.e. U pref V iff U is the prefix of V.
By a prefix sequence of a unit U (denoted by prefseq(Uﬁ)we mean
a sequence V,,... V) of units such that V) = U, V, has no prefix and
vy pref Vi 4 For 1 = “1yess,k=1. The example of the block and the pre~
fix structures of a program are illustrated in Figure 3. :



A: begin ref D Zj
class B; begin ref(c)x1,x2;
class C; begin
elass I; begin
end I;
end G;
end B;
B ¢lass D; begin
C clasg B; begin ref(I)¥1;
¥1:- new I;
end E;
¢ class F; begin ref (I)¥2;

T2:- new I;
end F;
X1:- new B; X2:-
end D3
Zi- new Dj;
end Aj

scheme of a block structure

2
& D

Tree P1 Tree P2

59

tree T
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~—— 3 denotes SL link
c ¢
E | pye |5 | P | pg€ |F[——> denotes DL 1link

F.3
[} 1
Paelll 56 €|

Graphs of SL' and DL's
Figs 3.

Let pref+ denote the transitive closure of pref and let pref* de-—
nobe the transitive and reflexive closure of pref. Ther, in particu-
ler, U pref‘ U for any U, U pref* V for any U € prefseq[v) etc,

Note now that if U pref* V¥, then an attribute of U is an attribute
of ¥ as well, In particular, a syntactic unit W may be an attribute
of U and, hence, it will be an abttribute of V. Let us denote this ex-
tension of the relation deel by atbtr,i.e. W attr V iff there is a
unlt U such that W decl U and U pref‘ V. While the relation decl &al-
woys defines a tree, the relation attr meed not define a tree,
Denote by G the graph determined by the relation attr. Since the re-
lation attr is the extension of decl, thk tree T is & subgraph of the
graph G.

In Figure 3 the syntactic unit C is the attribute of the syntactilc
unit D, because C decl B and B pref D. Thus C being the attribute of
D may be used as & prefix of the syntactic units E and F. Finally,

I decl C and C pref E implies I attr E, similarly I decl C and C pred
F implies I attr F.

One-level prefixing is characterized by the folleowing restriction:
(5.1) I U pref V, then level(U) = level(V}.

(In words, U may prefix V only if both have the same level in the
tree T.) This restriction has meny interesting consequences which
meke the implementation problem almost trivial, First, as an immedia-
te consequence of (4.1} we obtain the following lemma.
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Lemma 4.7.

{a) If U attr v, then level(U) = level(V) + 1,

(b) G is a directed acyclic graph with one sink R(T),

{¢) Every path in G from U to R(T} has length level (). []

The definition of a static container for the occurrence of an
identifier in & unit is generalized in the following way:
Definition 4.1,

By a static container of the occurrence of an identifier id in a
unit V denoted SC(i@,V) we mean a syntactic unit U such that id is
declared in U and there is a syntactic unit W such that
(a] U pref* W,

(b) v deel™ w,

{c) there is no unit W' such that V decl® W’ and W* decl®™ W and id
is the attribute of W' ,

{a}l +there is no unit W' such that U pref® W’ and W* pref™ W and id
is declared in W' .

In block structured languages without prefixing we search for the
innermost unit W such that id is declared in W and W contains a unit
V with the occurrence of id. However, according to the definition of
prefixing, the attributes of a prefixing unit are contailned in the
set of attributes of prefixed unit, This implies that the relatien
pref is stronger than the relation decl in the following sense: in
the process of searching for a static container, we search for it
first in the prefix seguence and then in the lower levels of the
block structure of a program. Conditions (a)-{c} of definition 4.1
require that we search for the innermost unit W such that id is the
attribute of W (U is a unit where the searched syntactic entily is
declared). Condition (d) says that U is the nearest prefix of W sati-
sfylng the conditions {a)—(c).

We now present an algorithm determining the static container
sc (ia,v).
Alporithm 4,1.
Etart from V. If there is no declaration of id, look for 1t in pref-
séq(V) reading from right to left. If id is not an attribute of V,
then take V' such that V decl V! and repeat the above process for V?,
If 14 is not an attribute of V*, then take V'’ such that V* decl V*?
and s0 on. When the algorithm terminates on the outermost block wit-
hout finding the required declaration, the static container SC(id,V)
does not exist and & program is incorrect. []
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Look at Figure 3. We nave 8C{I,®) = ¢ = sc(1,¥}, sc(y1,E) = E,
so{y2,®) = 7, scl{x1,0} = sc(x2,0) = B and s¢(p,4) = sC(2,4) = 4.

According to the definition of prefixing, the attributes coming
from a prefix sequence are the attribubtes of a prefixed unit, hence,
all of them are local in that unit. Thus we say that the occurrence
of an identifier id is local in U if SC(id,U) pref* U, otherwise the
occurrence of id is non-local in U,

In the example on Figure 3 all occurrences of ldentifiers are
local.

Dynamlic containers

Let prefseq{Uk) 5 U,],...,Uk and let us consider an object p EIUkI.
This object consists of layers corresponding to the syntactic units
Uq,...,Uk. (In Figure 3 pq has a layer A, p, has layers B,D, P has
layexrs C,B, Ps has layers C,F, and p,,pg have a layer I.)

Now consider the execution of the instruction lists of units
U,],...,Uk. If an identifier id occurs in a unit Ui,1Si <k, then for
any object p E,Uk we must determine a unigue object g such that
q_e|V|‘and SC(id,Ui) pref™ ., Tt means that the object q has a layer
which corresponds to the static container for the occurrence of id i
a uwnit U,. The object g will be called a dynamic container of the
occurrence of id in & unit U, with respect to the object p, and will
be denoted by D¢(id,U;,p). Dynamic containers will be uniquely deter-
mined by means of static links, as before. However, the definition o
a syntactic father is more gemeral., In fact, if p.SL = q, D e|U|,

q £|V|, then U need not be declared in V. g

Look at Figure 3. The object Ds is created by the insbtruction
Z:-new D, its syntactic father is, of course, the object P In this
case D decl A, The object p3 is created by the instruction X1:- new I
and its syntactic father is p,. In this case E decl D. The object py,
is created by the instruction Y1:- new I and its syntactic father is
evidently py. In this case I is not declared in E but in C. Hence th
simple rule of Algol 60 does not work, The syntactic father of Dy 1is
the object p, such that I is the attribute of E (not necessarily dec.
lared in E). Similarly, the syntactic father of Ps is Py and F decl
D, finally the syntactic father of pg is Pcs and I sttr F.

The example shows the necessity for a more general definition of
syntactic father of an object: if pe|U| and p.SL = q, then g should
be an objsct of a unit V such that U attr V (previously U decl V).
The definition of SL chain remains the seme as in Bection 3. Before
we present an algorithm of setting 5L linke, we prove & lemma ana-
logous to Lemma 3.7 which is of basic importance for the whole con-
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Lemma 4.2,

() I SL{p,) = Pys...,p; and p; e|Ui] for i=k,...,1, then the sequ-
ence Up,...,U; 1is & path from Uy to R(?) in the graph G,

(o) Let SL(p, ) = Dyse+sPq @04 Dy € |Uy | for ick,...,7. If 5C{id,V)
exists and V pref® Uk' then there is a unigque 1, 1<igk, such
that SC(id,V)pret¥ vU,.

Proof

By the definition of the syntactic fathera, if P eri+1l and

Py e]UiI, then U, , attr U;, for i = k-T1,...,1. Hence Uy,...,U, is

a path from Uy to R(T) in the graph G. Thus (a) is proved.

Now by Lemma 4,1 level(Ui):i for i=K,...,1. Assume that there are
two such integers, i, j, 1€i<Jigk, that ¢ (1a,vV)pret® U, and
8c{id,V)pref® U., By the restriction 4,1 level(SC (id,V)) leve1(u;)
and level(sc(id,v)) = 1eve1(Uj). Hence level(sC(1d4,v)) = i = j, which
is impossible.

The proof that such an i exlsts is given in Section 5 (Lemma 5.3).
where the more general case is considered; namely the case of prefi-
xing at meny levels. For this reason we do not repeat this proof in
e much simpler case and leave it to the next section,

Now we are able to present an slgorithm which is an immediate genera-
lization of the algorithm 3.1.
Mgorithm 4.2,
We assume the only ome object of the outermost block R(T) may be en-
tered, and for that object SL =~ none.

Consider now an object p EIU’ created in an object LS Vk .
Let prefseq(Vy ) = V,,...,Vy, and let the instruction which creates
P oceur ir a unit Vi, 1Ligk. If id ldentifies U, then according to
the definition 4.1 U is declared in SC(id,Vi). The syntactic father
of p should be an object c¢ontaining SC{id,VQ as a layer,
Let SL{xr)) = TosesesTq. By Lemma 4.2{b) there is a unique j, 1< jgm,
such that SC(id,Vi) is the layer of r,. Then define p.SL = Ty

L]

4
-Figure 4 shows this general situation. When the statement of a
unit Vi with the occurrence of id is being executed, in the SL chain
of rn there is a unigue object r. which mey be the syntactic father

J
of p.
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5. Syntactic enviropment in g programming language with prefixing at

many levels,

o Existence of a syntactic environment

In this section we shall snalyze the situation when Simule'’s res-
:E triction (4.1) is left out. A programming languags with bleock struc-
: ture and prefixing at many levels, i.e. when (4.1) is not binding,

? possesses Some amazing propertiles. Firat we are not able to prove

& lemma snalogous to Lemma 4.2, where the exisbtence and the uniqu~
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ness of the syntactic environment for prefixing at one-level is pro-
ved, In partieculer, the analogon of Lemma 4.2[1)) does not hold.
However, we can show that for a static container SC(id,V} and

V prer* Uy there is at least one i, 1g i<k such that SC{id,V)pres®
U, where SL(pk\zpk,...,pq, U; . Lemma 4,2{b) shows the uniguness
of sach an i, and thus there is nc problem with definition of
Simula’s semantics, Here the situation is not so clear.

The proof of the existence of such an i, 1£ 1<k, is given in the
following three lemmas, Lemma 5,7 is auxiliary and justifies the im—
plication whick is used later in the proof of Lemma 5.2. Lemma 5,2
is erueial for the whole proof. It shows that graph G satisfies the
.desired property. The proof of this lemma is carried out by double
induetion, with respect to the length of a path Uk,...,U,1 in G, and
with respect o the length of the prefix sequence of Uk'— At last
Lemma 5.3 is a simple corollary of the Lemma 5.2,

Lemma 5.7.

Let the sequence Uk,...,U,1 be a path 1r the graph G from Uk to R(T).
Assumption If V pret™® Uy and V decl W, then there exists j, 1< i<k,
such that W pref* UJ-.

Conclusion If V pref® Uk and V decl™* W, then there exists t,

1< tgk, such that W pref™ U,

Proof.

First note that the above implication has the following meaning.
Assumption says that for any V from prefseq(Uk) and declared in W
there is U; on the path Up_;,...,U, such that W pref*uj {ef Fig.5.).
Conclusion generalizes this property, Namely, for any V from
prefseq(Uk) and for any W such that V decl®™ W there is U, on the
path Up,...,U; such that W pref® Uy, (cf Fig.s).

We shall prove the conclusion by induction on the length of path
from V o W in the tree T. If V=W and V p:c'efa'E Uk’ then W pref™ Uk'
Hence t=k in this case,

Now congider units V end W such that V decl W, Hence there
exists a unit W' such that V decl W' and W' deci® W, If V prer™ Uy
and V decl W', then it follows from the assumption that there is
1& J <k such that W? pref‘ U.. Now W' prefr® Uj and W' dec1¥ W, where
the length of the path from W? to W is less than the length of the
path from V to W. Hence by inductive assumption there exists 1<t

such that W pref¥® U, . B
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Lemma 5.2,

Let the sequence Up,...,U,; be & path in the graph G from U, to R(T).
It v Pref* U and ¥V decl™ W, then there exists b: 1<igk such that
w pref* Us.

Proof.

First note that the lemms is simply the conclusion of the previous
one. However, it should be proved without the assumption. Since
Lemma 5.1 has just been proved, it is sufficient to prove its assum-
ption, i.e.

(5.1) if V¥ decl W and ¥V pref’ Uy, then there is j, 1€ J<k such that
w pref' Uj'

The proof 1s carried out by induction om the length of the sequ~
ence Up,...,U;. For k=1,U.=R(T}. Thus V pres™ R(r) iff v=R(T) and
V decl W for no W.

Assume now that {5.1) holds for all sequences of length less than
k, k2. For a sequence TpreonsUy let V pref™ U, and V decl W,

We shall now use induction on the length of the prefix sequence of
the unit U, to prove that ¥ pref¥ Uj for some j<k.
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The beginning is simple since for V=Uk we have Uk decl W and con-
sequently W pref‘ Uk-1 (by the definition of the relation attr).
Agsume that (5.1} holds for all prefix sequences of the length less
than h, Let V pref* Uk end suppose thai the length of the prefix se-
quence from V to U, is h>2, For some units V’, W' we have V pref V*
pref® Uk and V' decl W'. The length of the prefix sequence from V'’ to
Uy is b=1. We infer from the inductive sasumption that W? pref® Uj
: for some j< k., Now, since V pref V*® and V' decl. W', the syntactic con~
: tainer SC(id,W‘) exists, where id identifies V (V occurs in W’).

By Definition 4.1 and because V decl W, there is a unit W'’ such that
W pref™ W'’ and W' decl® W'r, The length of the gsequence Uj,...,Uq is
less than k and W' prer™ Hj s0, from the inductive assumption on k,
we infer that for a unit W such that W’» decl W there is m<j and

W pre£® U .

By Lemma 5.1 if W* decl® W end w? pref™ U;.| there is Tgmgj such
that W prefr® U . Since W’ decl®™ W' and W' prefr® Uy teking W as w*’,
we obtain W?? pref* Um' Finally, W pref* W' and W*? pref' Um’ hence
w pref* Um where 1< m<k. Thus we have proved (5.1) andé the lemma.
Lemma 5,3, =

Let SL{py)=pyses.,pq 2nd p, € [Ui| for i=1,..,,k. If SC(id,V) exists
and V pref* Uy, then there is i, 1<ig k such that SC(id,V) pres™ Uy

Proof.

From the definition of the SL chain, Uk""'U1 is a path in the
graph G. Since SC(id,V) exlsts, there is a unit W such that V decl™w
and 8¢ (14,v) pret® W. We have V pret® U, and V decl™ W, and by
Lemma 5.2 there is i, 1<ig k such that W pref™ U,, But G (id,V)
pret™ W and W pref® U, implies 5C(ia,V) pref® U,.

Dynemic containers

During the executlon of the instruction list of en object p EIUW.
we must be able to indicate the dynamic conteiner DC(id,V,p) for any
1dentifisr id occurring in any unit V belonging to prefseq(U).

To achisve this goal we wish to use the BL chain of the object p, as
in Bimula 67. Unfortunately, in the case of many-level prefixing the
8L shain does not uniquely define the syntactic environment of Ps
since the same unit may occur more than once as a layer in SL(p].
(Lemma 5.3 quarantees a dynamic container belongs to SL chain but not
exachly once).

This new complication ig well illustrated orn Figure 4, The SL
chain of the object p5 elc] contains the layer A twice, in the object

Dy and p,.
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Hence it is necessary to introduce a uniform rule for determining
dynemic containers. It seems that there are only two concurrent
choices. We may take the nearest or the farthest from the given ob-
ject on its SL chain, However, fthe second choice iz lmpossible beca-
tse it contradicts the stendart understanding of locality. Consider
an ocourrsnce of id local in V and an object p € |Uf containing a
layer corresponding to a syntactic unit V. Assume the chain SL(p)
contains another object g with a layer corresponding to V. Then, of
course, & dynamic container DC(id,V,p) ghould be the objeect p, not
the object g (for a concrete example see Section 2, where the progrem
with two data structures QUEUE and DECK is considered).

From the above discussion we can infer a new definition of a dy-
namic conbeiner as well as an algorithm which computes SD links.
Definition 5.1.

Let SL(r)=rm,...,r1 be the BL chain of an object r € vk| and let pre—
fseq(vk)=V1,...,Vk. Consider an occurrence of an ldentifier id in

a unit Vi. We shall say that Ty ig the dynamic container for the
occurrence of id in a unit Vi with respect to the object r if r, is
the nesrest object to r in SL(r) such that sc(ia,vi} is a layer of r
Algorithm 5.1,

The start is the same as wsual, Consider an object p e|U| created in
an object r € Vk'. Let prefseq(vk)=v1,...,vk and let the instruction
which creates p occur in a unit Vi, 1€1i £k, If id isentifies U, then
according to the definition 4.1., U is declared in SG(id,Vi). Let
SL(I):Im,...,r1 be the SL chain of r. By lemma 5,3. there is J,1£jgm,
such that SC(id,Vi) is the layer of Tse Let j*® be the largest j se-
tisfying this condition i.e. rj, is the dynamic container of the
oceurrence of id in the unit Vi with respect to r, Then define

O

J

p.SL=rj,.

6. The addressing algorithm and ity correctness.

In this section we shell describe an addressing algorithm for
a language with meny-level prefixing, The correctness of this algo-
rithm will be proved.

Addressing in A)gol gnd Simula
Let us start with some remarks on an addressing algorithm for the

Algol-like language invented by E.Dijkstra ([6],[7]). Let id be
a name of & variable v occurring in U and let 5¢(14,U)=¥. Then the
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variable v is ldentified by a pair:
(1ever(v), offset(v})

where offset(v) is a relative displacement of v ir a memory frame,
Fote that both quentities level(V) and offset(v) may be computed at
compile time. The run-time address of v is evaluated by a simple
formula:

DISPLAY[ 1evel (V)] + offset(v)

where DISPLAY is a running system array updated during run-time,

When an object p €|U| is being executed, DISPLAY[i] for

i=level(U),...,1 must point to the members of the SL chain of p,
When an object p GIUI is being generated, it is sufficient to set

pIsPLAY [1evel (U]] :—p;

since for m'zlevel(U), DISPLAY{hﬂ must be well defiped. But when p is
reentered the next time (i.e. through DL or goto statement), the fol-
lowing DISPLAY update algorithm is used:

Xi-p;
for ki-level(U) step -1 until 1 do
begin
DISPLAY (k] 1- X; X:-X,SL;
end

For & lenguage with many-level prefixing we postulate that the addre-
ssing aigorithm is efficient as in the case described above.

However, from the discussion given below, it follows that the same
method of attributes identification as in Algol-60 (and Simula-67)
ls not possible.

Let U be an arbitrary unit with prefix sequence Uq-"'!Un' It is
gasv to observe that the prefix sequence has the following propexrty:
for every i, 1g£i<an, level(Ui}_g level (Ui+‘1)’ where level{Ui) ig de-
termined from the tree T, Due %o this property it is not possible to
assign one level to all attributes of a given object p since they mey
be declared in units of different syntactic levels., Hence the local
attributes of the object p should be asddressed relative to many ele-
ments of DISPLAY. ( Note that in Simula 67 the equality level (u;)=
=levelfUi+1} holds for ail Ui belonbing to the prefix sequence of U.
Thus, the addressing algorithm is exactly the same as in Algol 60).
Congider the following example:
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B1+thegin
class Aj... end A;
B2:begin
A class B;... end B;
new Bj;
end;

end

When the object r of class B (generated by new B )is executed, the SL
chain of r is described at Fig.6.

q
;
:

Pig.6,

&
The Algol-like rule, thab DISPLAY[B]:r and DISPLAI[E]:q, is not valid
becsuse the attributes of the object r declared in the unit A ought
to be addressed with respect to 1eVe1(A]=2.
Tn order to avoid these difficulties the apslgnment of numbers to
syntactic units is modified so that levels determined by the program
tree T must not be used.

Generalized DISPLAY

To every unit U of a given program we assign a unigue number, cal-
led a unit number nr{U), determined by eny eoumeretion of tree T.
To every id occurring in a unit U we assign a pair of numbers
or (8¢ (id,U)) and en offset, where the offset is evaluated taking into
account a1l attributes of prefseq(SC(id,U))n

A prefix number sequence pns(U) of a unit U is a sequence
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nr(Uq),....nr(Un), where Uq,...,Unzprefseq(U).

The vector DISPLAY is replaced by the vector GDIBPLAY, the length
of which is equal fto the number of vertices of T.

Now we present an algorithm which computes relevant items of
GDISPLAY every time an object p € |U| is entered. Let SL(p}=pm,...,p1;
then the GDISPLAY update algorithm has the form:

Algorithm 6,71,
for k:=1 gtep 1 until m do
update CD{p,):

The instruction update GD(pk) consiats of the assignment:

GDISPLAY [ n; ] ¢~ GDISPLAY [n, J:- ... :~ GDISPLAY [n dka-pk.

where Py E‘Ukl and the prefix number sequence of Uk ils pns(Uk\z
ShgyeeeyBy .

Observekihat for every object p eIUI the cost of update GD(p) is
congtant, depending only on the unit U prefix sequence length,
The correctness of the GDISPLAY update algorithm can be proved with
the help of the following lemma,

Lemma 6.7,

Lot SL(p):pm,...,pq, where p; eIUiI for i=m,...,1., If id is non-local
in V, V pref™® U, and py is a dynemic container for id ( pjznc(id,v,p)),
then 1d is non-locel in any Uk £or k=j+1,eee 0.

Proof follows immediately from the definition 5.1 of a dynsmic con-
tainer,

Theorem 641 (GOrrectness of the GDISPIAY update algorithm)

Let SL(p}=p;,...,p s where p; e[UiI for i=m,...,1, and assume that
th~ GDISPLAY update algorithm has been executed for an object Pe

If the occurrence of id is represented by a pair (n,offset ) and id
occurs in ¥ such that V pref® U, then GDISPLAY[n] =p; (m2iz1),
where pj=DC(id,V,p).

Proof:

. When id is local in Um’ then the dynamic conbtainer of id is equal
to p and n belongs to pns(Um). It follows from the algorithm that
GDISPLAY [n] =p_=p.

When id is non-local in ¥V, V prer® Um and pj=DCfid,V,p), then by
Lemma 6.7 for every k=j+i,...,m 1d is non-local in Uk' kence
nr(SG(id,Vﬂ =n deoes no¥ belong to pns(Uk). Since p,; is & dynamic

container of id, 1%t follows that SC(:f.ti,V)p_":ef“E Uj; thus n bslongs
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to pns(U.\. Therefore, after executing the update algorithm loop
upor ki=j"we have GDISPLAY ﬁﬂ =P and b¥ the Lemma 6.1 this walue
will not be changed for k=j+Ts... M. ]

This theorem implies the correctness of the run-time addressing
algorithm given by a formulas

GDISPLAY [n] + offset

where the pair (n,offset) represents an attribute in a program.
The followlng example illustrates the use of the GDISPLAY mecha-—
nism. Let us consider the extended scheme of the program given in the

previous example.

Bt [1]: begin
class A[Q]; begin real x[E,m];... end Aj
32[5]: begin real y[B,ﬁ];
4 class B[#]; begin real z[4,k|; ... end B;
new Bj
end;
end
In this program every unit has a unit number given in brackets and
every variable is identified by a pair of numbers: the first is a umnit
number of the static container of this variable and the second is a
displacement in a memory frame. Consider the execution of the state-
ment new B. A new object r of c¢lass B is createg, the SL chain of T
(see Fig.6 )consists of the objects ryq {the biock B2) and P (the
block 31). Before control passes to the object r we must execute the
GDISPLAY update algorithm. Fig.7 shows the contents of the vector
GDISPLAY after its execution.

2 T III:EII 1
]
3 | a 5
T
4 T &

Fig.7.
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Note that the attributes x and z of the object r are identified by
two different unit numbers, However, due to the GDISPLAY update algo-
rithm, sll the elements of the vector GDISFLAY corresponding to the
prefix number sequence c¢f the unit B refer to the object r, Thus, the
addressing formulas:

GDISFLAY [2] + m
and GDISFLAY [4] + k

compute the addresses of x and z respectively in the frame of the
object r,

7. Storage management

In this section we discuss briefly possible strategies of storage
management and their influence on the semantics of the langvwage with
many-level prefixing. We propese a new approach to the problem and
some principles of implementation.

Terminated objects accessibility

Consider first the problem of the accessibility of terminated obje-—
cts. By a terminated object we mean an object in which control has
passed through the final enpd.

Two different cases occur in Simula 67, A block (or a procedure)
object is not accessible after its termination while the termination
of a class object does not affect its accessibility, The property
that a block object becomes inaccessible after its termination re-
sults only from the static properties of the correct program and may
be statically checked,

Note ancther important property of Simula 67, The SL chain of the
object being executed contains no terminated objects. It follows
from the above properties that the activation record for a block

or a procedure may be deleted from a memoIry as soon as this object
is terminated.,

The situation is quite different when meny-level prefixing is
allowed. Consider the following examples

I4: begin ref (A)X;
class A;

end A;
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L2: begin integer Ji
A class B;
begin

procedurs Pj

end Bj
end B;
X:-new B;
end L2
XquaB,P; comment XguaB.P denotes instantansous qualification which
changes the qualification of Xi
end L3

After the execution of the assignment X:-new B there exist three
objects: p of bleck 11, g of block L2 and r of class B, the latter
pointed by X. Recall that this assignment is valid because X ig qua-
1ified by class A and 4 prefixes B.

Observe now the instruction XguaB.P after the termination of obje—
cts r and g. This instruction denctes & call of the procedure P.

The created object of the procedure would have in its SL chain two
terminated objects: g and r. Note that P may use the attribute J from
the terminated block object g. AS we 8e8, Simula’s access rules are
vlolated. Therefore the semantics of such & call must be determined.
(Is the call of procedure P legal or would it cause a runtvime error?)

Is the access to J of object q legal or would it cause a run-time
error? Two solutions are admissible, each implying & possible sto-
rage mansgement strategy (ef [2]).

Retention semantics
The first semantics 1s called "patention”, The object remains aeces—

gible as long as at least one user’s or systen polnter (e.g. 8L or
DL link )zefers to that object. The retention strategy of storage
allocation corresponds to the above semantics, This strategy may be
accomplished either by the use of reference counters or by garbage
collection.

Observe however, that within the retention semantics the concepts
of block snd procedure become trivieal. A procedure would be a kind
of a crippled class without a remote access mechenism. A block would
only be an gbbreviation of an snonymous class declaration and a gene-
ration st the same time. In this semantics the call of procedure P
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from the example is legal because the objects q and r mre accessible,
Daletion semantice

Follbwing the Simula principles we choose the other semantics, which
may be celled "deletion". It consists in the principle that a non-
=class object becomes inaccessible after its termination while a
class object remains accessible as long as at least one user’s or
system pointer refers to that object. We regard this semantics pro-
per for two reasona. First, it keeps the distinction between classes
and blocks or procedure, Second, it admits the deletion of terminated
non-class objects from a memory [but whether terminated non-class
objects are actually deallocated immediately after their termination
8till depends on the implementation).

Since we are aiming at the possibility of deallocating non-class
objects, we must provide the following property:

(?.1) The object being executed has no terminated non-class objects
in its SL chain,.

The implementation we propose makes uge of SL links defining the
8L chains for objects, These links are additional attributes of ob-
jects. We intend to treat system reference variables and user's
reference varlables uniformly. Hence, en SL link should become i1nac-
cessible after non-class object termination. (Observe alsc that when
an object contains in its 8L chain a terminated mon-class object, it
can not become an actlve object, because the display update algorithm
(Algorithm 6.1) would fail in searching through the SL chainr. In such
a coge a syntactic environment of the object would not be recovered
even if the object requiring the display updating does not refer to
inaccessible &ttrihutes).

Recall the statement XguaB.P from the example, The new created
instance of P has & terminated non-class object q in its SL chain,
The property (?.1) fails ir this case.

Referencing mechanism
The new method of refarencing must carry the infeormation about the

termination of non-class objects. Thus that methed should realize
the dictionary operations:insert, delete and member on the collection
of mll accessible objects.

In this paper we are not concerned with the strategy of allocating
new frames for objects. Therefore we may omit some details and assume
the existence of the functior newfreame (appetite) ¥lelding an address
of a new allocated frame of length appetite, Similarly we agsume

the existence of a procedurs free(X) which releases the frame
indicated b> an addreas X,
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The cperation insert corresponds to the creatlion of a new object
and should be understood as making the new object accessible. Insert
does not deal with memory allocation itself,

Operation delete corresponds to the termination of a non-class
object, and member yields information whether a reference points to
an mccessible object,

We will use an auxiliary data structure, an array H, containing
references to objects. Roughly speaking, objects will be addressed
indirectly through array H. It is obvious that the operation member
should be as efficient as possible, for it is the most freguently
used. (In our implementation the cost of member is really low: only
two machine instructions).

Array H occupies low addresses of c¢ore, from O to the position
pointed by a variable LASTITEM. fObjects may be allocated in high
addresses of core). Each item in H is represented by two words, the
physical address of an cbject and an integer called an object number,
The slgorithms presented below also use m procedure "intolist",

a function "deletefrom™ and a boolean function "empty", operating on
the auxiliary list of released items of H., Because of their obvious
meanings, details are omitted. Let the variable LIST be the head of
this list.

Now objects are referenced by the so-called virtual addresses defi-
ned as pairs (addres in H, object number). The object number will be
used for checking whether the object is accessible, while address in
H will be the indirect address of the object (if accessible).

Por s reference X denote the first and the second component of the
virtual address of X by Xadd and Xob. The method of referencing will
satlsfy the following properties: "
(7.2) If X refers to an accessible object, the HEXadd] contains the
physical address of the object,
(7.3) X refers to an accessible object 1Pf Xob=H[Xsda+1] (i.e. iff
object numbers are the same in the virtual address of X and the cor-
regponding item of H).

Hence, the algorithm for the member operation i3 as follows:

boolean procedursg member (Xadd,Xob,physical address);
neme physicel address; intemer Xadd,Xob,physical address;
begin

1f Yob=H|[Xadd+1] then

begin physical address::HEXadd]; member:=true
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end else member:=false
end member;

Consider now delete operation., Following property (7.5) it is
sufficient to change the object number in an item of H to guarantee
that the subsequent executions of a member concerning this item re-
turn value false, All items in R which previously pointed to some
objects, subsequently being made inaccessible, are linked together
into a list (started by the variable LIST )and may be reused for
addressing scme new objects.

The algorithm of delete operation is as follows:

procedure delete (Iadd,xob);
integer Xadd,Xob;

begin lnteger addr;
if member (Xadd,Xob,addr )then

begin free (addr); comment a frame in memory mey be released;
H[Xadd+1) :=H[Xada+1] +1;
intolist ( Xadd,LisT )
end
end delete;

Yhen a new achtilvation record is allocated, & new element muat be
ingerted into H. IT the list of released items of H is not empty, one
of the previocusly used elements of H may be reused. Otherwise array
H is extended ( LASTITEM:=LASTITEM+2 ),

procedure insert(appetite,Xadd,Xob);
ngme Xadd,Xob; integer appetite,Xadd,Xob;
begin
if empty{LIST ) then
begin ¥Xadd:=LASTITEM+1; H[Xadd+1]:=0; LASTITEM : =LASTITEM+2
end else Xadd::deletefrom(LIST): comment one element has been
taken from the list of released elements;
Xobs:=E [Xadd+1] 5
H [Xadd.] :=newframe (app etite )
end insert;

Moreover we intend to treat uniformly references to terminated obje-

cts of non-classes and the reference to the empty object none.

This is easily accomplished by the following initialization:
none:={0,0); H0):=[1]:=1;

Hence none deoes not refer to any accessible object because i1ts obje-

¢t number equals O and H[ﬁ] squals 1.
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Finally, we recall now that the SL chain may be cut off. Therefore
the display update algorithm must be modified.

Mgorithm 7.1.
Let SL(p):pm,....p1, then the GDISFLAY update algoritnm has the form:

X:-pj

while X.SL =/= nene do X:~X.5L;

if X élR(T)| then error glse

for k:=1 step 1 uatil m do updateGDip,); 0

Let us now discuss the cost of the proposed referencing method.
Each accessible object needs two extra words for an item in the array
H, Each reference variable needs two words for a virtual address.
Thus, with respect te a standard method we lose two words for each
accessible object and one word for each reference variable. (However,
the pair of integers forming a virtual address may sometimes be pac—
ked intc one machine word; the seme may be done for an item of two
words in the array H.)

On the other hand, we profit in an essential increase of the total
number of different objects which may be used through the program
lifetime without garbage collection, This number exceeds by far the
capacity of H, though the number of objects accessible et the same
time is limited by H, The new strategy has the advantage of the stan-
dard one when a program uses many procedures (what is natural and
very common). Then the terminated objects of these procedures are
deallocated on line and the corresponding space may be lmmediately
reuged by the other objects (as in the case of stack-implementible
language). Observe that the lack of on-line deallocation of termipa-
ted non~class objects was the main snag to efficient lmplementations
of Simls~67., Mereover, b¥ virtue of this indirect addressing fin
cage of memory segmentation}, the memory compactification may be done
without traversing a graph of objects and without updating the refe-—
rence variables, It may be accomplished by removing inaccesslble obje-
cts end chaenging the corresponding addresses stored in the arrav H,

Fiunally the time-cost of these three operations (delete, insert,
member )is as follows, The cost of the operatlon member is constant
and very low. It mey be compared with the cost of testing on nome in
standard implementation. The cost of insert and delete depends on the
cost of other operations like newframs, free, intolist, deletefrom,
which maintain the frames of inaccessible objects., Apart from the
cogt resulting from these operations, the cost of delete and lnsert
iy constent. These operatiocns may be implemented in meny different
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methods., However, with the use of good algorithms and date structures
(i.e. linear lists, heaps etc. )one can obtain the same time comple-
xity as in the case of standard solutions. Moreover, observe that

due to the property (7.1} Gisplay may contain physical addresses ins-—
tead of virtual onesg, so an access o the visible attributes is not
charged bv the cost of member operation.

Programmed deallocation

To end this section, as a consequence of the reference mechanism
introduced above, we can propose the new operation to be introduced
to the programming language. This new operation is called usually
programmed deallocation and may be dencted by g;;;(x), where X is
a reference. The gemantics of g;;;(x] is as follows. If X is & refe-
rence to an accessgible object, then g;;;lx) makes this object inacce-
sgible (and ip consequence this object may be deallocated). Otherwise
ki13(x) is equivalent to the empty statement,

We got kill operation as a benefit from the referencing method
introduced because of the other reasons, Roughly speaking, kill is
realized by the delete operation deseribed previously. Thus, after
the execution of g;;;{x) the object peolated {if any) by X becomes
inaccessible., Morecover, any remote access to such a being made inacce-
ssible object will cause a run~time error, The realizetion of this
is possible as a result of the operation member already existing in
the set of storage management operations. Here the simple test on
none is extended to the test on being accessible (member operation).
We showed that the cost of member operation is constant and very dlow,
and may be compared wlth the cost of the test on pone, Thus, with
gsome lost of space and a minimal loss of time we can solve the Pro=-
blem of "dengling reference".

We are confident that a programmer when allowing the use of pro-
grammed secure deallocation will be able to perform an efficient sto-
rage management by conscious deletions of useless objects. Therefore
in most cases the time consuming garbage collection mey be omitted.
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Abatract: The computational power of Petri nets iz extended up to
the: power of counter machines by realizing certsin priorities of
parailelism. Hence certain cancurremt computations cen not exactly

be reflected by the sets of all sequentialized computationa in related
syatema. Maoreover, the reachability, boundedness and liveness problems
are undecidable under the modified firing rule.

Q. Introduction

The atates and the processed sequences in concurrent systems
may be heavily sffected by the ageumptions about the gccurences of
paralleliem, To show this we comnsider concurrent computations using
the Petri net model where we claim that maximal sete of simultanecusly
firable trangitfions have to fire in parallel ("Maximum Firing Strategy"®
2.1). Petril nets under this firing rule are of mare cumputational..
power tham the mets under the common firing rule (3.2).

While the common firing rule (1.2) for Petri nets corresponds tc
all possible aequentielized computationa (executable by one processar)
€1.3), the Meximum Firing Strategy alleows only those cancurrent compu-
tatiane which make use of the maximelly possible parsllelism {with a
related number of processors). This concept is related Yo the otrategy
MAX faor concurreni cemputations, which was introduced by Salwicki and
Mifkdner /SM/ -. The extended camputational pewer under the Maximum
Piring Strategy implies that there are concurrent computations which
cen not be falthfully represented by the set of sequentiallized runs.

Farthermore, tha Petiri neta working under the Maximum Firing
Strategy are able to aimzlate counter machines (3.2). As a cobsequence
the boundedness, reschability and liveness preoblems mre undecidable
(4.1). Thie result may be unpleasant with respect to practical uase.

But, as it can be seen by the uvsed comatructions, these results
already hold for parasllelism of twa processora: If at least two
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transitions have to fire eimultaneously whenever this is possible,
then the computational power is agasin exterded up to the power of
counter machines (4.4). In this sense it can be stated that the use
of parallelism must be paid by undecidability results.

1. Preliminaries. The common firing rule.
1,1 I¥ is the set of all non-negetive integers. For a finite

alphahbet A, A¥ ig the free momoid with the empty word e ., Qperations
and relations em vectors are understood componentwise.

A (gemeralized initisl) Petri net is given by JN= (P, T, F, ma),
where P end T are the finite sets of places and transitions, respecti-~
vely. F: (PxT )y (TxP) — W is the flow function,
m,€ ]\TP i@ the initial marking. For a transition t€T we define the
vectors t, t¥e w? by t (p):=Ffp,t), t¥(p) :=F(t,p) (pe P) .

1.2 The trangltion teT is firable under the common firing rule
at a marking me ]NP iff t7 <€ m , After its firing the new marking
8 m + At , where At:= tT - t7,

A sequence u= t1...tneT* is a firing sequence under the common
firing rule iff each transition ty (£=1,4+.,n) is firable at the
marking m, + At.l ¥ oaes 4.-nti_1 under the common firing rule, it leads
tc the new merking o, *Aau, where Au:mo_ -h-At.] # een + A‘tn « If anly
one processor is warking, then the firing sequences may be considered
as the computational sequences which can be processed by this processor.

1.3 The et of all firing sequences under the common firing rule of
a Petri net & 1p denoted by Ly » The following pumping lemma /B2/
bolds:

There are numbers k, 1 for each language L, such that the

fellowing holds:

If the length of a sequence uc¢ L.-Lf is greater than k ,
then there is o decomposition u = u uy ug such that

1 ¢ length of u, € I and u, uam'uBEIw for all neg W .

By the modified firing rule, which we shall define later on (2,1), we
get mets of firing sequences which are subsetas of L” +« In general,
guch & pumping lemme is not valid for these sets.

1.4 The pet of a1l reachable markings under the common firing rule
ie defined by R, := { m_+au / uel }-. For a given subeet X € P
& a W =
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of places the {pon~terminal) Petri net predicate MJG x is defined
ag the projection of R, m the places of X =
MM,X = {x émx AméR, . mp) = x{p} for ell peX} ”
There ig again a pumping lemma /B2/
'I‘h.erﬁe are vectors y*, y" € ]Nx for each get MW’. x such that
the following holds:
If IEM—JV',X covers y' {i.e. 2> ¥' )y
then there exists a vector zg ( N ~{0} )X euch that
z <x¥" and X # Az € MJG x far all ne N .

In general, the Petri net predicates computable by the modified firing
rule do not satisfy such a pumping lemma.

2a Piring under the Maximum Strategy.
2.1 The atrategy "MAX® for cancurrent computations was intraduced

by Salwicki and Milldmer /SM/ t As many processes as possible (limita-
tione may arise by eonflicts) have to work concurrently. Thus we want
to make use of meximal parallelism. This can be represented in Petri

nets by the following firing ruie called the Maximum Firing Strategy:

In & marking m we choose & maximel set T' of slmultaneously

firable tramsitions, l.e. > & g m aad 2 __t7 ¢ m
' W ' tE T te®"

for alk T" > T*' .,

Then the trangitions of T" are fired simultaneously. After thiﬁ

firing the new marking is m + z At . For thet marking a

mew set T' ig chosen ... teT'

2.2 The number of simultaneously firebtle transitions is hounded by
the number of transitions in the net. Additiomally it can be bounded
by the atructure of the nmet. By adding a "run place" it is poesible

te change the net (thereby preserving the internal structure) such thaf
not mowre then a given number n of trensitions may fire simul taneously:

f——————— T T T T T l Jf’

run place

|| —— 8 LI '——_|

all transitions of T l marked by n tokens
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2.3 The set Rﬁ.ﬂ of all reachaple markings under the Maximum Firing
Strategy contains all those markinge which can be reached from o by
firing the maximal sets T' of simul taneously firable tranﬂtmne, il.e.,
only those markings are valid which are reached when all transi tione

of a set T' have fired. Haowever, the results presented in this paper

remaing true if we consider the sets additionslly containing the inter—
medimte markings {where some transitions of T' have fired — this would
be related to the lamguages as in 3.4).

The Petri net predicate thlvux under the Maximum Firing Strategy
is the projection of Rﬂ_"‘x o the plgces of the met X € P . For each

- MAX MaX
net 4 we have: Rdf < R and MJV‘.X— MJ{.' X
2.4 Ag an example we conglder the following net (a modified wversion

of Hack's example for the weak computation of 2! ):

We have My x = {€i,jY /7 1elN A 1 <3 < 2t } under the common
firing rule for X = {X x5 1

The computations under the Maximum Firing Strategy lead to the following
reachability graph, whereby

m = (m(x-,),m(xal.m(m).m(pz),m(ar1).---.m(y4) )z



(0,1,0,1,1,1,0,0}
| 5,1
(0,1,0,1,0,2,0,0)
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(0v190’130!012)0)
(0’11011'(}!0!1!1} /
Litss 6
(0,1,1,0,9,0,1,1)
l{ts} /
(0I1!!1'!OIOIOI012) I
len /
(1v1:130’290p0,0) [
l{tﬂ
(T|1’1I0'1’1'0!0)

\th' t5}

(1,2,0,2,1,1,0,0)

90

(i,2%,0,2%,1,1,0,0)
§ %2}
(i,2%,0,2%,0,2,0,0)
_ _l{tﬂ
[E, B 0,80, 8,8 ,0)
_ l{t51
(i,2%,0,2%,0,0,1,1)
_ _l{*'s' t }
(i,2%,1,2%-1,0,0,1,1)

l{ta' tg }
i{"s' g}

(1,2,2%,0,0,0,1,1)}
1

F

(1*1;21)2‘11011!110v0)

H Ty ¥3)
i{tz' e 1

t1+1,2841,0,2247,1,1,0,0)
|

¥

Here we have Hudﬁxx = -[-(i,.l) / L1e W A 211 < i < 2i} . Since
thig met contains no infinite linear subset, it does not satinfy the
conditiona of the pumping lemme in 1.4 . Hence it can not be computed
in any Petri met under the common firing rule.

2,5 . Im the example a while-loop im realized: If the places ¥, and ¥y
aq'e each merked by ome token, then the trenaitions 1'.2 and t3 have to
fire simulteneously as long @s there are tokens in place Pqs Thus we
hasve under the Maximum PFiring Strategy:
while w(p,} > 0 do begin m(p,) := m(py) -1
m(py) == nipp} + 2 &
m(xz) = m(xz) + 1 end .
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Another while~loop ie realized by the transitions t5' and ts » Under
the common firing rule it can not be passible to realize while-lcops
in Petri nets. Otherwise the set MPZI,;"XX of our example would also be
computable under the cammon firing rule.

2.6 The reachgbility graphs under the Maximum Firing Strategy (as
well aa under the common firing rule) mey be infinite as in our example.
In general they may also have branchings (if there are two or more
maximal sets of simultaneously firable transitions}. The reachablility
greph is finite iff the net ie bounded (iff all reachable markings are
bounded ).

2.7 Certain properties of Petri nets — especially boundedness —
under the cammon firing rulie can be examined with help of the well-
knmown construction of the coverability tree [K¥S, KA1/, /H1/. An
fmportant fact used for this construction is the following one (which
iz also related to the pumping lemma 1.4 J:
If e merking m ie reachshle from m' by firing of a sequence u ,
ther m # & is reachesble from n' + a by firing of u under the
common firing rule for esch a¢ N F 5

Thig ie mot true far the Meximum Firing Strategy as it cen be geen by
the example. Hence a coverability tree with respect to the Maximum
Firing Strategy can not be constructed. Furthermore, boundedness ig
not decidable in Petri nets working under this firing rule (4.1) .

3, The camputetiaonal power af Petri mete under the

Maximum Piring Strategy.

3.1 The Maximum Firing Strategy fm more "selective” than the caumon
firing rule, thus we have u‘jﬁ’xx § M, y . By this selecting, the
Meximum Firing Strategy im more powerful with regpect to computations:
Let 9 and DP™F e the classes of all Petri net predicates .
and MMWA;XX » respeciively. Then we have !
1. AN
For the proof we refer to 2.2 and 2.4 ¢+ If n = 1 y then we are able
to fire in the net N'* conetructed inm 2.2 exactly all sequences of
L, even under the Meximum Firing Strategy, and hence MIJJ,[XX = M# x*
. MAX s '
For the exemple 2.4 we have H.M;.;xx & TNy .
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i 22 Petri nets under the Maximum Firing Stretegy are able to aimu-
!h’ late deterministic counter machineg. Other possgibilities ta simulate
counter machines hy medified Petrli nets were given by several authors
2 (cf. 3.5) . The crucial point is the simulation of zero-testing, whiel
ts pot possible in Petri nets working under the common firing rule /K:
The consequence of the ability to simulate counter machines are the

i undecidability results given in 4.1 ., The instructions of a defermini-
4 stic covnter machine can be simuleted by Petri nete working under the
! Keaximum PFiring Strategy in the following way (for mere detaila the
reader is referred to the literature):

pl @ simulates “start in state L
pl O pL' simulates “L: Xi — )(.' +1; goto lj ; i

{ counters are simulated by the places x; )

i T simulates zero-testing :

"L i X = 0 then goto L,else X; = X ~1; goto L, ;"

plO l O”HALT

simutates “L: hdt”
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Non-deterministic counter machines may also be simulated 1if we make
use of the additlional chofce-construction:

P (OLY

i O\éo simulates "l: goto ljor |, ; "
Pl1

3.3 As it was shown in /B1/, the set § (1,21) / ieWY is not
in the class ﬂ%MAX, end hence it is not possible to compute all
recuregively enumerable predicates in the sense of EﬂMkX. To do thig,
termination ie needed: Only those computations (markings) are valid
for which s given submarking y e NP\\X is reached on the places of
the set P\ X (where X <2enctes the places on which the predicate is
computed as before). By such predicates

MyX,y = {xémx /ﬁméﬁiﬂ ¥rex ¥ptepax : mlp)=x(p) A m(p'r=y(p*)}

all recursively enumerabie predicates can be represented /B1/.

Remark: It is an open problem which predicates can be represented
uging termination in Petri nets under the common firing rule. But it is
canjectured that not all recursively enumerable predicates can be
generated in this way,

3.4 The order of transitions in a firing sequence of L, may be
artificial in the case of comcurrently firable transitions. For reasons
of comparing resul'ts we can also introduce such an artificial order for
the firings under the Maximum Firing Strategy: For each maximal set T°
of simultaneously firable transitiona the traneitions of T' may fire

in en arblfrery order (each transition exactly once before the next

set T* 1s chosen}. Then we obtain that the Maximum Firing Strategy 1s
more powerful also: with respect to the representation of languages by
Petrl nets, Using termination and a traneition labkelling function
(homomorphism) h: T —=F'ule} we can generate all recurglvely
enumerable languages over the alphabet > /Bi/.

3.5 The power of counter machines ie alao met by the modified Petrt
net versians given by several authors. In /H2/ inhibitor arcs and ]
priorities for fransitions, respectively, are used. I'n the nets defined

in /JLL/ aud /MATTK/ the transitions have to fire during fixed
(individual) time intervals after thelr ermabling. Concepts of firing
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in the order of enabling (reallzed by certain gqueue regimes) hawe thos
effects, tooe /B1/. In /V/ the numbers of transported tokehs are modifie:
by the markings on certein places. The concept in /MPS/ is the closest
ane to our Maximum Firing Strategy: There the firings of transitions
are synchronized by external events auch that all enabled transitions
ecmmected to the actual event have to fire. The consfruction for the
simulation of inhibitor arce given in /MPS/ would also work under the
Maximum Firing Strategy. But, on the other hand, the construction glve:
there is quite oppasite to parallelism since all cancurrent firings of
the essential transeitiona are suppressed by a run loop (similar to the
constructian in 2.2)}.

4. "The price of parasllelism'

4.1 It ig well esteblished in the literature that the ability of
Petri nete to simulate deterministic counter machines (whereby the
Petri nets are modified in some sense) results in the undecidability
of the boundedness (are &ll reachable markings bounded with respect
to certain places), the reachability (is a given marking/submarking
reachahle) and the liveness (can certain transitions always become
firable sometime later) problema. Since the halting problem is not
decidable for determlnistic counter machines, it is not decidable if
a token can arrive at the place py, .. {cf.3.2} and hence the reacha- g
bility problem for submesrkingse is undecidable. By conmecting certain
simple subnets to the place PyaLT the undecidability of the reachabi-
1lity, boundedness and liveness problems can be proved (cf. for
instance /H1/, /fJLL/, /B1/}.

4.2 In the conatructiona for the simulation of the counter machines
all places excluding the counter-place x; may only be marked by O or 1.
It is known from the theory that the halting problem is undecidable
even for counter machines with twa counters. Hence the undecidability
results hold for Petri nets under the Maximum Firing Strategy where
the nets have only two unbounded plaeces. By a constructicon glven in
/Bt/ the number of baunded places can alea be limited by two. Hence
the total number of places need not he greater than four. On the other
hand, the reachabllity sets &,- of Petrl nete with 4 places under the
coammon Tiring rule gre always semilinesr /HP/. This illustrates the
difference hetween the firing rules ance more.
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under the cammon firlng rule mugt also be %ounded under the Maximum
Piring Strategy. Hence it is poesible that s place which was faormerly
unbeunded becomes bounded under the Maximum Piring Strategy. But it

ig not decidable in general if this happens. Still more important
could be the fact that e transition which was live under the common
firing rule mey become not live with respect to the Maximum Firing
Stretegy end vice versa /B1/. Here the undecidability results are very
strongly affecting the practical use.

4.3  Since we always have mrfv"xx £ M, y . & place which is bounded

4.4 In the Maximum Firing Strategy we make use of maximal paralle—
lism. But for simulating the counter machines the parallelism which

is used may aleo be restricted: Only the parallelism of two transitions
1s needed for the zero-tesgting device (3.2): If the transition t1 is
firable (if there are tokens on the place xi), then the transition té
must not become firable {(the places Py and p& must not be marked at
the same fime). That can be ensured if the transition t1 must start
working (with taking the token from pT) before the tramsition t,, has
ended its actions (has given the token to‘pé). This condition can be
satiefied if we claim that in a net simulating a deterministic counter
machine (3.2) at least two transitions have to fire gimultaneously

whenever this is poesible, Moreover, both transitions to,and t., become

firable at the same time. Hence it should be reasonably acGEpt;d that
under the asaumptions of a parallel system both transitions are simul-
taneously acting in reality. Thus deterministic counter machines can
he simulated. In thie sense we can stete that the use of perallelism
(the priority of parallelism) must be paid by the undecidability of

the reachability, boundedness end livenees problems.

4.5 Of course, the constraints of firings by paralleliem of at least
two transitions (as far as it is poseible} lead also to more computa-
tional power (in comparison to the common firing rule asg in 3.1). The
congequence of those extensions ie the impoesibility of faithful simu-—
letions by all one—processor-computations: There are concurrent compu-
tations. by nets working under constraints by parallelism such that no
net working under the common firing rule can exactly simulate them.

4.6 As 1t wae pointed out in 3.5, all known related extensions of
Petri nets (together with termination, ef. 3.3, 3.4} give the nets the
power of Turing machines., Whet we can say now is that already the use
af parallelism cen give the nete this computationel power. The restric-
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tions of this power under the common firing rule result from this point
of view from lrresolution with respect o parallelism. Cn the other
hand, firing by falr scheduling {sequentializing instead of parallelism
results in the power of Turing machines, too /B1/ (consider the zero-
testing device in 3.2 under the assumption that a firable transition
has to fire which was enabled the longest time}.

Thus the restricted computational power {and the decidability
of the boundednessa problem, for instance} of Petri nets under the
common firing rule can be understood as 3the consequence of allowing
"ioo much®: If there is made a decieion concerning parallelism {or fair
scheduliing or one of the modificetions mentioned in 3.5}, therm these

restrictions may he overcome.

5, Conclusionsg.

The restrictions of firability by the use of parsllelism extends
the computational power of Petri nets. It is not poselible to simulate
all these computations by nets working under the common firing rule:
The nets under the comman firing rule are in general computing "too
much"™. Hence there are concurrent computations executed by peveral
processors ueing the possibilities of parallel working which cannot
be exactly reflected by a&ll computationa which one processor could
executie in the same sjatem or even in eny other ayestem of the seme [ ]
kind.

Under the aspects of practical use the power of Turing machines
(or st least of deterministic counter machines) may not be welcome.

Phe decidability of livenees, for instance, is desirable. On the other
hand, the use of parmsllelism as far as it is possible is desirable with
regpect to. efficlency, too. Now the questlion erises for which classes
of nets the mentioned problems (or at least some of them) are decidable
with respect to the modified firing rules. A positive answer camn
trivislly be given for the cless of bhounded nets.
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