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Abstract. In the paper we solve some effectivity problems of program schemAs.
Such properties of programs as, for example, the strong and the weak equivalence,
the correctness and the partinl corregtness of a program,.the halting problem .are
classified in Kleene-Mostowski hierarchy. A ‘basic tool uged in the paper is algor-
ithmie logic. o

Introduction

The subject we consider in the present paper is now very fashionable.
We shall deal with effectivity problems such as recursiveness, degrees
of unsolvability and arithmetical classes of notions investigated in .the
theory of programming. In -oppositibn to many previous 'plibiicaﬁious
we shall try to show that these problems can be solved in a uniform way
owing .to an appropriate choice of formal language and. the applications
of metamathematical methods. S I e

In Part I we present in brief the basis of our considerations,. namely
the algorithmic logic' (AL). This: language is an extension of the .class of
expressions which may be treated as programs, into the class of formulas
describing properties of programs. At first it will not be clear why we
adopt such a definition of formal langnage, in many points rather nncom-
mon, as we have at our disposal several already known formal approaches.
' Nevertheless, it will turn out that AL is sufficiently strong and universal
to- comprise- almost- all previonsly introduced theories of programming:

_During ‘the last few years the metatheory of “AL, called algorithmic
logic; has been developed atWarsaw University. Now we know many facts
aboit: the ‘dlgorithmic logic. ‘Sorme of them are of syntactical and’ model-:
theoretical ¢haracter, others can be expresséd in terms of recursion theory.
The fivst aspect of the whole theory will be very helpful in studying the
latter. : B ‘ -
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In Part XX we shall consider those properties of AL which concern
its syntax and semantics. The fact, which is of great importance in that
part, is the possibility of a cemplete syntactic characterization of seman-
ties: in algorithmic logic every semantic proof can be replaced by a syn-
tactic one. The above statement, the basic tool we shall use later, is called
the completeness theorem. Its meaning has been very often overlooked
in papers on the axiomatic approach to the theory of programming, It
should be pointed out that this syntactic characterization of semanties
is essentially infinitistic, so that the formal proofs are infinite and cannot
be replaced by finite ones.

In Part IIT we shall answer guestions mentioned in the title by means
of previously developed methods. We shall examine from the point of
view of recursion theory such notions as, for example, the strong and
weak equivalence of programs, the correctness of 2 program and also
the very muech exploited halting problem. These properties will be exam-
ined in different classes of models. All of them lie at the bottom of
arithmetical hierarchy, strictly speaking in class /7). The last and the
most important theorem proves that the elementary theory of programming
has the same degree of unsolvability as the notion of truth in first-order
arithmetic. Hence, there are elementary properties of programs on arbi-
trarily high level of arithmetical hierarchy.

PART ¥

1. Definition of AL and its realization ([1567)

It is a well-known fact that in every program we can avoid the ‘go
to’ statement ([6], [16]). Thus, in the definition of AL we shall introduce
only the following three program constructions:

‘compoud statement’: begin K; M end 5
‘conditional statement’: if o then K else M
‘while statement’: while o do K

We admit the following brief notation for these congtructions:
(EM]Y, ~[aKM], =[aK].

In this notation we also replace the substitution sign : = by /. We proceed
to describe the alphabet of AL. It consists of an infinite BEQUONCO: Ty, Lay o1t
of individual variables, an infinite sequence: p,, p,, ... of propositional
variables, logical signs, functional symbols, predicates, symbols oceurring
In programs: [, v, *,[, ), and iteration quantifiers: (), .

We also assume that AL includes the symbol of equality =, always
-in the sense of identity.
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We distingunish in AL (see [15]) the following classes of expressions:
~the set T of terms, the set ¥ of open formulas, the set § of parallel sub-

stitutions
(2101, -, 2, fw,,]

(where.#y, ..., 2, are digtinet variables and if 2; is a propositional variable,
. ‘then w, is an open formula, otherwise w;, is a term), the set IS of programs
defined as the least set of expressioms containing 8 and eclogsed under
program constructions.

" The notion of input and output variable is introduced in a natural
- way. We admit also abbreviations:

~v[aK] instead of x[aK[]],
where [ ] is a dummy substitution,
[K,K,...K,] iostead of [...[K,K,]... K]

and . ‘ ‘
K’ instead of [KK...... K],

where a program K is taken ¢ times. !

The set of formulas of AL is defined as the least set containing I,
closed under propositional connectives and the following rules:

tf a i8 @ formula and K P8, then

Ka, |JKe, (He
are formulas; :

if a(z) is a formula and x is an individual variable in a(z), then
o C(Fo)ale), (Va)a()
are formulas; - '

Examples of formulas will be given in 1.2,

We assume that the notion of the realization of a language is known.
The notation is adopted from [13]. The realization of functional symbols
and predicates will be denoted by R, the valuation of variables by w.
. We define values zx{9), arp(v), sp(v), I,(v) of terms, open formaulas,
substitutions and programs in the usual way ([15]). Note that z,(v)
is an element of the universe, ay(v) is a Boolean value, s,(v) is a valuation
and Ky(v) either is a defined valuation or is undefined.
 Finally we define the realization of formulas:

ap{Kg(r)) if Kg(v) is defined,
false otherwise;
(U Kajp(v) = sup(I)(o),

et

(M Ka)z(v) = inf (K2)p(v),

ieN

(Ka)p(v) =
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((32)a(@))p(v) = sup ap(v’),

((Vw)a (3’7))& (v) = inf ag(v’),
aelRR|
where v'(#) = a, v'(2) =z for 2 # 2 and |[R| denotes the universe.
~ The notions of satisfaction .and model are the usnal ones. If X is a set
of formulas, o a formula, then

. Xka
indicates that every model of X is a model of «. In particular,
Ea

indicates that « is a tautology. 7
If U is a relational system, then

NEa
denotes that U is a model for the formula .

2. Algorithmic properties

Let us consider the following formulas of AL:

Stop (K): K1,

Stop’ (K): ~K1,

Corr (a, K, 8): a— KB,

PCorr (e, K, 8): a—(K1-Kp),

K ~M: [[yllmly 4 Ky yﬂlfmn]K M] /\ (mi = ya)

isn
(where #y,...,, are all variables in programs K

and M and all occurrences of #; in M are replaced

by %),
K =M: (Kl M1)A (K ~ M),
Natural: (Vo) [2/01U[z/z+1] (= = ¥),

Archimedean: (Vo) [2/0]U[zjz+1] (y < =),

Characteristic 0: [#/11\[z/z+1]~(z = 0),

Torsion: - (Vo) fefel /2 2](z = 1),

Cyclic: (V) [2/al|[2/z-a](z = 2).

Now, let us examine their semantics.

Stop (K) is true iff K is defined. So, K1 is the halting formula for
a program K (see [1]).

Stop’ (K) is true iff K is undefined. So, this formula expresses the
undefiniteness of the program X.

Corr and PCorr define the correctness and partial eorrectness of A
with respect to the input condition « and the output condition f (see [4]). !

K ~ M and K = M define the weak and strong equivalence of pro-
grams K and M (see [5]).

Y
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.. ‘Thege -formulas show that the theories of Engeler, Hoare, Igarashi
. _are proper parts of AL, In a similar but more sophisticated way one can
prove that the theories of Floyd, Manna, Scott, and others are definable
in certain simple extensions of AL.. Even the theory of recursive pro-
cedures may be investigated on that basis. In this paper we disregard these
new modifications of AL and concentrate our attention on the starting
point of its definition. - :

‘ In continuing the analysis of algorithmic properties let us return
. 40 the remaining examples of formulas. They have algebraical rather
than algorithmical meanings. The iteration quantifiers enable us to
,chs;méctefize non-elementary classes of models, i.e. those which do not
have the first order characterization. We shall ezll a class of models
defined by 2 recursive set of algorithmic formulas an algorithmic class.

‘Thus, the class of models isomorphic with the system of natural
numbers, the Archimedean ordered fields, the fields of characteristic
zero, the torsion free groups, the cyeclic groups are algorithmic. To this
list one can add the following: the ring of integers, the field of recursive
numbers ([10]), the field of algebraic numbers, the field of geometrically
constructible numbers ([3]), the field of rationals ete.

This great variety of algorithmic properties is astonishing. It is natu-
ral to inquire at the very beginning whether our definition of language
ig not too large. We shall show that the removal of iteration quantifiers
and program constructions would lead us to a blind alley. We should
not be able to prove many interesting facts about programs and their
properties. It will turn out that these algorithmic classes of models may
be very useful in locating the properties of programs in the arithmetical
hierarchy.

3. Normal form theorem

DErmNiTIoN 1. Program K is in a normal form iff K: [s % [adf]], where
¢ is a substitution and 3 is a loop-free program. ‘

Lesmyma 1. Let K: [[Kl*[aMl]] [Kz*[ﬁMg]]] and let p,q,r be prop-
ositional variables not occurring in K; then:

Pl = [K1[Pl'1; qfl, T'/]-]]
«[pva|wianple[pd, [ D108, r 0] [g/3.]))]]-

Lesia 2. Let K: v [BlEK (e M,]] [Kox[agM,)|| and let p,g,r be
propositional variables not oceurring in I; then:
K = [[p/flx[pE.K.][q/es, rlag]|
«[tanp)v (rn ~p)x[3]H.lgja)] [ trfas]]]]-
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LeMMa 3. Let K: *[a [ M« [ 8N ]]] and let p, q be propositional variables
not occurring tn K; then:

FI = [ple, a/0) (v a)x[a[NTaip)x [~alplal] (M p/e, 0ip]]].

Levma 4. Let K: [M=[aN]| and let p be propositional variable not
occurring in K; then:

K = [p]=(pva)x[p|M[p/~p] F]].

THEOREM 1 (due to Mirkowska [12]). Every program can be effectively
transformed into an eguivalent program in a normal Jorm.

Proof: It follows from Lemmas 1-3 that every program can be trans-
formed into a form [Kl*[aKz]], where K, K, are loop-free programs.
From Lemma 4 we obtain a normal form of 2 program. m

4. Elimination of program symbols from formmlas

Tn the sequel, s will denote a finite string of substitutions. If « is an
open formula, then sa is a result of the application of all substitutions
8 to a, beginning from the innermost one. Thus, for instance, if «:
(@ =y)vp and s: [z)e+y,y/e) [p/pagllefz-y], then Sa: ((x+y)-o = )
v(pag).

Lewnia 5.

(i) kFsacsa  for an open formula a;

(ii} ¥ s[KM]Bs(K(MB));

(i) Fsv[aKM]Bers((an KB)v (~an MB));

(iv) Fs*[aK]fos[pA]) [[p/paalK](pa ~an )
provided p is a propositional variable not occurring in a formula s« [aK]p.

For the proof seec [12].

Eemark: From now on the formula obtained from K8 by one of the
equivalences (i)-(iv) will be denoted by 1?,&

From Lemma 5 and Theorem 1 we obtain an analogune of Engeler’s
well-known theorem.

THEOREM 2. Por every program K one can construct in the éffective
way a formula a of the form s( ) MB, where f is open and M is a loop-free
program such that ¥ K1—a.

Proof: By Theorem 1, k K = [s+[yM]]. Thus, F Kl [3=[yM1]1 and,
by Lemma 4, -

Fls* [y M| L [s [y M]]1.

Let a: [sx[yM]] 1; then F asK1 and « has the required propertics. m
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PART I1

1. Deduction theorem

THEOREM 3. Suppose that X is a set of formulas of AL, a is a closed
Jormula of AL, 8 is a formula of AL; then

Xoufa} kg iff X Easp.

Proof is carried out as in [13].

2. Gentzen style axiomatization

What we wish to do in this section, is to give a syntactic characteriz-
ation of the relation k. Obviounsly, there is another way of achieving,
the same aim. For instance, we could adopt a Hilbert style axiomatization,
as had already been done by Mirkowska [11]. The advantage of our
decision will appear when we come to the analysis of effectivity problems.
The reason is quite simple. Proofs in the Gentzen style can be carried
out in a deterministic way, which is impossible in the Hilbert style.

An exact exposition of this axiomatization would be unbearably
cumbersome and it not intended here. Being aware of it, we shall try
to shorten all definitions and proofs as far as possible. Unfamiliar readers
are referred to [87, [13].

We start from the following definitions.

DEeFINITION 2. Let X be a set of equations r; = r; where 7,, 7; are
terms. We shall say that the terms v, p are X equivalent (v = p[X])
itf there exists a sequence of terms z,, ..., v, such that =, is 7, 7, is u and
for all 4 < n either v, is 7;,, or the equation r; = v;,, is in X.

DEFINITION 3. v<u[X] will denote the closure of relation v — u[X]
with respect to extensionality of funectional symbols, i.e.

it T [ X, i <n, then f(zy, ..., 72)5< flaay -y ) [X].

The relation = is of course a congruence in the algebra.of terms.
DEFINITION 4. A sequent is a pair of finite sequences of formulas of AlL.
We shall write sequents in the form I" = A, where I is the antecedent

and 4 is the consequent in a sequent. As in every Gentzen style axiom-

atization, we shall speak about sequents and their proofs, and not about
formulas and their proofs.

DEFINTITON 5. A sequent I” = A is said to be an axiom iff one of the
following conditions is satisfied: (1) = = ved; (2) led; (3)0el"; (4)
I'nA 7 @; (5) There exists a set of equations X < I" and a set of terms
Tyy By LS 0, sueh that 7= u,[X]; ¢ < n, and, for a certain predicate ¢,

9(71?',",T1L)EI' and 9(1”17"')#’1].)641-
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Schemas of axioms (1)-(4) are quite natural. Schema (5) assures extension-
ality of predicates.

i_lg}‘_ff_, where {8;};; 18

Rules of inference will be written in the form

an enumerable sequence of premises, S is the conclusion. The rules are
as follows:

I‘, sa = 4 J T = A, sa
Rla) ———— Rib) —— 2227
( la') F 5 Sf"-’a, A T ( 1b) Swa, I_' - A )
(Rza’)’{ T o ’sﬁ}, (R2Db) Tyvasap=d
Lo ?S(a/\ﬁ),[l s(a,\ﬁ),I":A
F:?'A,sji_a I',.'STK_G:»A
T A R ol o
(Rl I'+sKa, 4 ’ (R3D) sKa, =4’
(R4a) =>;a=;s ’6}) ( a), (R4b) { y S a = }uN
UHKea, 4 s\UKa, I'=4
(ﬁsa) _M, (R5b) s[ejzlalz), 1) s(Vo)al@) =4

I=s(¥a)e(x), 4 s(Va)e(z), I'=4

DEFINITION 6. A diagram .of 2 sequent ['=A is a tree whose nodes
are sequents. Two nodes are coincident iff one belongs to 2 set of premises,
the other is a conclusion, and moreover, a corresponding inference rule
is applied to the leftmost decomposable formula in a sequent, on even
levels in an antecedent and on odd levels in a consequent.

Note that a diagram need not to be of a finite order, since according
to rule (R4b) one node has an infinite number of coincidents.

,  DEFINITION T. b I'=A iff the diagram of I'=/ has no infinite path
and all ending nodes are axioms of algorithmic logic.

THEOREM 4. ke iff F =a. .

Sketeh of the proof: The implication from right to left follows solely
from the correctness of rules of inference and the validity of axioms.
To demonstrate the converse, note that every conclusion is equivalent
to the conjunction of its premises. Thus, if an ending node is not an axiom,
then « cannot be a tautology. Finally, let us consider the case where
‘the diagram of =« has an infinite path. From this path we build a model,
in which a is not valid., The universe of this model is a set of classes [7]
= {u: v>=pu[X]}, where X is the set of equalities lying on antecedents
of this path. Functional symbols arc realized as corresponding classes:

Frllmly ooy [10) = [f (70 --s Tl



Effectivily of algorithmic logic 27

Relational symbols are realized in the following way:
' true .‘ if“é(m, - pﬂj is iﬁ the a.ﬁte,cedenf

erllTils - vs [z.) = - for pelw],
false otherwise.

1t follows from the axioms that this realization is x%eil defined. Let » be
a valuation defined by ' .
[] if 2 is an individual variable,
‘true if ¢ is a propositional variable oCeurTing
o(@) =1 in the antecedent, ' ' '
false  otherwise.

Let us suppose that egp(v) is true. When analysing the inference rules,
we can prove by induction on the complexity of formulas that there
is an atomic .formula in the consequent such thab ogr(zi, sy Tu)(0) 18
true. This contradicts the definition of realization. m

PART III

1. Some elementary properties of programs

Tiet o be a class of models of the same type. We shall consider in, this
section the following properties of programs:

Stop,, = {KF&8: for every model Aed Ak K1},
Stop., = {K eFS: for every model AeAd Ak ~K1},
Eq, = {<K, M)>eFSxFS: for every model Aed AEK = M}.

If  is the class of all models of the same type, we shall omit the symbol 7.
Thus, for instance, Stop = {KeF8: F K1}

In what follows we try to place these properties for various classes
of models in the arithmetical hierarchy. Arithmetical classes in Kleene—
Mostowski hierarchy are usually denoted by X0, I1Y. As we do Dot speak
about analytical properties, we can use symbols X, II,.

1f . is the class of models isomorphic to the model of natural numbers
(N,0,8, =), then the above properties are those of partial recursive
functions, since programs in this model and partial recursive functions
are recursively isomorphic. Thus, we have the following results:

!

Stopy, Bayell—2,
Stop,-ell,— ;.
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It is worth while to point out that PCorr is recursively isomorphic
to Stop’ and Corr is recursively isomorphic to Stop in any class of models.
Moreover, the set of all weakly equivalent programs is recursively iso-
morphie to Stop in any eclass of models.

This follows from the equivalences:

(1) F K1~ (1—+K1),

(2) F(a—HB)o[*[~al JEx[~p[ 1)1,

(3) F ~Klo(1>(K1-K0)),

(4) F (e—~(K1 >Kﬁ)<—>~[ [~a[ ]]K*[ﬂ[ ]”1

(5) FH1—(K ~[ ],

(6) F(E ~ M) (1->[sKM]B) where 8: [Yf@y, 000y Yp /2, ] and
B: A (@ =)

i<n

2. Properties of programs valid in all models

TavoreM 5. Stopel, —I1,; Stop'ell,—X,; Eqell,—%,.

Proof: StopeZ; follows from the axiomatization, since finite rules
are used only in the proof of the sequent =K1,

Stop ¢ f,: see- [9].

Stop’ell,. In fact, k ~K1 iff l-Kl::— iff + ${ ) M8 = by Theorem 2.
After the application of (R4b) the last assertion is equivalent to the infinite
sequence of assertions: for every i  sM'f =. But the relation .sM‘ﬁs
is recursive since M is a loop-free program. Hence, Stop'ell,.

. Stop' ¢ X, : see [9]. _

EqeH, K = M iff r K1=>M1 and + M1=K1 and F =K ~ M. Let
us consider a diagram of K1=-31. As in the case of Stop’, (R4b) will
be used only once. The remaining relation is recursively enwmerable as
in the case of Stop. Since /7, is closed under intersection, Bqelf,.

Eg¢2,;. et us suppose the contrary. At first we limit the get of
non-logical constants to the zero-argument 0 and the one- argument 8
fanectional symbols. Every partial recursive function ¢; is of course
programimable in this language.

Let the program K, {x) compute g¢,(z). Consider the two prograins:

M: [y /01=[y = @ [y/S (¥)]] y/0]],

Py: [ MK [y/o]]- o
Then P; = M iff P,3<f1. By assumption, {i: FPlesMl)eZ,. From
the completeness theorem we get
- {i: FP1=M1 and + M1=P1}eZ,.

Arithmetical class will not change if the set of logical axioms is increased
by the following one: I'=>A where (1) (S{xz) = 0)el or (2) (S(x) = S{y Yel
and (z = y)ed. : :
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Thus, by the completeness theorem, the set U = {i: ¢ F P;1eM1}
is in Z,, where a: (S(z) # 0)A((S(z) = S(y (@ =) HYU =(4,0,5)
is a model of ¢, then a subsystem B = (B,o0,s)y, where B = {s'(0):
1e N}, is isomorphic to (N, 0, §>. Thus, for every model A of a, we have

Jor every acd, M(a) is defined iff P,(a) is defined.

But M(a) is defined iff an clement a is in B.

We have obtained the following chain of equivalent sentences

(i) iel;

(ii) for every model % of « and for every acd M(a) is defined iff
P;(a) is defined;

(iii) for every model U of e and for every ae 4, acB iff P,(a) is defined ;

(iv) for the model (¥, O, 8), for every acN P ; (2} is defined ;

(V) ¢; is total.

But the last condition is /7,-complete (see [14]); hence, U cannot be
P

3. Properties of programs in the field of real numbers

We shall denote by # the class of models isomorphic to the model
of real numbers (R, +, —, -, 7}, 0,1>. In this section we shall need
the following lemma due to Engeler [3]:

LeMMA 6. If ¢ is a Boolean combination of formulas Ka where a is
open, then

#ZFe iff TFormally real k¢ .

where Formally real is the recursive set of axioms of formally real fields,
t.¢. fields in which every finite sum of squares is # —1.

THEOREM 6. Stopgye X, —I1,; Stopgzell, — Z,; Bqgzell,— X,.

Proof: Stopg € X,. By Lemma 6, we can add to the set of logical axioms
the recursive set of open formulas, since the axioms of formally real fields
are open.

Now we can proceed as in the case of Stopel,.

Stope¢/1,. Let K, have the same meaning as in the proof of the case
Eq¢Z, in Theorem 5. Note that K, may be expressed in the language
under consideration. Then a program N.: [[#/1+ ... +1]K,], where 1
is taken ¢ times, may be also expressed in this language Oonsequently,
@;(¢) I8 defined iff # F N,1.

Stopgell,. By the same argument as StopgzeZ,.

Stopg ¢ Z, because ¢,(i) is undefined iff N eStopy.

Eqgell,. As in the case of Fqell,.

Eqe¢Z,. Let M and P; be such as in the case BEq¢Z,.

Thus, (M, P;>cEq, iff ¢, is total. m
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4. Properties of programs in the ordered field. of real numbers

Let %_ denote the elass of meodels isomorphic to the ordered field of
real mumbers <R, -+, —, *, "}, 0,1, <. Tn this section we shall use the
following Engeler’s lemma ([3]): '

 Lemma 7. If ¢ is a Boolean combination of formulas Ko where a is open,
then
g%.Fg iff Archimedean Fg. '

THEOREM /. Stopa_ , Bde, ell, — %53 Si;()}_:);,g< ell,—Z,.
Proof: Stopy_ell,. By Theorems 2 and 3, K eStopg iff F (Vy)[2/0]v
ulzjz+1](y < z)->suMa. From Theorem 1 it follows that

F(Yy) [2/0]Ule/z+1){y <@) =. siUMa.
From axioms of logic we obfain ‘
| F (@) [2/0)Uljo +1]~(y <), sUMHe.

This sequent has a proof iff s | Ma follows solely from axioms or there
is such a term 7 that forevery i, (z < 14... +1) =s{jHa (With'l taken
i times) has.a proof. But there are only’ a finite number of terms 7 which
occur in more than one formula s M'q. Thus, this case is reduced to the
ease of the sequent: : : : -

201Uz fr +1](x < 2) = s\ UMa,

for some finite number of possible 7.
Stopg_ ¢2,. Let us consider the- program

M)z [[w/0]slw < ylofo+11 Ei()],

where K;(x) computes ¢;(x). Then M;eStopg_ iff I, (n) is defined for
every natural n. Hence, M,eStopy_ iff ¢ is total.
i Stopg €17,.° We have the following chain of equivalent sentences:
(i) KeStops,; ‘ Co ‘
(iiy Z. ¥ ~s| ) Ma, where M is a loop-free program;
(iii) for every ieN #. F (Y, ..., z ysMiay
(iv)_for every seN & F (Y, ..oy ) fi(#1s oo x,), where f; is an open
formuls, obtained cffectively from sifio. - :
From Tarski’s theorem ([17]) ‘on decidability of elementary algebra
it ‘follows that : "
24_ l: (Vq(!l! FRAEAED ‘xn)ﬁi(wla ety mn)
ig the recursive assertion. . 2 ‘
Stopg ¢2,. Proof is carried out as in the case of Stopg.

Bqg_ell,. By the same argument as for Stopg_ -
Eq_Q<¢Z‘2.Asintheca;seoqug.-l I -
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Remark: The idea nsed in the case of Stop,_eX, cannot be imitated
in the case of Stopz. For a program

My): [[2)0)s [z = y[aje+1]| K, ()]

we obtain 2 non F M1 for every <.
CorOLLARY.. The relation < is not programmable in the model 2.
This follows immediately from the facts that Stop,_¢2,and Btopgel.

5. Degree of recursive unsolvability of AL

Let V denote the set of all sentences of the first order arithmetic
valid in the standard model, and let W denote the set of all tautologies
of AL.

THEOREM 3. The sets V and W ave recursively isomorphic.

For the proof see [7].

COROLLARY. (i) W is not an arithmelical set;

(ii} the infinitistic rules of inference cannot be rveplaced by finitistic ones.

Both these facts follow immediately from Theorem 8.
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